22.11.2024

Если двухтрубная система с теплообменником: Если двухтрубная система с теплообменником

Содержание

Как монтируется двухтрубная система отопления и где ее лучше использовать?

Одним из решающих факторов создания оптимальных условий проживания в городской многоэтажке, либо частном доме является обустройство системы обогрева. В любом жилом помещении может быть смонтирована двухтрубная, либо однотрубная система теплоснабжения. Более часто применяют двухтрубную систему. Что представляет собой система двухтрубная отопления и в чем ее отличие от однотрубной, особенности ее монтажа – все это будет рассмотрено в статье.

Двухтрубная либо однотрубная система: что лучше?

Однозначного ответа на вопрос, что лучше будет: однотрубная или двухтрубная система отопления, нет.

Во время выбора надо учитывать удобство эксплуатации, эффективность, долговечность, стоимость и сложность монтажа.

Если бюджет позволяет, то лучше не экономить и остановить свой выбор на двухтрубном варианте. Если необходимо обеспечить теплом дачный дом, то можно отдать предпочтение и однотрубной системе. Поскольку система отопления двухтрубная в частном доме обойдется дороже. Но и эффективность у него гораздо выше.

Помимо этого отопление двухтрубное отличается простотой в эксплуатации. Монтаж можно провести самостоятельно. Двухтрубная схема отопления считается более востребованной. Покупка двойного количества труб для установки всегда оправдывается. Для оборудования двухтрубной системы нет потребности использовать трубопроводы с большим диаметром. Во время монтажа меньше требуется и крепежных элементов, вентилей, фасонных деталей.

Таким образом, для обогрева частного сектора либо городской многоэтажки может применяться схема двухтрубной системы отопления схема однотрубной системы. Выбор определенного варианта зависит от потребителя, его пожеланий и финансового положения.

В чем особенность двухтрубного отопления?

Наиболее качественного обогрева, комфортных условий проживания можно добиться благодаря использованию двухтрубной схемы. Особенность схемы: в каждую батарею устанавливают две трубы. В первой трубе циркулирует горячая вода. Подключается она ко всем обогревателям параллельно. Та вода, которая уже остыла, течет обратно в систему по следующей трубе.

Перед отопительным прибором монтируют краны, которые применяются для перекрытия теплоподачи. При двухтрубной системе температура обогревателя будет невысокой. Но и уровень издержек будет ниже, нежели при однотрубной сети.

Горизонтальная и вертикальная двухтрубная обогревательная система

Отопительная двухтрубная система бывает вертикальной и горизонтальной. Различие в типе соединения всех элементов конструкции в один механизм. Вертикальная схема предполагает подключение всех частей системы к вертикально расположенному стояку. Среди плюсов можно отметить отсутствие воздушных пробок. Среди минусов – более высокую стоимость установки. Вертикальная двухтрубная система отопления многоэтажного дома является наиболее подходящей. Поскольку каждый этаж можно отдельно подсоединить к общему стояку.

Для одноэтажных домов более оптимальным вариантом считается двухтрубная горизонтальная система отопления здания. Такая схема имеет свои особенности. Все радиаторы подсоединяются к расположенному горизонтально трубопроводу. Особенно удобен такой тип обогрева в деревянных домах либо панельно-каркасных помещениях без простенков. Стояки, как правило, располагают в коридорах. Поскольку при горизонтальной системе внешне проводка выглядит не особо привлекательно, все трубы при проведении строительных работ стараются спрятать под стяжку.

Разводка горизонтальной двухтрубной сети может быть нижней, верхней и комбинированной. Для частного сектора оптимальным вариантом считается горизонтальная двухтрубная система отопления с нижней разводкой и неестественной циркуляцией теплоносителя. При этом подача воды к стоякам осуществляется через магистральные трубопроводы снизу.

Обогревательная двухтрубная сеть с верхней разводкой

Верхняя разводка предполагает прокладку трубопровода на чердаке либо под потолком. Используется подобная система отопления двухтрубная с верхней разводкой крайне редко. Поскольку, отличается большим расходом материала и плохо вписывается в интерьер помещения. А вот двухтрубная система отопления двухэтажного дома схема с комбинированной разводкой используется достаточно часто. Подходит для районов с частыми отключениями электроэнергии, для небольших по площади помещений.

Двухтрубная вертикальная обогревательная система предполагает параллельное соединение батарей. Особенностью является то, что монтируется расширительный бачок. Разводящий трубопровод находится вверху. Теплоноситель из котла поступает во все батареи. Горизонтальная схема и вертикальная имеют различия: горизонтальная система отопления двухтрубная схема предполагает установку всех труб с небольшим уклоном.

Обогревательная двухтрубная сеть с нижней разводкой

Главным отличием системы этого типа является подающий трубопровод: двухтрубная система отопления с нижней разводкой схема предполагает его размещение внизу, около обратного. При такой разводке вода по трубам перемещается в направлении снизу вверх. Теплоноситель, пройдя обратные подводки, поступает в трубу благодаря нагревательным элементам. Потом вода попадает в котел. Надо отметить, что система отопления двухтрубная с нижней разводкой предполагает установку кранов Маевского. Это необходимо для профилактики образования воздушных пробок. Такие краны монтируют на каждой батарее отдельно.

Схема двухтрубной обогревательной сети

Двухтрубная система предполагает наличие 2 труб, подведенных к каждой батарее. Такая схема отопления двухтрубная одноэтажного дома включает приведенные ниже компоненты:

  • тепловой котел;
  • бачок;
  • клапан термостатический;
  • балансировочное устройство;
  • автовоздушник;
  • батареи;
  • трубопроводный фильтр;
  • насос;
  • предохранительный клапан;
  • температурный манометр.

Расширительный бак располагают на верхней точке системы теплоснабжения. Уклон труб в обратке, подаче не должен быть больше 10 см на 20 погонных метра. Часто при монтаже систему разделяют на два колена, если труба нижней разводки находится у входной двери. Создают ее от места расположения самой верхней точки в системе. При двухтрубной обогревательной автономной системе с верхней разводкой схема установки может быть разной.

Система двухтрубная с неестественной циркуляцией

Для двухэтажных коттеджей и в частном секторе чаще всего используется схема двухтрубного отопления с принудительной циркуляцией теплоносителя. Суть: все отопительные приборы работают как индивидуальная система. Это позволяет регулировать каждую ветку. Для отдельной ветки можно подобрать свой циркуляционный насос, либо подключить один насос на всю систему. Насосы бывают разной мощности, имеют разные размеры соединительных элементов. Стоимость циркуляционных насосных устройств невысокая.

Надо сказать, что двухтрубная система отопления с принудительной циркуляцией предполагает подключение каждой из батарей к подающей трубе путем проводки. От каждого радиатора к обратной трубе идет собственный отвод. Подобная система позволяет регулировать уровень температуры в любой из комнат.

Алгоритм установки двухтрубной системы

Провести монтаж двухтрубной системы может каждый. Главное знать порядок действий и иметь при себе все необходимое оборудование.

Неважно, какая выбрана двухтрубная система отопления частного дома схема с верхней либо с нижней разводкой, для ее монтажа могут потребоваться такие инструменты:

  1. молоток;
  2. сварочный аппарат;
  3. дрель;
  4. шуруповерт;
  5. газовый и разводной ключи;
  6. отвес и уровень.

Когда вариант установки выбран, следует провести ряд расчетов, составить уточненную схему системы.

Как правило, монтаж отопления двухтрубной системы не отличается сложностью и состоит из этапов:

  • Установка котла отопления. Лучше всего его размещать в отдельном небольшом по площади помещении, где есть вентиляционная система. Пол и стены выбранной комнаты следует покрыть материалами с огнеупорными свойствами. Котел должен находиться в месте легкодоступном и не прилегать к стене.
  • Установка насоса, распределительного коллектора. Естественно, если они предусмотрены в схеме. О монтаже тепловых насосов можно прочитать здесь.
  • Подводка трубопровода. Трубы должны проходить от теплового котла к батареям. Конструкцию можно провести через стену. Для этого делаются в стене небольшие отверстия.
  • Подключение батареи. Каждый радиатор должен иметь нижнюю и верхнюю трубы. Обогревательные конструкции вешаются на специальные кронштейны. Как правило, батареи располагают под окнами. Причем надо соблюдать расстояние от пола (10 см) и других радиаторов (10 см). Между обогревателем и стеной надо выдержать 2-5 см. На входе, выходе батареи устанавливается запорная и регулирующая арматура. Монтируют также термодатчики для поддержки оптимального уровня температуры.
  • Опрессовка оборудования. После того, как монтаж завершен, проводится балансировка двухтрубной системы отопления или, проще говоря, ее настройка. В противном случае обогрев дома будет неравномерным. В одних комнатах, батареи в которых расположены ближе к котлу, будет тепло, а в других – более холодно. Настройка проводится двумя методами: приблизительная балансировка по уровню температуры, по расчетному расходу воды при помощи электронного расходомера.

Двухтрубная тупиковая система отопления. Лучше попутной?

При проектировании и монтаже автономных отопительных систем в частных домовладениях используются различные разновидности одно- и двухтрубных систем. Несмотря на то, что каждый из вариантов имеет право на использование и применение в соответствии со сложившимися условиями и обстоятельствами, по своим эксплуатационным показателям последние более выгодны и популярны среди домовладельцев. В свою очередь, среди двухтрубных систем обогрева зданий, наиболее востребованной выступает тупиковая система отопления. В подготовленной нами статье мы расскажем, что собой представляет двухтрубная тупиковая система обогрева зданий, какие бывают варианты монтажных схем и осветим ряд других вопросов.

Почему тупиковая система?

Свое название «тупиковая» эта двухтрубная система обогрева помещений получила из-за направления движения рабочей среды до и после теплообменников в отоплении. Нагретый теплоноситель перемещается по подающей магистрали в одном направлении до ее попадания в радиатор. После нагрева батареи, вода поступает в обратку и движется в противоположном направлении до тех пор, пока не поступит в теплообменник нагревательной установки. То есть, подача и отвод рабочей среды от каждой батареи производится по различным магистралям. Подающая тепло к радиаторам труба имеет большую протяженность, нежели магистраль, отводящая остывший теплоноситель к теплогенератору.

Однотрубная система обогрева зданий так же может быть тупиковой, но такая система обогрева зданий встречается достаточно редко и является исключением, а не правилом при обустройстве автономных отопительных систем частных домовладений.

К особенностям двухтрубных тупиковых систем отопления следует отнести:

  1. Важность теплоэнергетического расчета системы обогрева. Если все составляющие отопительной системы рассчитаны верно, то в каждый радиатор будет поступать рабочая среда одинаковой температуры.
  2. Незначительное влияние изменения количества проходящего через батарею теплоносителя на теплоотдачу соседних теплообменников.
  3. Возможность установки на одном трубопроводе до 40 батарей, при условии, что диаметр подводящей магистрали и производительность нагнетателя способны обеспечить рассчитанный расход теплоносителя. Максимальное количество устанавливаемых на одной ветви теплообменников определено на основании реальных проектов систем отопления производственных помещений. Вполне естественно, что для частного дома этот показатель редко превышает десяток установленных батарей. Если собственнику здания необходимо выполнить разводку по постройке с двумя и более этажами, то отопительная система делится на несколько контуров.

Движение рабочей среды по трубопроводам отопительной системы может быть как конвекционным (естественным), так и принудительным.

Виды тупиковой системы

В зависимости от прокладки трубопроводов в двухтрубных тупиковых отопительных системах различаются два типа:

  1. Горизонтальная.
  2. Вертикальная или плечеваая.

Горизонтальная система

Эта разновидность разводки трубопроводов характеризуется горизонтальной ориентацией подающего нагретого и отводящего остывшего теплоносителя трубопровода. При горизонтальной двухтрубной тупиковой системе используются трубы единого сечения, что значительно упрощает монтаж системы отопления, экономит средства, снижает трудоемкость работ, а также «прощает» некоторые ошибки, допущенные при теплоэнергетическом расчете и обеспечивает подачу теплоносителя одной температуры в каждый из теплообменников.

Горизонтальная ориентация позволяет скрытно развести трубопроводы. К примеру, скрыть магистрали в цементной стяжке, что минимизирует «ущерб» наносимый системой отопления интерьеру комнаты. В случае скрытия трубопроводов в бетонной стяжке, лучше задействовать при обустройстве системы обогрева здания армированные полимерные трубы, которые соединены надвижными гильзами.

Плюсом горизонтальной тупиковой разводки трубопроводов выступает возможность подключения к отопительной системе дополнительных контуров, к примеру, на обогрев пола или установку полотенцесушителя.  Недостатком станет необходимость включения в систему обогрева здания насоса, для обеспечения циркуляции рабочей среды, и смесительного контура с температурным датчиком. Это необходимо для изоляции влияния второстепенного контура на систему.

Горизонтальная ориентация магистралей в автономных системах подогрева воздуха может быть установлена лишь в одноэтажных домах. Их использование постройках, в которых несколько этажей, невозможно из-за сложностей с обеспечением подачи рабочей среды единой температуры в каждый из теплообменников.

Вертикальная система

При вертикальной тупиковой разводке магистралей от теплогенератора отходят несколько трубопроводов, количество которых зависит от этажности здания. Первая магистраль используется для обогрева помещений на первом этаже, вторая, через вертикальные трубы выводит теплоноситель для отопления второго этажа и т.д. Отводящий остывший теплоноситель трубопровод размещается под потолком последнего этажа или на чердаке.

При монтаже двухтрубной системы отопления здания с вертикальной ориентацией трубопроводов обязательно включение в схему насоса, обеспечивающего искусственное движение рабочей среды, т.к. в таких системах обеспечить конвекционное движение рабочей среды невозможно. Кроме насоса в систему подогрева воздуха должны быть включена система автоматического контроля и регулировки давления. Для компенсации разности значений температуры в разных комнатах на теплообменниках должны быть установлены терморегуляторы, а сами трубы должны быть различного сечения.

При вертикальной разводке трубопроводов батареи последовательно подключаются к главному стояку, проходящему сквозь все здание. Поэтому этот тип двухтрубных отопительных систем нашел свое применение при обогреве многоэтажных домов.

 

Тупиковая или попутная схема?

Помимо тупиковой двухтрубной системы отопления, в индивидуальных домовладениях устанавливаются попутные системы обогрева (петля Тихельмана) и между ними есть принципиальное отличие. В попутной схеме течения рабочей среды трубопровод с остывшей водой начинается от первого радиатора, после чего, последовательно проходит через все теплообменники, а после последнего, рабочая среда возвращается к теплогенератору.

Попутная схема отопления

Создание такой системы отопления обусловлено необходимостью ее балансировки. Если в одном из циркуляционных контуров падение давления будет больше, нежели в других, то рабочая среда будет стремиться в кольцо с минимальным давлением. Это приводит к уменьшению эффективности системы подогрева воздуха в соответствующей комнате. Именно балансировка должна обеспечить минимальные показатели потери давления в каждой из веток.

В системах, в которых все радиаторы имеют одинаковое количество секций и единый типоразмер не требуется включение в систему подогрева воздуха дополнительной арматуры, так как такая система считается сбалансированной. Если в системе установлены разные батареи, то необходимо устанавливать дополнительную арматуру. Но и в таком случае, вопросы балансировки системы отопления при попутном направлении движения рабочей жидкости значительно проще решить, нежели в тупиковой схеме.

В большинстве случаев, попутное движение рабочей среды обеспечивается горизонтальной разводкой трубопроводов.

К сильным сторонам попутного движения рабочей среды в отопительной системе относят:

  1. Сбалансированность системы обогрева помещения, что позволяет отказаться от установки регулирующей арматуры. Это в общем упрощает ее обслуживание и повышает надежность отопительной системы.
  2. Единая длина циркуляционных контуров в каждой из батарей облегчает поддержание одинаковой температуры рабочей среды на всем протяжении кольца, что обеспечивает оптимальные показатели КПД системы обогрева.
  3. Работа теплогенератора и циркуляционного насоса в оптимальном режиме снижает расход энергоносителей и продлевает их срок службы, что позволяет экономить на эксплуатационных расходах.
  4. Облегчается гидравлический расчет системы с большой длиной магистралей.

Но у попутной системы движения рабочей среды есть и свои слабые стороны:

  1. Максимальная эффективность системы достигается лишь при ее комплектации теплообменниками с высокой теплоотдачей.
  2. Использование трубопроводов различного сечения усложняет монтаж и требует больших затрат при установке автономной системы отопления.
  3. Три магистрали, требуемые для обустройства систему отопления помещений способны нанести ущерб интерьеру комнаты.

Наиболее полно системы с попутным движением теплоносителя раскрываются при обустройстве системы отопления со значительным количеством теплообменников и протяженностью магистралей. Следовательно, использование такой схемы в системах отопления частных домовладений не является оптимальным выбором.

Читайте так же:

Пластинчатый теплообменник ГВС: схема обвязки и расчет

Обеспечить себе в доме или квартире горячее водоснабжение можно многими способами и непосредственный нагрев, например прямоточным электронагревателем или бойлером – не самый эффективный способ. В простоте и надежности отлично зарекомендовал себя пластинчатый теплообменник ГВС. Если есть источник тепла, например автономное отопление или даже централизованное, то тепло для нагрева воды вполне разумно взять от них, не тратя дорогостоящее электричество для этих целей.

Устройство и принцип работы

Пластинчатый теплообменник (ПТО) обеспечивает переход тепла от нагретого теплоносителя холодному, при этом не перемешивая их, развязывая два контура между собой. Теплоносителем может быть пар, вода или масло. В случае с горячим водоснабжением чаще источником тепла является теплоноситель системы отопления, а нагреваемой средой – холодная вода.

Конструктивно теплообменник представляет собой группу гофрированных пластин, собранных параллельно друг другу. Между ними образуются каналы, по которым течет теплоноситель и нагреваемая среда, притом послойно они чередуются между собой, не перемешиваясь при этом. За счет чередования слоев, по которым текут жидкости обоих контуров, увеличивается площадь теплообмена.

Схема работы теплообменника

Гофрирование чаше выполняется в виде волн, притом ориентированных так, чтобы каналы одного контура располагались под углом к каналам второго контура.

Подключение входов и выходов делаются так, чтобы жидкости текли навстречу друг другу.

Поверхность и материал пластин подбирается исходя из требуемой мощности теплообмена, вида теплоносителя. В особенно эффективных и продуманных теплообменниках поверхность формуется для возбуждения завихрений возле поверхности пластины, повышая теплообмен, не создавая сильного сопротивления общему току.

Теплообменник включается между двумя контурами:

  1. Последовательно к системе отопления или параллельно с наличием регулирующей арматуры.
  2. К входу от холодного водопровода и выходом к потребителю ГВС.

Холодная вода, протекая через теплообменник нагревается за счет тепла от системы отопления до требуемой температуры и подается на кран потребителя.

Основные характеристики пластинчатого теплообменника:

  • Мощность, Вт;
  • Максимальная температура теплоносителя, оС;
  • Пропускная способность, производительность, литры/час;
  • Коэффициент гидравлического сопротивления.

Мощность зависит от общей площади теплообмена, перепада температур в обоих контурах между входов и выходом и даже от числа пластин.

Максимальная температура задается подбором материалов и способом соединения пластин и корпуса теплообменника.

Пропускная способность повышается с увеличением числа пластин, так как они подключаются фактически параллельно, то каждая новая пара пластин добавляет дополнительный канал для тока жидкости.

Коэффициент гидравлического сопротивления важен при расчете нагрузки на систему отопления, где от этого зависит выбор циркуляционного насоса, немаловажен и для других источников тепла. Зависит от типа гофрирования пластин и размера сечения каналов и их количества.

Именно по этим параметрам подбирается в итоге теплообменник для конкретной ситуации. Чаще всего пластинчатые теплообменники имеют разборную конструкцию, в которой можно наращивать или уменьшать число пластин и выбирать их тип и размер. Мощность и производительность теплообменника должно хватать для того, чтобы нагреть проточную холодную воду, и при этом не создать критической нагрузки на систему отопления.

Для наиболее востребованных случаев, каким является обеспечение горячей водой частного хозяйства, дома или квартиры производятся готовые теплообменники с постоянными характеристиками.

Расчет

Выбор подходящего теплообменника сложно выполнить, оперируя только одной лишь его мощностью или пропускной способностью. Эффективность подготовки ГВС зависит и от состояния теплоносителя в первом контуре и во втором, от материала и конструкции теплообменника, скорости и массовой части теплоносителя, проходящего в единицу времени через пластинчатый теплообменник. Однако, естественно следует предварительно выполнить расчет, позволяющий прийти к определенному сочетанию мощности и производительности для выбора подходящей модели.

Базовые данные необходимые для расчета:

  • Тип среды в обоих контурах (вода-вода, масло-вода, пар-вода)
  • Температура теплоносителя в системы отопления;
  • Максимально допустимое снижение температуры теплоносителя после прохождения теплообменника;
  • Начальная температура воды, используемой для ГВС;
  • Требуема температура ГВС;
  • Целевой расход горячей воды в режиме максимального потребления.

Кроме этого в формулах для расчета задействована удельная теплоемкость жидкости в обоих контурах. Для ГВС используется табличное значение для начальной температуры воды, чаще +20оС, равное 4,182 кДж/кг*К. Для теплоносителя следует отдельно находить значение удельной теплоемкости, если в его составе имеется антифриз или другие присадки для улучшения его качеств. Аналогично для централизованного отопления берется приблизительное значение или фактическое на основании данных теплокоммунэнерго.

Целевой расход определяется количеством пользователей для горячей воды и количеством устройств (краны, посудомоечная и стиральная машинка, душ), где она будет использована. Согласно требованиям СНиП 2.04.01-85 необходимы следующие значения расхода горячей воды:

  • для раковины – 40 л/ч;
  • ванная – 200 л/ч;
  • душевая – 165 л/ч.

Значение для раковины умножается на количество устройств в доме, которые могут использоваться параллельно, и складывается со значением для ванны или душевой в зависимости от того, что именно используется. Для посудомоечной и стиральной машинки значения берутся из паспорта и инструкции и только при условии, что они поддерживают использование горячей воды.

Второе базовое значение – это мощности теплообменника. Рассчитывается исходя из полученного значения расхода жидкости и разницы температур воды на входе в теплообменник и на выходе.

P = m * С *Δt,

где m – расход воды, С – удельная теплоемкость, Δt – разница температур воды на входе и выходе ПТО.

Для получения массового расхода воды следует расход, выраженный в л/ч умножить на плотность воды 1000 кг/м3.

КПД теплообменников оценивается на уровне 80-85%, и многое зависит от конструкции самого оборудования, так что полученное значение следует разделить на 0,8(5).

С другой стороны ограничением по мощности будет расчет, выполненный со стороны первого контура с теплоносителем, где, используя уже разницу допустимых температур для системы отопления, получаем максимально допустимый забор мощности. Конечный результат будет компромиссом между двумя полученными значениями.

Если забора мощности для нагрева нужного количества горячей воды не хватает, то разумнее использовать две ступени подогрева и, соответственно, два теплообменника. Мощность распределяется между ними поровну от требуемого расчета. Одна ступень выполняет предварительный нагрев, используя в качестве источника тепла обратку отопления с пониженной температурой. Второй ПТО уже нагревает окончательно воду за счет горячей воды с подачи отопления.

Схема обвязки

Подключают теплообменник к системе отопления несколькими способами. Самый простой вариант с параллельным включением и наличием регулировочного клапана, работающего от термоголовки.

Обязательными являются запорные шаровые вентили на всех выводах теплообменника, чтобы иметь возможность полностью перекрыть доступ жидкости и обеспечить условия для демонтажа оборудования. Регулировкой мощности и, соответственно, нагревом горячей воды должен заниматься клапан с управлением от термоголовки. Клапан устанавливается на подводящую трубу от отопления, а датчик температуры на выход контура ГВС.

При цикличной организации ГВС с наличием накопительной емкости устанавливается дополнительно тройник на входе нагреваемого контура для включения холодной водопроводной воды и обратки по ГВС. Избежать ненужного тока в обратном направлении в ветке горячей и холодной воды не даст обратный клапан.

Недостатком этой схемы является сильно завышенная нагрузка на систему отопления и неэффективный нагрев воды во втором контуре при большем перепаде температур.

Гораздо продуктивнее и надежнее работает схема с двумя теплообменниками, двухступенчатая.

1 – пластинчатый теплообменник; 2 – регулятор температуры прямого действия: 2.1 – клапан; 2.2 – термостатический элемент; 3 – циркуляционный насос ГВС; 4 – счетчик горячей воды; 5 – электро-контактный манометр (защита от «сухого хода»)

Идея заключается в использовании двух теплообменников. В первой ступени используется с одной стороны обратка системы отопления, а с другой холодная вода из водопровода. Это дает предварительный нагрев примерно на 1/3 или половину от необходимой температуры, при этом не страдает обогрев дома. Включение контура выполняется последовательно с байпасом, на котором уже закреплен игловой вентиль, с помощью которого регулируется объем теплоносителя.

Второй ПТО, вторая ступень, подключаемая параллельно системе отопления – это с одной стороны подача горячего теплоносителя от котла или котельной, а с другой уже подогретая на первой ступени вода ГВС.

Регулировкой первой ступени заниматься нет нужды. Устанавливаются лишь шаровые вентили на все четыре отвода и обратный клапан на подачу холодной воды.

Обвязка второй ступени идентичная параллельному подключению за исключением того, что вместо холодной воды подключается уже подогретая вода с первой ступени.

Зачем нужен теплообменник в системе отопления

Теплообменники для систем отопления

Теплообменники для отопления предусмотрены для обмена теплом между двумя контурами с горячей и холодной водой. Они используются в системах отопления, где передают тепло теплоносителю благодаря более высокой температуре греющей среды.
Незаменимость таких теплообменников проявляется в частных домах, где собственное отопление. После установки этих приборов подача от отопительной системы и теплосети становятся раздельными. По разные стороны к аппарату подключаются контур внутренней системы и труба с горячим теплоносителем. Теплообменный аппарат может подключаться как напрямую, так и параллельно.

Пластинчатые теплообменники для систем отопления

Наиболее популярны в блочных ТП независимого отопления пластинчатые теплообменники. В его основе лежит комплект пластин, перфорированных штамповкой, для расширения площади теплового обмена и создания каналов, по которым происходит движение воды. Пластины собраны в пакет, на последней неподвижной плите есть патрубки входа и выхода теплоносителя греющей и нагреваемой среды, в которые и выведены каналы из пластин.

Конструкция теплообменника для отопления

Теплообменник для отопления состоит из 2-ух стальных плит с патрубками, которые объединяются с помощью направляющих и винтовых шпилек. Гофрированные пластины и уплотнители стягиваются между плитами. Чтобы регулировать количество пластин, одна из пластин сделана подвижной.
Место между прилегающими пластинами поочерёдно наполняется холодным и горячим теплоносителем, а непроницаемость системы обеспечивается уплотнителями. Малогабаритные размеры устройства гарантируют высокую эффективность, так как рельефная поверхность обеспечивает увеличение площади теплообмена.

Преимущества и недостатки

— лёгкость в установке;

— небольшие габаритные размеры;

— простота сервисного обслуживания;

— возможность изменить отапливаемую площадь;

— высокая эффективность с экономией энергии;

— продолжительный период работы;

— определённые лимиты при использовании по максимальному давлению и температуре;

— необходимость рассчитывать каждое устройство персонально под заданные характеристики;

— восприимчивость к качеству теплоносителя и присутствию примесей;

Расчет теплообменника для отопления

Каждая модель теплообменного аппарата собирается под определённые требования эксплуатации. На основе расчетов определяется материал, число пластин, технические характеристики, габариты. Расчет готовит фирма-производитель оборудования. Клиенту только нужно предоставить необходимые сведения:

— температура в контуре теплосети;

— температура внутреннего контура;

— допустимый убыток напора;

Чтобы узнать эти данные, можно сделать запрос в теплоснабжающую компанию. Тепловую мощность можно легко рассчитать, если известны другие характеристики. При подборе теплообменника следует принимать во внимание и другие характеристики, такие как вязкость и загрязнённость рабочей среды. Неверные расчеты могу основательно оказать влияние на срок службы, эффективность и цену оборудования.

— Ошибочно учтены главные параметры. Ошибки в расчете, неточности указывании характеристик в заявке – это может привести к тому, что прибор чаще загрязняется и быстрей ломается

— В весьма враждебной и загрязнённой среде материалы будут быстрее выходить из строя и засоряться, если они не подходят к теплоносителю.

— При очень невысоком значении запаса площади на загрязнение устройство станет быстро покрываться накипью, при очень высоком – станет малоэффективным

Остались вопросы?

Вы всегда можете получить консультацию по подбору теплообменника на систему ГВС у нашего инженера совершенно бесплатно.

Мы поможем определится какой именно вариант больше подходит для Вашего объекта, учитывая технические характеристики и пожелания.
Обращайтесь по номеру 8-804-333-71-04 (звонок бесплатный), или же напишите на электронную почту [email protected]
С наиболее полной информацией о теплообменном оборудовании Вы всегда можете ознакомиться на нашем сайте

Что такое теплообменник в системе отопления?

Мне очень часто приходиться слышать вопрос от клиентов — что такое теплообменник в системе отопления? Вопрос простой, на первый взгляд нелепый и все же справедливый. Ведь, казалось бы, любая система отопления прекрасно обходиться без теплообменника даже при производстве горячей воды.

Вопрос о непосредственном отборе горячей воды из системы отопления сложен, поэтому давайте разберем его немного позже, в другой статье. А сейчас разберемся с вопросом, зачем в системе отопления стоит теплообменник?

В каждой ли системе отопления есть теплообменник.

Скажу сразу, теплообменник стоит не в каждой системе отопления, и даже более, в нашей стране это редкость. А вот в остальном мире повсеместно. Там все устроено по-другому, котельные работают без персонала, температура на выходе одна, максимально необходимая для обеспечения теплом в самые лютые, по их меркам морозы. Каждый потребитель берет тепла столько, сколько считает нужным, то количество тепла за которое он готов или в состоянии оплатить.

В отопительном контуре в качестве теплоносителя может использоваться не только вода (хотя чаще всего все-таки умягченная с помощью комплексонов и омагниченная вода), это может быть антифриз, масло или другая жидкость, но даже если вода ни кто и не подумает брать воду прямо из системы отопления, эту ему обойдется очень дорого. Вот здесь и приходит на выручку теплообменник, который устанавливается в систему отопления и разделяет ее на две части, систему отопления от поставщика к потребителю и систему отопления самого потребителя.

После теплообменника установленного в системе отопления потребитель ставит множество регуляторов, некоторое подобие нашей системы погодного регулирования, которые следят за температурой в различных комнатах, в системе подачи горячей воды, теплого пола, рекуперации и т.д.


Схема ИТП при независимом присоединении к тепловой сети через теплообменник.

У нас в стране такая система отопления называется независимой, на ней построено большинство блочных тепловых пунктов и основное ее назначение несколько другое, кроме погодного регулирования теплообменник в системе отопления предотвращает выход из строя современных пластиковых труб, которые повсеместно успешно внедряются в современных отопительных системах.

Такие трубы выдерживают максимальную температуру до 90 градусов С, при этом максимальный срок труб из PPRS материалов (а правильно их называют именно так) при такой температуре составляет не более 5 месяцев. Как видите не много, хорошо, что и сильные морозы у нас так долго не держатся.

Надеюсь теперь Вам понятно, что такое теплообменник в системе отопления.

Теперь для любознательных, какой теплообменник чаще всего применяется в независимой системе отопления и как он выглядит.

Чаще всего в блочных тепловых пунктах, построенных по схемам независимого отопления, применяются пластинчатые теплообменники. Устройство теплообменников очень хорошо описано на этом сайте, а вкратце смотрите на рисунке ниже.

Устройство пластинчатого разборного теплообменника.

В основе любого пластинчатого теплообменника лежит набор пластин, перфорированных особым способом штамповкой, для увеличения площади теплообмена и формирования каналов по которым движется вода. Пластины собраны в пакет, на торцевой неподвижной плите имеются патрубки для ввода и вывода теплоносителя греющей и нагреваемой среды, в которые и выведены каналы из пластин.

Где устанавливать такой теплообменник в системе отопления или горячего водоснабжения роли не имеет, отличаются только сами схемы блочных тепловых пунктов и мощность, на которую рассчитаны пластинчатые теплообменники. А подобрать и изготовить пластинчатый теплообменник очень легко, как и потом увеличить или уменьшить его мощность, если конечно ваш теплообменник разборный, а не паяный.

Если кому недостаточно сведений об устройстве пластинчатого теплообменника или блочного теплового пункта, есть необходимость в его подборе или расчете, проектировании рекомендую очень толковый сайт http://ridan-ug.ru/ поставщика теплообменного оборудования Ридан.

А тему сегодняшней статьи — что такое теплообменник в системе отопления можно считать исчерпанной. Есть у Вас есть вопросы по работе теплообменного оборудования задавайте, с удовольствием отвечу, Юрий Олегович Парамонов, ООО Энергостром, 2016 год.

Для чего нужен теплообменник в системе отопления

Теплообменник устройство, передающее тепло от одного источника теплоты другому, исключая при этом непосредственный контакт теплоносителей. Поэтому теоретически теплообменник можно установить в любой системе отопления, главное чтобы от этого была польза , поскольку стоимость самой системы отопления при этом возрастает прямо пропорционально нагрузке, или попросту стоимости самого устанавливаемого теплообменника с регулирующей измерительной и контрольной аппаратурой.

Главная область применения теплообменников в системе отопления это независимая система теплоснабжения. Чтобы понять, зачем нам это нужно необходимо совершить небольшой экскурс в природу имеющихся у нас в стране тепловых сетей.

Зависимая система теплоснабжения, работающая без теплообменника.

Индивидуальный тепловой пункт, спроектированный для работы в зависимой системе теплоснабжения без теплообменника

Существуют две схемы отопления или как правильно говорить теплоснабжения. Зависимая система отопления, с которой мы все хорошее знакомы, это когда котел, нагревая воду, подает ее по трубопроводам прямо в отопительные приборы – батареи отопления в квартире, минуя теплообменник. Конечно, в такой схеме есть тепловой пункт, регулирующие и измерительные приборы, иногда устанавливается погодозависимая автоматика. Только без теплообменника влиять на температуру в батареях, а значит, в целом в квартирах мы можем только в сторону уменьшения температуры.

Для котлов в котельной такая схема тоже не удобная, она требует больших насосов, котлы и трубы тепловой сети работают как гармошка, от того рвутся постоянно, а об утечках тепла и потерянных при этом потерях тепла лучше и не вспоминать. Зато на первичном этапе без установки теплообменника в системе отопления получается довольно дешево, но не эффективно, котельная не знает, сколько тепла нужно каждому, а потребитель не в силах влиять на выработку тепла для отопления, отсюда перетоп и низкая энергетическая эффективность такой системы отопления без разделительного теплообменника.

Независимая система теплоснабжения с теплообменником.

Индивидуальный тепловой пункт, спроектированный для работы в независимой системе теплоснабжения с теплообменником

Теплообменник в такой системе отопления главный прибор позволяющий экономить. Конечно, экономит не он, он только отделяет среды друг от друга, экономит автоматика. Как экономит? Вот пример независимой системы отопления – современная централизованная отопительная система, в ней имеется один главный тепловой пункт, распределяющий тепло и дополнительные теплообменники для каждого потребителя установленные уже в ИТП жилых домов.

От котельной к центральному тепловому пункту, где установлен главный теплообменник, тепло подается в жестком, фиксированном тепловом режиме – например 95 градусов на подаче и теоретически 70 градусов на обратке. В котельной не нужна автоматика и операторы, мощность насосов и диаметр труб тепловой сети могут быть гораздо меньше, утечек в контуре котлов нет по своей природе. Иногда теплообменник большой мощности устанавливают непосредственно в системе отопления котельной, тогда контур получается двойным и в котлах, из-за малого объема теплоносителя во внутреннем контуре, отсутствует накипь, котлы служат вечно.

Блочный тепловой пункт, спроектированный для работы в независимой системе теплоснабжения и горячего водоснабжения с теплообменниками

Установив теплообменник в системе отопления, потребитель получает возможность влиять на температуру в квартире, сколько нужно каждому столько и возьмет, конечно, если в квартире на батареях тоже установлены регулирующие приборы. Выгода для всех налицо.

Как подключить теплый пол к системе отопления через теплообменник.

Нужен теплообменник и для теплого пола. Если вы, например, захотите сделать теплый пол, врезав его в систему отопления без теплообменника вы оставите весь дом без тепла, тепла на полы пойдет немного, но вот вода – теплоноситель будет циркулировать только через ваш пол и не пойдет к соседям, она «лентяй» и идет по самому короткому пути.

Недостаток установки теплообменника в систему отопления только один, увеличение затрат на первоначальном этапе монтажа, но он с лихвой перекрывается всеми ее достоинствами.

Зависимую систему отопления легко модернизировать в независимую систему, путем установки дополнительного теплообменника с регулирующей аппаратурой. Правда, делать это придется одновременно во всем районе, подключенном к вашей котельной. Зато так вы сможете сэкономить до 40 процентов на оплату тепла, по сравнению с вашими сегодняшними затратами без установки такого нужного теплообменника в системе отопления.

Что такое теплообменник, зачем он нужен

Процесс передачи тепла называют теплообменом. Аппараты, в которых происходит процесс – теплообменники. Если в процессе участвуют два агента, разделенные перегородкой – это поверхностные рекуперационные аппараты. Происходит процесс смешения теплого и холодного потока контактом – теплообменник смесительный.

Системы теплообмена, зачем нужен теплообменник

Пример смесительного устройства – градирни. Отходящие газы отдают тепло воде, распыляемой из форсунок. В аппаратах, где два агента протекают по отдельным контурам, тепло передается через стенку, поверхность.

Признаком теплообменника является развитая поверхность и подводка двух систем. Это может быть пар-вода, антифриз-вода, вода-вода. Вместо воды в процессе используют химический раствор, вместо пара – нагретые газы.

Применение теплообменников позволяет:

  • Использовать остаточное тепло при получении электрической энергии.
  • Вести химические процессы в точном режиме, поддерживая температуру теплообменниками.
  • Использовать вторичное тепло от энергоносителя для бытовых нужд.
  • Поддерживать температуру теплоносителя для бытовых систем отопления в параметрах, соответствующих стандарту.

Разновидности поверхностных теплообменников

Простейший т/о – труба в трубе. Холодная трубка с водой проходит в трубе большего сечения, заполненной горячим агентом. При этом поверхность внутренней трубки нагревается и передает тепло воде. Так работают бойлеры. Если трубок много и собраны они в пучок, то получается кожухотрубный теплообменник. Аппараты с трубным пучком, закрепленном с торцов решетками, распространены в промышленности и применяются для бытовой водоподготовки.

Витые теплообменники представляют змеевики, навитые в корпусе. Межтрубное пространство заполняется другим потоком. Аппаратура применяется при высоком давлении одного из агентов.

Двухтрубные теплообменники применяются для передачи тепла в фазах газ-жидкость. Аппараты могут работать под давлением с высокой теплопередачей.

Спиральный т/о

Спиральные теплообменники представляют бочку, в которой лентой-спиралью расположен плоский лабиринт с внутренней полостью. По спирали движется горячий агент, омываемый холодной водой. Конструкция сложная в изготовлении. Но это единственный вид аппаратов для теплообмена агента, содержащего взвеси, пульпу. Откидывающиеся с обеих сторон крышки позволяют легко чистить зазоры.

Пластинчатый теплообменник представляет особую конструкцию греющих труб, собранных в виде плоского элемента их оребренных труб и многоходовым движением воды. Пластины напоминают гармошки. Их недостаток – забиваются накипью при плохой водоподготовке.

Зачем нужен теплообменник в системе отопления? Представьте, что в трубах вода 900. Это приведет к разрыву пластиковых труб, ожогам. В каждом тепловом узле имеется система т/о, позволяющая поддерживать температурные параметры.

От чего зависит эффективность теплообменника

Кожухотрубный т/о

Поверхностный теплообмен происходит всегда через стенку. При этом возникают потери тепла. Чем тоньше перегородка, тем меньше потери. Новый т/о кожухотрубный имеет кпд 75%, но с зарастанием внутренней и верхней поверхности осадком, эффективность аппарата снижается. Он не может удерживать температурный режим. Поэтому аппараты имеют съемный пучок, который прочищают под высоким давлением специальным пистолетом.

Пластинчатые аппараты имеют кпд 90%, но щели между пластинами забиваются, требуется чистка. Для чистки оборудование разбирают. Важно установить на место сетчато-магнитный фильтр, который препятствует образованию осадка. Пластинчатые теплообменники можно подключать к автоматизированному управлению.

Пластинчатый разборный т/о

Эффективность процесса зависит от схемы подключения. Полнее теплоотдача у противоточного аппарата, когда потоки движутся навстречу друг другу.

Чем тоньше перегородка, тем лучше идет процесс. Но для аппаратов, работающих под давлением, толщина стенок зависит от способности выдерживать нагрузки на стенки. Если нельзя утоньшить стенки трубок необходимо увеличить поверхность нагрева, сделать аппарат длиннее.

Каждый т/о изготовлен в соответствии с теплотехническим расчетом, имеет паспорт и рассчитан для работы с определенным теплоносителем.

Как правильно выбрать теплообменник

Зачем нужен теплообменник в системе отопления в быту, понятно. Какой аппарат подходит в конкретном контуре – зависит от условий монтажа. Можно поставить кожухотрубный т/о – он неприхотлив, может простоять без чистки 10 лет, только счета за использование теплоносителя будут все больше – нарушается теплопроводность. Можно поставить пластинчатый, но чистить его придется через 3 года.

Назначение теплообменников

Теплообменник – прибор, главная функция которого заключается в передаче тепловой энергии от одной рабочей среды к другой. В качестве теплоносителя может выступать газообразное вещество, кислоты и щелочи, пар, вода и различные растворы.

Самыми популярными на сегодняшний день теплообменными аппаратами признаны пластинчатые установки. Их успешно применяют в следующих сферах:

  • химическая;
  • нефтеперерабатывающая;
  • газовая;
  • атомная;
  • нефтехимическая;
  • энергетическая;
  • коммунальная сфера.

Конструкцию устройства, материал комплектующих и иные параметры нужно выбирать исходя из особенностей технологического процесса и необходимой производительности. Подробнее о видах теплообменных аппаратов и их назначении рассказывают коллеги из компании «ПроТепло» https://proteplo.org .

Использование теплообменников в разных системах

Зачем нужен теплообменник? Область эксплуатации данных устройств можно разделить на несколько категорий: промышленность, коммунальное хозяйство и бытовые нужды. В каждом случае установка будет отличаться материалом исполнения, габаритами и мощностью, а также циркулирующими рабочими средами.

В системе отопления

Теплообменное оборудование в системе отопления позволяет значительно снизить расход ресурсов и добиться высокой степени контроля и регулировки процесса.

Система отопления может быть:

  • зависимой – система без теплообменника, когда тепло поступает от центрального теплового пункта регулярно в определенном количестве;
  • независимой – система с теплообменником, который позволяет регулировать количество поступающей энергии в соответствии с потребностями конечного потребителя.

Зачем нужен теплообменник в системе отопления? Он разделяет единую конструкцию на две части: одна из них относится к поставщику, а другая – к потребителю тепла. Аппарат служит промежуточной станцией, через которую проходит горячая вода с различными примесями: антифриз, масло и иные компоненты.

Теплообменник в ИТП

Использование пластинчатого оборудования для автоматизации индивидуального теплового пункта позволяет снизить потери энергии до 40% за счет высокой эффективности установки.

Независимая система отопления состоит из главного пункта, который распределяет тепло между разными объектами, и дополнительных теплообменников, установленных в индивидуальном тепловом пункте, откуда тепло поступает к конечному потребителю. Наличие теплообменной конструкции в данной схеме – возможность для владельца квартиры регулировать температурный режим в помещении. Он не будет потреблять излишки тепла, что приводит к значительной экономии ресурсов.

В системе горячего водоснабжения

Усиление мощности кожухотрубного теплообменника возможно лишь за счет большей ширины и длины змеевика, что сказывается отрицательно на размерах корпуса. Громоздкая конструкция занимает много места и неудобна в монтаже. Пластинчатый теплообменник, габариты которого в 3 раза меньше, позволяет получить аналогичную производительность.

В котельной

Обыденная практика – использование в котельных двух видов теплообменников. Это средство защиты от гидроударов, химических и механических примесей, перепада высот. Независимые контуры позволяют осуществлять автономный контроль и регулировку каждой конструкции. В таком случае продолжительность эксплуатации котлов значительно увеличивается, накипь на стенках прибора не скапливается.

Использование теплообменных устройств в промышленности

Теплообменники имеют разнообразное технологическое значение. Можно разделить все модели на две большие категории:

  • теплообменные устройства, в которых основной процесс – передача тепла;
  • теплообменные устройства, в которых охлаждение, конденсация, пастеризация и иные процессы – основные, а передача тепловой энергии выступает в качестве сопутствующего компонента.

По основному применению модели классифицируют на группы:

  • конденсаторы;
  • подогреватели;
  • холодильники;
  • испарители.

Их применение широко востребовано в разных отраслях промышленности. Внедрение в технологический процесс прибора позволяет значительно ускорить работу и увеличить эффективность.

Использование разного вида рабочих сред

Грамотно подобранный теплоноситель способен значительно повысить производительность работы.

Водяной пар

Одним из широко распространенных теплоносителей является перегретый (насыщенный) водяной пар. Он обладает рядом достоинств: высокая интенсивность теплоотдачи, легкое транспортирование по трубам, возможность регулировать температуру. Чаще всего данный вид теплоносителя применяют в технологических процессах с многократным испарением, когда выпариваемый продукт направляется в подогреватели или другие выпарные установки.

Горячая жидкость

Не менее распространены в качестве агентов, циркулирующих по теплообменнику – горячие жидкости и вода. Они отличаются менее интенсивным подогревом и стабильно снижающейся температурой носителя.

Для пара и воды характерен один значительный недостаток: с повышением температуры происходит резкий рост давления в системе. На пищевых производствах аппараты не могут работать при температуре выше 160°С.

Масляный раствор

Масляный обогрев целесообразен в консервной промышленности, он позволяет эксплуатировать теплообменник при 200°С.

Горячий воздух и газ

Газ и горячий воздух (максимальная температура 300-1000°С) используются в сушильных устройствах и печах. Газообразные вещества имеют много недостатков: их трудно транспортировать и контролировать по температурному параметру, они обладают низким коэффициентом теплообмена, а топочные газы сильно загрязняют поверхность теплообменника.

Выбор промышленного теплообменного оборудования

Для эффективного выполнения задач в промышленности теплообменник должен соответствовать требованиям технологического процесса:

  • возможность регулирования и поддержания температуры рабочей среды;
  • соответствие скорости циркуляции продукта необходимой минимальной продолжительности пребывания агента в системе;
  • устойчивость материала теплообменника к воздействию рабочей среды;
  • соответствие устройства давлению теплоносителя.

Второй важный критерий отбора – экономичность и производительность прибора, сочетание высокой интенсивности теплообмена с сохранением необходимых гидравлических показателей устройства.

Эксплуатация разных видов теплообменных устройств в промышленности

Применение теплообменников может быть построено по следующим направлениям:

  • использование остаточного тепла для генерации электрической энергии;
  • точная регулировка температуры во время химических процессов;
  • вторичное использование энергии для бытовых потребностей;
  • поддержание температуры в бытовых системах отопления в стандартизированных параметрах.

Исходя из поставленных задач, можно выбрать оптимальную модель прибора по мощности, конструкции и иным параметрам.

Пластинчатый теплообменный аппарат

Оборудование с пластинами может быть использовано в разных отраслях промышленности, в том числе пищевой. Его использование экономически целесообразно при пастеризации молока и сока, которое происходит в три шага. Подогретый на третьей стадии раствор используется как горячий теплоноситель для подогрева на двух остальных этапах. Это позволяет значительно экономить ресурсы.

Не менее распространены пластинчатые модели при обогреве паром с низким давлением. Данный прибор не пригоден для функционирования в условиях высокого давления из-за большой вероятности разгерметизации уплотнительных прокладок между пластинами.

Принципиальная схема пластинчатого теплообменного аппарата
1,3,5 — нечетные пластины; 2,4 — четные пластины; I — вход и выход первого теплоносителя; II — вход и выход второго теплоносителя

Труба в трубе

Оборудование, которое имеет небольшую площадь теплообмена и применяется только в установках малой мощности для передачи энергии в средах «газ-жидкость».

Схема теплообменного аппарата «труба в трубе»
1 — внутренняя труба; 2 — наружная труба; 3 — изогнутая соединительная труба; 4 — соединительные патрубки

Спиральные конструкции

Приборы применяются для взаимодействия рабочих сред «жидкость-жидкость». В качестве агента нередко выступает пар.

Основное назначение теплообменника: конденсаторы пониженного давления. Если теплоноситель имеет твердые частицы, волокна и иные примеси, прибор устанавливают в горизонтальном положении для предотвращения скапливания веществ в нижней части установки.

Схема спирального теплообменника

Элементные модели

Теплообменник представляет собой нескольких секций, объединенных в одну конструкцию. Его активно эксплуатируют, когда необходимо работать с высоким давлением, или теплоносители циркулируют с одинаковой скоростью без изменения агрегатного состояния.

Кожухотрубный аппарат

Установка, в которой теплоносители движутся по трубам и в межтрубном пространстве. Для увеличения скорости процесса предусмотрены решетки и перегородки. Область применения: промышленность и транспортная сфера для нагрева, охлаждения и конденсации газообразных и жидких сред.

Витые приборы

Установки участвуют в разделении газовых смесей путем глубокого охлаждения в приборах высокого давления. Один из главных недостатков конструкции – трансформация под действием температурного напряжения.

Схема витого теплообменника

Графитовые теплообменные установки

Это незаменимое оборудование на ряде предприятий. Материал устройства устойчив к коррозии и отличается высокой теплопроводностью.

Схема графитового теплообменника

Заключение

Использование теплообменников в быту и промышленности экономически обосновано из-за ряда преимуществ. Установки увеличивают скорость технологического процесса, повышают его эффективность и снижают расход ресурсов.

Подобрать конкретную модель теплообменного аппарата можно по данной ссылке: https://proteplo.org/raschet-teploobmennika.

Добавлено: 29.11.2018 15:47:38

Еще статьи в рубрике Вентиляция, кондиционирование, отопление:

  • Arbonia – производитель отопительных приборов

Говоря о тепле родного дома, люди не в последнюю очередь имеют в виду действительно комфортную температуру, характерную для любого жилья, где .

Что нужно знать о крышных котельных специалисту

После появления регулирующих технических документов крышные котельные уверенно зашагали по стране. Их используют, если есть проблемы с размещением отдельно стоящей или .

Промышленные ИК обогреватели и их ключевые положительные особенности

Промышленный обогрев обладает множеством отличительных особенностей в сопоставлении с бытовым. Прежде всего, важно принимать во внимание нестандартные габариты помещений (отопление складских .

    Классификация печей для бани. Какую выбрать?

    Хорошая печь для бани – это не только создание определенной температуры для парилки, подогрева воды для мытья, но и . .

    ООО «Тепло Сибири» предлагает пластинчатые теплообменники Funke для коммунальной и промышленной сферы

    «Тепло Сибири» предлагают обратить внимание на особую технологию с несимметричными каналами Off-set, которая позволяет снизить количество пластин в блоке при сохранении .

    Куда пристроить котёл?

    Даже подключаемые к коммуникациям стиральная и посудомоечная машины оставляют немало возможностей для выбора места – лишь бы можно было организовать подвод .

формула и подробный расчёт мощности батареи в одной статье

Проблема отопительной системы является одной из наиболее острых при проектировании помещений любого типа: от жилых до административных или складских.

Ведь она должна быть спроектирована четко и качественно, так, чтобы температура во всех помещениях поддерживалась на нужном уровне, и никто не ощущал дискомфорта даже в самые холодные зимние дни.

О том, как правильно рассчитать отопительную систему и какое количество радиаторов отопления лучше всего подобрать для того или иного помещения, написано немало технической литературы.

Конечно, заняться проектом обогревательной системы и его реализацией можно и самостоятельно, однако при этом нужно осознавать всю серьезность собственной деятельности.

Ведь если будет допущено хотя бы одно неправильное значение, вполне возможно, что вам придется переделывать всю работу. Если есть малейшие сомнения в том, как рассчитать радиаторы отопления и всю систему в целом, лучше сразу обращаться за помощью к специалистам – они уж точно знают свое дело!

Проектирование системы отопления – азы и история

Для эффективного отопления вашего дома необходимо правильно рассчитать количество секций в каждой батарее.

По сути, искусственный обогрев помещение – ни что иное, как возмещение тепловых потерь. За счет этого и осуществляется поддержка температуры в помещении на заданном необходимом уровне.

Мощность батарей отопления во многом определяет уровень температуры и комфорта в помещении. Чаще всего обогревательная система состоит из следующих частей:

  1. теплоисточник;
  2. теплопровод;
  3. отопительный прибор.

Использование теплообменника

В централизованной отопительной системе теплоисточником может быть теплообменник. Если же речь идет об автономной обогревательной системе, то, скорее всего, под источником тепла подразумевается тепловой генератор. Теплопровод – система труб, по которым перемещается теплоисточник.

Отопительные же приборы – радиаторы, которые могут быть изготовлены из самых разных материалов: от чугуна и алюминия до биметалла. О том, как рассчитать биметаллические радиаторы отопления, речь пойдет дальше в статье.

Раньше наиболее популярными были чугунные радиаторы, которые до сих пор можно встретить в старых советских домах. После распада Союза на смену чугуну пришел металл.

И совсем недавно при проектировании или замене отопительных приборов предпочтение стали отдавать алюминию и биметаллу. Старые батареи и радиаторы сдают позиции и передают сферу влияния более эффективным современным материалам.

К тому же, в отличие от отопительного оборудования советского производства, современное оборудование выгодно отличается не только отменными техническими, но и эстетическими характеристиками.

Как правильно заменить отопительное оборудование

Нужно быть точным при расчётах, иначе отопления дома будет очень затратным.

Производя замену старых обогревательных приборов на новые, совсем нелишним будет произвести новый расчет количества батарей отопления и их мощности.

Благодаря такому расчету, вы сможете обеспечить себе комфортное и уютное существование на долгие годы.

Ведь даже самые несущественные ошибки в расчетах (к тому же, если речь идет еще о старых советских проектах) могут привести к довольно неприятным последствиям: минимум – температура в доме, квартире, коттедже или офисе не будет подниматься до нужного значения, максимум – в вашем жилом помещении или на работе будет откровенно холодно и неуютно.

Не самые радужные перспективы, не так ли?

Один раз рассчитав все необходимые показатели, и раз и навсегда определив нужное количество радиаторов для обогрева помещения, вы сможете уберечь себя от всех вышеперечисленных проблем.

Для проведения данного расчета вам, в первую очередь, понадобится значение общей площади отапливаемых помещений. Также необходимо определиться с выбором материала, из которого будет изготовлен радиатор, и где в помещении он будет располагаться.

В специальных теплотехнических справочниках вы сможете найти расчетную тепловую мощность для каждого материала. Расчет биметаллических батарей отопления, например, предполагает, что один радиатор с мощностью до 200 Вт сможет эффективно обогревать помещение, объем которого может достигать 5 кубометров.

В основном радиаторы устанавливаются возле оконного проема, для компенсации теплопотерь. Если же помещение угловое, то в этом случае потребуется дополнительный прибор, расположить который рекомендуется у глухой стены в торце.

Расчет отопительных приборов

Для того чтобы определить площадь поверхности, отдающей тепло в отопительном приборе, необходима специальная формула расчета радиаторов отопления. Найти ее можно в любом справочнике по теплотехнике и гидравлике.

Чтобы найти необходимое число приборов, вам необходимо будет: перемножить значения площади отапливаемого помещения на 100 Вт мощности приборов отопления 1 м2, и полученное значение разделить на тепловую мощность одной секции радиатора (это значение можно узнать из паспорта, идущего в комплекте с любым отопительным прибором).

Профессионалы также рекомендуют перед тем, как рассчитать отопительную систему и определить нужное количество радиаторов отопления, необходимо учесть все необходимые факторы (если в комнате есть два окна, сторону, на которую окна выходят, количество наружных стен и прочие).

Советы по проектированию и расчетам

Определяя, сколько надо радиаторов отопления, количество секций, лучше всегда оставлять для себя запас теплоты процентов в 20, так вы сможете уберечься от неприятных ошибок и быть уверенным в том, что в любом случае вы будете чувствовать себя комфортно в помещении в холода!

Ну, и, конечно же, важный совет напоследок: если вы никогда ранее не имели дело с расчетом отопительных систем или же не уверены в своих познаниях, не тратьте время, обратитесь за советом и помощью к специалистам, которые либо наставят вас на путь истинный, либо подскажут, как лучше и правильнее проводить расчеты.

Оцените статью: Поделитесь с друзьями!

Двухтрубная или однотрубная система отопления

Главная Какую систему отопления выбрать двухтрубную или однотрубную

Практически перед каждым владельцем частного дома, встает вопрос:
«Двухтрубную или однотрубную систему отопления выбрать?»

Опишем основные плюсы и минусы той и другой системы, а затем дадим свои рекомендации.

Однотрубная система отопления — система, при которой функцию подачи и отвода теплоносителя играет одна труба.

Плюсы однотрубной системы:

  • для подачи теплоносителя используется одна труба вместо двух. Это прямая экономия ваших средств по стоимости труб, фитингов и работ по монтажу.
  • фактически не требует никакой регулировки отдельных веток и стояков.
  • имеет меньший объем теплоносителя. В случае использования антифриза это опять же прямая экономия ваших средств.
  • повышенная гидравлическая устойчивость данной системы.
  • в случае необходимости слива системы этот процесс ускоряет и не приводит к излишнему объему воды в сливной яме, т.к. имеет меньший объем теплоносителя.
  • сроки монтажа меньше, чем в двухтрубной системе.
  • при наличии готового (рассчитанного) проекта с исполнительными схемами и указанными диаметрами не требует высокой квалификации монтажников.

Минусы однотрубной системы:
  • повышенная уязвимость к разморозке всей системы. Замерзание системы хотя бы в одном месте делает неработоспособным весть контур.
  • по мере удаления от котла требует увеличенного размера отопительных приборов. Ввиду того, что в магистраль трубы поступает не только горячая вода (напрямую из котла), но и остывшая (с отопительных приборов), на вход каждого последующего радиатора приходит все более охлажденная вода. Но теплопотери остаются прежними. Чтобы их компенсировать, требуется больше секций. Этот фактор напрямую сводит на нет и даже уводит в минус кажущийся вначале выигрыш в стоимости материала.

Двухтрубная система отопления — система, при которой для подачи и отвода теплоносителя используется две трубы.

Плюсы двухтрубной системы:
  • на вход каждого радиатора приходит теплоноситель с температурой, равной фактически котловой (потери тепла по пути, если трубы утеплены по нормативам, незначительны). Значит это меньший размер отопительного прибора и, следовательно, экономия средств.
  • менее уязвима к разморозке всей системы (пояснение смотрите в конце статьи).
  • позволяет оперативно находить недостатки и ошибки, допущенные в процессе монтажа, и без менее серьезных последствий (чем в случае с однотрубной системой) исправлять их.
  • менее чувствительна к ошибкам, допущенным на стадии проектирования.

Минусы двухтрубной системы.

Минусов такая система практически не имеет, за исключением стоимости и срока монтажа, которые конечно выше, чем в случае с однотрубной системой, но эти недостатки с лихвой компенсируются удобством, качеством и надежностью эксплуатации этой системы.

Наши рекомендации.

Рассмотрев плюсы и минусы описанных систем, вы можете принять свое решение в пользу того или иного варианта.

Мы же со всем знанием дела настоятельно рекомендуем остановить свой выбор на двухтрубной системе.

Помимо, указанных выше положительных особенностей этой схемы, приведем еще одно соображение в качестве обоснования своей рекомендации.

Представьте, что перед вами выбор: нужно выбрать две электрические гирлянды. В одной гирлянде лампочки соединены последовательно, а в другой параллельно. Критерий, которым вы руководствуетесь — надежность, удобство эксплуатации и ремонта. Какую выберите вы?

Предположим, вы берете ту, где лампочки подключены последовательно. Что же происходит, когда перегорает одна лампочка? Цепь разрывается. Вся гирлянда перестает работать.

А что можно сказать о поиске перегоревшей лампочки в такой гирлянде, если у вас нет специальных приборов?

Кто искал такую лампочку, знает, сколько это занимает времени.

Какое отношение этот пример имеет к системе отопления? Самое прямое.

Выше мы говорили, что однотрубная система наиболее уязвима в отношении разморозки всей системы. Все отопительные приборы «сидят» на одной трубе. И хотя технически было бы неправильно говорить о том, что они включены последовательно (если конечно это не разновидность однотрубной системы — проточная система). Все же подумайте, что бы произошло, если бы хотя бы 1 см или 0,5 см воды в этой трубе перемерзло (особенно уязвимы пороги входных дверей или неплотности в швах кирпича, особенно когда на трубах или в стенах нет утеплителя)?

Правильно. «Встала» бы вся система. И постепенно она вся замерзла бы.

А что можно сказать о поиске замерзшего участка трубы? Поверьте — это практически невозможно!

А теперь возьмем гирлянду с параллельно включенными лампочками. Что происходит, когда одна или две перегорают?

Другие продолжают гореть. А легко ли найти ту лампочку, которая перегорела? Конечно. Все горят, а она — нет!

Точно также и в двухтрубной системе. Если все же так случилось, что труба, идущая к одному радиатору, замерзла, то это не значит, что перестанут работать другие.

А легко ли найти радиатор и соответственно место, где случилась авария? Да. Достаточно лишь потрогать рукой, и все станет ясно.

Разве это не мощный фактор в пользу выбора двухтрубной системы?

Задаваясь вопросом: «Двухтрубную или однотрубную систему отопления нужно выбирать?», не колеблясь, остановите свой выбор на двухтрубной системе отопления и вы никогда не пожалеете о своем выборе!

Ленинградская система отопления: схема подключения, плюсы и минусы

Движение новаторов, которое существовало в СССР, то и дело предлагало решения, которые были не вполне грамотны технически, но зато отвечали требованиям текущего момента – сделать быстрее, сэкономить, «догнать и перегнать». Именно так родилась «ленинградская» система отопления, в которой применялась одна магистраль вместо двух.

Почему именно строителям из города на Неве досталась пальма первенства в применении технологии, позволяющей смонтировать систему отопления, затратив на нее почти в два раза меньше материальных ресурсов и времени, – неизвестно.

Однако «ленинградка» вот уже половину столетия пользуется популярностью у самодеятельных и профессиональных строителей, готовых мириться с ее техническими недостатками из-за простоты и дешевизны.

Техническая сущность «ленинградки»

Обычно система отопления строится на основе двух магистралей – прямой (подающей) и обратной (сборной). Между ними установлены радиаторы – отбирающие тепло элементы, которые в этом случае расположены параллельно друг другу.

Однотрубная и двухтрубная система отопления.

Идея, озарившая ум создателей «ленинградки», была очень проста – совместить сборную и подающую магистрали, уменьшив при этом в два раза количество труб, а также упростив и ускорив монтаж.

Однако в этом случае радиаторы можно расположить лишь последовательно – теплоноситель проходит через них поочередно, отдавая первому из них большую часть тепла и перегревая его.

С перегревом первого радиатора в однотрубной системе отопления борются по-разному: изменением диаметров магистралей, количества секций и другими способами, больше похожими на шаманские танцы с бубном.

Также применяются особые схемы ее построения, представляющие из себя компромиссы с двухтрубной.

Используются два основных типа схем построения однотрубной системы отопления:

1. Горизонтальная;

2. Вертикальная.

Схемы построения

Горизонтальная однотрубная система применяется чаще всего в индивидуальном малоэтажном домостроении. Вертикальная – в массовом многоэтажном.

Горизонтальная

Магистраль представляет из себя горизонтальное кольцо, начинающееся на выходном патрубке котла и заканчивающееся на входном. Оно идет на расстоянии 5–10 сантиметров от пола (иногда устраивается под ним) с небольшим уклоном в сторону котла по ходу движения теплоносителя.

На нем устанавливают радиаторы, используя патрубки меньшего диаметра. Возможны два способа подключения теплообменников:

1. Верхняя разводка, когда подающий патрубок соединен с верхним коллектором;

2. Нижняя разводка – подача и выход теплоносителя осуществляются снизу.

В горизонтальной схеме радиаторы всегда проточные – теплоноситель входит с одного края, а выходит с другого. Это уменьшает гидродинамическое сопротивление системы.

 

Для нормальной работы системы с горизонтальной сборно-подающей магистралью используется ряд дополнительных технических решений.

Сразу после выходного патрубка котла устанавливается вертикальная труба-стояк, на верхнем конце которой монтируется расширительный бак, если система открытая, или автоматический уловитель воздуха, если она закрытая. Так обеспечивается повышенное фоновое значение давления в магистралях.

На циркуляцию теплоносителя оно особого влияние не оказывает, поскольку решающим условием является перепад высот между нижней точкой котла и верхней плоскостью первого радиатора.

Однако повышенное давление сдвигает точку кипения на более высокий уровень, что спасает однотрубную горизонтальную систему, естественная циркуляция в которой обычно очень вялая, от гидроударов.

Циркуляция в однотрубных горизонтальных системах может быть как естественной, так и принудительной.

Для активизации естественной используются так называемые разгонные коллекторы – еще одна вертикальная труба, поднявшись по которой теплоноситель падает вниз, побуждаемый гравитацией.

Это обеспечивает довольно большую скорость его движения по сборно-подающей магистрали. Однако, как показывает практика, использование такого устройства дает хороший эффект лишь в домах с потолками высотой более 2,5 метра.

Вертикальная

Это некое компромиссное решение, поскольку в многоэтажных домах все равно существуют сборная и подающие магистрали. Между ними располагается исполнительный стояк, на котором монтируются радиаторы. Поскольку труба одна, они тоже расположены последовательно, но один над другим (поэтажно).

Так выглядит схема однотрубной ленинградской системы для дома.

В вертикальную однотрубную систему теплоноситель можно подавать как сверху, так и снизу. Подача снизу позволяет сэкономить на теплопотерях в главном подающем стояке, но требует циркуляционных насосов большей мощности. При розливе сверху теплоноситель побуждается к движению еще и гравитацией, что уменьшает затраты на его прокачку.

Радиаторы в вертикальной ленинградской системе можно подключить лишь по тупиковой схеме движения теплоносителя. В них он изменяет направление на 1800, что позволяет им более полно воспринять тепло, но увеличивает их гидродинамическое сопротивление.

Достоинства однотрубной ленинградской системы

В первую очередь, применение этой схемы устройства системы отопления позволяет сократить количество используемых труб вдвое. Кроме того, одна магистраль вносит меньше диссонанса в интерьер помещения. Она эстетичнее.

Во многих источниках указывается еще одно ее преимущество – это простота монтажа. Но такое мнение является поверхностным. Действительно, монтаж одной сборно-подающей магистрали и радиаторов на ней выглядит более простым делом. Тем более, если трубы надо прокладывать через межэтажные перекрытия.

Однако чтобы скомпенсировать ее недостатки надо быть не только слесарем-монтажником высшей квалификации, но и иметь изощренный ум инженера-теплотехника. В противном случае зимой дома будет очень некомфортно.

Недостатки

Главный и неустранимый недостаток однотрубной схемы системы отопления – последовательное движение теплоносителя через радиаторы. При этом первый от котла нагревается первым и сильнее других.

Если не принять меры по балансировке теплообменников, то последний в цепи может вообще не прогреваться.

Главными способами балансировки являются:

1. Последовательное увеличение объема радиаторов от первого к последнему;

2. Изменение количества теплоносителя, проходящего через радиаторы, для чего на их входах устанавливают регулировочные шайбы или шаровые краны.

3. Преднамеренный отказ от стравливания воздуха в первых секциях теплообменников.

Особенности монтажа

Особенно тщательно надо подходить к монтажу однотрубной горизонтальной системы с естественной циркуляцией.

  1. Сборно-подающая магистраль укладывается с уклоном не менее 100. Она нигде не должна провисать.
  2. Верхние плоскости всех радиаторов должны располагаться на одном уровне, а длина патрубков, которыми они подключены к основной трубе, увеличиваться по ходу движения в ней теплоносителя. Их объем должен увеличиваться в том же направлении.
  3. Патрубки первых радиаторов делают меньшего диаметра, последних – большего. Все они оснащаются кранами Маевского или другими устройствами для стравливания воздуха.
  4. Циркуляционный насос устанавливают первым от котла по ходу движения теплоносителя. В этом случае он способен продавить его через любые воздушные пробки. Особенно это актуально в том случае, если котел имеет большой объем.

Заключение

Ленинградская однотрубная система является пережитком времени, когда экономия материальных ресурсов ставилась во главу угла, а каждый метр трубы и сварочный электрод надо было изыскивать. Ее видимая простота не оправдывается сложностями последующей эксплуатации.


Мы подобрали для Вас ещё восемь полезных статей, смотрите далее.

Все о двухтрубных теплообменниках

Теплообменники — это фундаментальный инструмент, который используется практически во всех отраслях промышленности, и не зря.

Эти устройства передают или «обменивают» тепло между двумя потоками (жидкостью или газом) через проводящий барьер, не смешивая их физически. Это тепло является формой энергии, и инженеры разработали системы, в которых теплообменники используются для эффективной передачи энергии между дорожками. Теплообменники бывают разных видов, потому что есть много разных способов добиться такой теплопередачи; В этой статье будет рассказано о двухтрубном теплообменнике — одной из самых простых, но гибких конфигураций.Сначала мы рассмотрим, что делает теплообменник двухтрубной конструкцией, как они осуществляют передачу энергии и каковы основные преимущества и применения такой конструкции.

Что такое двухтрубные теплообменники?

Рис. 1: Пример двухтрубного теплообменника в реальной жизни; обратите внимание на маленькие трубки на изгибах и большие на прямых.

Изображение предоставлено: https://jcequipments.com/double-pipe-heat-exchanger.html

Цель любого теплообменника — позволить двум потокам взаимодействовать на некотором проводящем барьере, где этот барьер физически разделяет потоки, но позволяет передавать тепловую энергию.Чтобы получить общее представление о принципах, лежащих в основе этих конструкций, прочитайте нашу статью о теплообменниках, в которой исследуется теория, лежащая в основе этих устройств.

Двухтрубный теплообменник в своей простейшей форме представляет собой одну трубу, удерживаемую концентрически внутри большей трубы (отсюда и название «двойная труба»). Внутренняя труба действует как проводящий барьер, где одна жидкость течет через эту внутреннюю трубу, а другая течет вокруг нее через внешнюю трубу, образуя форму кольцевого пространства. Внешний или «межтрубный» поток проходит по внутреннему, или «трубному» потоку, что вызывает теплообмен через стенки внутренней трубки.Их также часто называют шпильками, трубами с рубашкой, U-образными трубками с рубашкой и теплообменниками типа труба в трубе. Внутри они могут содержать одну трубу или пучок трубок (аналогично кожухотрубным теплообменникам), но пучок должен быть <30 трубок, а внешняя труба должна быть <200 мм в диаметре, иначе теплообменник квалифицируется как другая конструкция (см. в нашей статье о кожухотрубных теплообменниках). На внутренней трубе (ах) также могут использоваться продольные ребра, которые дополнительно увеличивают теплопередачу между двумя рабочими жидкостями.

Как работают двухтрубные теплообменники?

Рис. 2: упрощенная схема, показывающая работу двухтрубных теплообменников. Обратите внимание, как внутренняя жидкость (синяя) движется слева направо, а внешняя жидкость (серая) движется справа налево.

Изображение предоставлено: Ченгель, Юнус А. и Афшин Дж. Гаджар. Тепло- и массообмен: основы и приложения. Нью-Йорк: Макгроу-Хилл, 2011. Печать.

Изучите Рис. 2. Более горячий поток пересекает внутреннюю трубу, в то время как внешняя оболочка содержит холодный поток (обратите внимание, что это не всегда так).Двухтрубный теплообменник работает за счет теплопроводности, когда тепло от одного потока передается через внутреннюю стенку трубы, которая сделана из проводящего материала, такого как сталь или алюминий. Двухтрубный теплообменник часто используется в противотоке, когда его жидкости движутся в противоположных направлениях (как показано выше). Истинный противоток достигается в двухтрубных теплообменниках благодаря концентрической трубе (ам), и разработчики используют это преимущество для увеличения коэффициента теплопередачи системы. Их также можно использовать в параллельном потоке, когда обе жидкости движутся в одном направлении, но противоток часто является наиболее термически эффективным режимом.

Двухтрубные теплообменники могут выдерживать высокое давление и высокие температуры, поскольку они могут свободно расширяться и имеют прочную и простую конструкцию. Они также могут испытывать перекрестную температуру в противотоке, когда температура на выходе холодного потока ( T c, на выходе ) становится выше, чем температура на выходе горячего потока ( T h, на выходе ). Это может быть, а может и не быть выгодным в определенных приложениях, но примечательно, поскольку некоторые другие конструкции, такие как пластинчатый теплообменник, обычно не могут достичь температурного пересечения.

Двухтрубный теплообменник представляет собой небольшую модульную конструкцию, которая наиболее полезна в приложениях, где обычные кожухотрубные теплообменники слишком велики или слишком дороги в использовании. Двухтрубные теплообменники могут быть соединены последовательно или параллельно для увеличения скорости теплопередачи через систему без каких-либо осложнений. Кроме того, добавление ребер и создание U-образных изгибов может еще больше увеличить теплопередачу, делая эти устройства универсальными, простыми в ремонте и модернизации и весьма эффективными в своей работе.

Преимущества и недостатки пластинчатых теплообменников

Двухтрубный теплообменник — одна из самых простых в изготовлении, установке и ремонте благодаря своей простой конструкции.У них есть некоторые уникальные преимущества по сравнению с некоторыми из более сложных конструкций теплообменников, а также некоторые важные недостатки, поэтому в этой статье покупателям будет показано, когда им следует — и не следует — рассматривать возможность использования одной из этих систем:

Ниже приводится список основных преимуществ использования двухтрубного теплообменника:

  • Они хорошо справляются как с высоким давлением, так и с высокими температурами
  • Их детали стандартизированы в связи с их популярностью, что упрощает поиск и ремонт деталей.
  • Это одна из самых гибких конструкций, позволяющая легко добавлять / снимать детали.
  • Они занимают мало места, что не требует много места для обслуживания, но при этом имеет хорошую теплопередачу.

Однако важно понимать недостатки такой конструкции, которые включают:

  • Они ограничены более низкими тепловыми нагрузками, чем другие, более крупные конструкции
  • Несмотря на то, что они могут использоваться в параллельном потоке, они чаще используются только в режимах противотока, что ограничивает некоторые приложения
  • Возможна утечка, особенно при подключении к большему количеству устройств
  • Трубки легко загрязняются и их трудно очистить без разборки всего теплообменника
  • Если есть бюджет и место для кожухотрубного теплообменника, то двухтрубная конструкция часто является менее эффективным методом теплопередачи

Технические характеристики, критерии выбора и области применения

Двухтрубный теплообменник, как видно выше, является, пожалуй, самым простым теплообменником в промышленности.В результате есть много-много вариантов для покупки, или они могут быть изготовлены по индивидуальному заказу в соответствии с конкретными потребностями проекта. Они наиболее полезны для приложений малой мощности, где общая площадь поверхности теплопередачи составляет <500 квадратных футов, поскольку на единицу площади более экономично использовать другую конструкцию сверх этой величины.

При выборе двухтрубного теплообменника для проекта учитывайте используемые рабочие жидкости. Если вы используете две разные жидкости, более агрессивная из двух будет работать лучше всего в потоке на стороне оболочки, так как у него больше места для протекания.Если вы используете пар, подумайте о том, чтобы пропустить его по трубопроводу, так как он будет течь лучше в меньшем объеме. Затем определите необходимую теплопередачу между двумя потоками, желаемую температуру на выходе и любые другие параметры, характерные для конкретного проекта. Зная эту информацию, поставщик может помочь согласовать ваши потребности с подходящим теплообменником на рынке. Важно знать, что, хотя конструкции с двумя трубами являются модульными и простыми, они становятся более дорогими по мере увеличения площади поверхности, поэтому рассмотрите варианты.

Трудно охватить все области применения двухтрубных теплообменников. Называя лишь некоторые из них, они популярны в системах с высоким давлением и температурой, таких как бойлеры и компрессоры, а также для рационального нагрева и охлаждения в технологических системах. Они используются в самых разных областях, от нефтепереработки до охлаждения, очистки сточных вод и отопления помещений, поэтому ясно, что возможности безграничны с таким полезным и элегантным дизайном. Если пространство ограничено и простота имеет первостепенное значение, подумайте о двухтрубном теплообменнике для работы.

Сводка

В этой статье представлено понимание того, что такое двухтрубные теплообменники и как они работают. Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

Источники:
  1. https://www.brighthubengineering.com/hvac/64548-double-pipe-heat-exchanger-design/
  2. http://www.thermopedia.com/content/705/
  3. https: // www.che.utah.edu
  4. https://jcequipments.com/double-pipe-heat-exchanger.html
  5. http://web.iitd.ac.in/~pmvs/courses/mel709/classification-hx.pdf

Прочие изделия из теплообменников

Больше от технологического оборудования

Сравнение двухтрубных и четырехтрубных систем отопления, вентиляции и кондиционирования воздуха с водяными тепловыми насосами

Во многих системах отопления, вентиляции и кондиционирования воздуха используются гидравлические трубопроводы в качестве средства обогрева и охлаждения помещений. Отдельные фанкойлы обслуживают каждую зону, в то время как центральный чиллер и котел принимают на себя общие нагрузки HVAC по мере необходимости.Возможны две основные конфигурации системы: один и тот же гидравлический трубопровод может использоваться для обеих функций, или отдельные гидравлические трубопроводы могут использоваться для нагрева и охлаждения.

  • Двухтрубная система: При использовании общих гидравлических трубопроводов для обогрева и охлаждения каждый фанкойл имеет только одну подающую трубу и одну обратную трубу.
  • Четырехтрубная система: Если отопление и охлаждение имеют отдельные гидравлические трубопроводы, фанкойлы имеют две подающие и две возвратные трубы.

Как и в большинстве инженерных решений, каждая конфигурация системы имеет свои достоинства и недостатки. В этой статье будет представлен обзор двухтрубных и четырехтрубных систем и будет сравниваться их с более современной альтернативой: тепловыми насосами с водяным источником.


Наши инженеры MEP могут найти лучшую конфигурацию HVAC для вашего здания.


Двухтрубные системы отопления, вентиляции и кондиционирования воздуха

В двухтрубной системе используется половина гидравлических трубопроводов, необходимых для четырехтрубной системы, что приводит к снижению затрат и времени установки.Система также более компактна, что снижает требования к занимаемому пространству в механических помещениях. Техническое обслуживание двухтрубной системы также упрощается благодаря уменьшенному количеству трубопроводной арматуры и клапанов.

Основным ограничением двухтрубной системы отопления, вентиляции и кондиционирования воздуха является недостаточная эксплуатационная гибкость. Гидравлический трубопроводный контур, который проходит через здание, подключается либо к котлу, либо к чиллеру в зависимости от общих потребностей, и все участки здания должны работать в одном и том же режиме; обогрев одних участков и охлаждение других невозможен при такой конфигурации системы.

Двухтрубные системы отопления, вентиляции и кондиционирования воздуха — отличный выбор для тропического климата, где здания часто работают в течение всего года без отопления помещений. В этих случаях бойлер обычно не используется, если он не требуется для горячей воды, но в этом случае это совершенно другая строительная система.

Четырехтрубная система отопления, вентиляции и кондиционирования воздуха

В этой конфигурации системы используется вдвое больше трубопроводов, чем в двухтрубной системе отопления, вентиляции и кондиционирования воздуха, поэтому она дороже и требует больше времени для установки. Кроме того, четырехтрубная система требует больше места для размещения двух контуров гидравлических трубопроводов, проходящих через здание.Увеличение количества приспособлений, клапанов и точек подключения также приводит к более требовательной системе с точки зрения обслуживания.

Однако четырехтрубные системы HVAC предлагают характеристики производительности, недоступные для двухтрубной системы. Например, фанкойлы могут обеспечивать одновременное охлаждение и осушение, используя одновременно теплообменники с охлажденной и горячей водой:

  • Змеевик с охлажденной водой используется с максимальной производительностью, чтобы удалить как можно больше влаги из воздуха, даже если воздух охлаждается ниже требуемой температуры.
  • Любое чрезмерное охлаждение затем компенсируется нагревательной спиралью, обеспечивая подачу воздуха с приемлемой температурой и влажностью.

Двухтрубная система не допускает такой гибкости, поскольку температура и влажность воздуха фиксированы, когда он проходит через фанкойл. Повышенное осушение требует большего охлаждения, а более высокая температура воздуха приводит к более высокой влажности.

Еще одно существенное преимущество четырехтрубной системы состоит в том, что разные участки здания могут охлаждаться или нагреваться одновременно.Это просто вопрос использования соответствующего гидравлического контура в фанкойлах, обслуживающих эти зоны.

Как в двух- и четырехтрубных системах используется энергия

В Нью-Йорке охлаждение помещений в основном осуществляется с помощью электричества, а для отопления помещений обычно используется природный газ или мазут. Поскольку электричество в Нью-Йорке очень дорогое, одна тонна-час охлаждения обычно дороже, чем одна тонна-час отопления. По этой причине модернизация системы охлаждения, как правило, обеспечивает более высокую прибыль на каждый потраченный доллар, и компании по управлению недвижимостью могут в первую очередь сосредоточиться на них, чтобы максимизировать окупаемость инвестиций.

Конечно, из приведенного выше правила могут быть исключения. Если в здании есть современный высокоэффективный чиллер и старый котел, стоимость тонно-час отопления может быть выше. Энергетический аудит — лучший способ определить наиболее рентабельные обновления здания.

Водяные тепловые насосы: лучшие характеристики обеих систем

Если система использует тепловые насосы с водным источником вместо фанкойлов, она может предложить преимущества четырехтрубной системы, полагаясь на один гидравлический трубопроводный контур.Водяные тепловые насосы могут работать как в режиме охлаждения, так и в режиме обогрева с общим водяным контуром.

  • Тепловые насосы отбирают тепло из зон, требующих охлаждения, и тепло отводится в водяной контур.
  • Отопление помещения возможно одновременно, и эта тепловая энергия может быть извлечена из того же водяного контура с помощью тепловых насосов в режиме отопления.

При такой конфигурации системы тепловая и охлаждающая нагрузки уравновешивают друг друга, что приводит к гораздо более высокой эффективности работы.Никогда не требуется, чтобы чиллер и котел работали одновременно: чиллер работает, когда нагрузка охлаждения выше, а котел работает, когда нагрузка тепла выше.

Чтобы еще больше снизить эксплуатационные расходы, можно использовать высокоэффективные котлы и чиллеры, но учтите, что эффективность указывается по-разному для каждого типа оборудования:

  • Газовые или мазутные котлы используют показатель годовой эффективности использования топлива (AFUE), который указывается в процентах. Например, газовый котел с AFUE 95% отдает 95% тепла сгорания воде, протекающей в гидравлических трубопроводах.
  • Чиллеры
  • используют коэффициент энергоэффективности (EER), чтобы сообщать о своей эффективности в стандартных условиях испытаний, и интегрированный коэффициент энергоэффективности (IEER), чтобы отражать свою эффективность после учета сезонных факторов и изменчивости нагрузки. EER и IEER — это не процентные значения, а скорее отношение мощности охлаждения в британских тепловых единицах в час к потребляемой электроэнергии в ваттах — аналогично значению расхода бензина автомобиля.

Самые эффективные котлы на рынке имеют AFUE выше 95%, в то время как самые эффективные чиллеры с водяным охлаждением имеют EER выше 20.Чиллеры с воздушным охлаждением менее эффективны, чем их аналоги с водяным охлаждением.

Также возможно использование геотермального теплового насоса для замены котла и чиллера. Эти агрегаты столь же эффективны, как чиллер с водяным охлаждением, и могут соответствовать эксплуатационным расходам газового котла в режиме отопления, даже если они работают с электричеством. Однако для работы грунтовых тепловых насосов требуются определенные условия грунтовых вод. Они могут быть отличным выбором в новых конструкциях, где не были установлены чиллер и бойлер, или когда чиллер и бойлер старые и неэффективные.Если существующие чиллер и бойлер уже эффективны, модернизация до теплового насоса с грунтовым питанием может оказаться нецелесообразной с финансовой точки зрения.

Преимущества двухтрубной системы при установке печи

Для максимальной эффективности и нагрева, а также длительного срока службы, двухтрубная система предпочтительнее для установки высокоэффективных печей с рейтингом AFUE 90% или более. Стандартные печи забирают воздух для процесса горения в агрегат изнутри дома, используя одну трубу для отвода дыма на улицу.И наоборот, высокоэффективная печь предлагает возможность подавать наружный воздух в герметичную камеру сгорания через одну трубу, а дымовые газы выводить через другую отдельную трубу. В двухтрубной системе воздух для горения не забирается из помещения.

3 Преимущества двухтрубной системы

Установка двухтрубной системы с высокоэффективной печью позволяет оптимально выполнять функции нагрева и охлаждения вашей печи и сохранять качество воздуха во время изменений температуры.Двухтрубная система забирает свежий воздух снаружи, а не из дома.

Ваша печь не должна работать так тяжело

Когда воздух из помещения втягивается из дома в топку для сжигания, перепад давления, который создается внутри дома, означает, что холодный наружный воздух всасывается в дом через множество мелких структурных трещин и щелей. Эта инфильтрация более холодного наружного воздуха заставляет печь работать более интенсивно и работать дольше, чтобы поддерживать желаемую температуру.Растет потребление энергии и растут эксплуатационные расходы. Попадание в дом нефильтрованного наружного воздуха также может ухудшить качество воздуха в помещении.

Повысьте энергоэффективность вашего дома

Перепад давления, вызванный однотрубной установкой, также означает, что вентиляция других топливных приборов в доме менее эффективна. Тяга дымохода камина может ухудшиться, так как воздух втягивается через дымоход вниз. Выхлопные газы водонагревателя могут быть втянуты обратно в дом через вентиляционную трубу.

Улучшение качества воздуха в помещении

Некоторые важные компоненты печи, такие как теплообменник и горелки, сделаны из металлов, которые подвержены коррозии из-за паров, часто присутствующих в воздухе помещений. В процессе сгорания эти химические следы от моющих средств, чистящих средств и других аэрозольных продуктов могут вызвать коррозию этих компонентов, снижая их долговечность и срок службы. Вообще говоря, свежий наружный воздух, всасываемый через специальную трубу в двухтрубной системе, не содержит этих коррозионных паров, поэтому дорогостоящие компоненты печи не подвергаются риску.

Чтобы узнать больше о преимуществах установки двухтрубной системы с высокоэффективной печью, свяжитесь с профессионалами Arpi’s Industries.

Что такое двухтрубный теплообменник: Типы. Принципы работы

Двухтрубные теплообменники — Теплообменники — это устройства, которые передают или обменивают тепло между двумя жидкостями без смешивания и включают различные типы в зависимости от конструкции, применения, требуемого пространства и потоков жидкости в системе. Все теплообменники имеют барьер, который разделяет жидкости и обеспечивает одновременную теплопередачу.Двухтрубный теплообменник — один из основных видов теплообменников с очень гибкой конфигурацией. Для этого типа существует два типа противотока или параллельного потока, которые лежат в основе проектирования и расчета для определения размера, длины и количества изгибов трубы. В этой статье мы рассмотрим различные аспекты двухтрубных теплообменников.

Двухтрубные теплообменники

В двухтрубных теплообменниках имеется большая труба с небольшой трубкой внутри концентрически, и весь процесс теплопередачи происходит внутри большей трубы.Одна жидкость протекает через внутреннюю часть небольшой трубы, а другая жидкость находится между двумя трубами, и именно так внутренняя труба действует как проводящий барьер. Внешняя сторона или сторона оболочки включает поток текучей среды, проходящий на внутренней стороне или стороне трубы.

Этот тип теплообменника известен как шпилька, труба с рубашкой, U-образная труба с рубашкой и теплообменник труба в трубе. Они могут содержать одну трубу или пучок труб (менее 30), а наружная труба должна иметь диаметр менее 200 мм. В некоторых случаях для увеличения скорости теплопередачи между рабочими жидкостями во внутренней трубе используются продольные ребра.

Технические характеристики и приложения

Один из простейших теплообменников — двухтрубный теплообменник. На рис. 1 представлена ​​схема этого типа, и, как показано, одна труба или оболочка находится внутри другой. Благодаря простому дизайну у покупателя есть множество вариантов на выбор. На рынке доступно множество индивидуальных теплообменников для удовлетворения потребностей промышленности и проектов в различных областях применения. Лучше использовать этот тип в условиях малой мощности, при площади теплопередачи менее 45 квадратных метров.

Рисунок 1. Схема двухтрубных теплообменников (код: thomasnet.com )

Вы должны знать типы жидкости в вашей системе при использовании этого теплообменника. Вязкую жидкость следует использовать со стороны кожуха из-за гораздо большего пространства, доступного для потока. В результате, если вы используете пар в качестве жидкости в теплообменнике, было бы лучше использовать трубы для потока.

Перед выбором теплообменника необходимо определить технические характеристики проекта.Также должны быть определены температуры на входе и выходе, а также необходимая теплопередача. Предоставление этих сведений облегчает вам и поставщику вывод на рынок доступных теплообменников или разработку подходящих пар труб для вас. Как обсуждалось ранее, конструкция двухтрубных теплообменников проста и модульна, но вы должны знать, что вы заплатите высокую цену за теплообменник, увеличив площадь поверхности.

Применение двухтрубных теплообменников очень велико, и их сложно охватить все, и все из-за практичной, элегантной и простой конструкции.Вот некоторые из них:

  • Котлы и компрессоры из-за высоких температур и давлений
  • Охлаждение и обогрев в технологических системах
  • Нефтепереработка
  • Холодильное оборудование
  • Очистка сточных вод

Если доступное пространство важно и вы не ищете сложный теплообменник, попробуйте для своего проекта двухтрубные теплообменники.

Типы двухтрубных теплообменников

Двухтрубные теплообменники можно разделить на категории в зависимости от направления потока.На этих АТС можно использовать параллельный поток и противоток, и все дело в расположении входов и выходов. Выбор параллельного и противоточного потока влияет на теплопередачу и падение давления в системе, кстати, в некоторых приложениях следует выбирать одно из других.

Противоточные двухтрубные теплообменники

Лучшая конструкция для двухтрубных теплообменников — это противоточные. В этой схеме теплообменник имеет оптимальный коэффициент теплопередачи и может охлаждать или нагревать выпускные отверстия по нашему желанию.

На рис. 2 показано расположение входных и выходных отверстий. Как показано в этом типе, потоки текут в противоположном направлении друг от друга, и в конце в обеих головках у нас есть максимальная разница температур между жидкостями. Изучите диаграмму противотока и примите во внимание, что жидкость 1 горячая, а жидкость 2 холодная. Температура холодной стороны на выходе (T 2out ) может достигать температуры, близкой к T 1in , и, как мы знаем, эта температура больше, чем T1out.В этом типе комкованная жидкость может достигать температуры больше, чем на выходе с горячей стороны, а в параллельном — это невозможно.

Рисунок 2. Схема противоточных двухтрубных теплообменников (код: brighthubengineering.com )

Параллельный поток Двухтрубные теплообменники

Параллельный поток — это тип, при котором входы и выходы находятся в одной головке. Теплоотдача меньше, чем у противотока, и КПД невысокий; однако в некоторых приложениях мы должны выбирать этот тип.

Рисунок 3. Схема противоточных двухтрубных теплообменников (код: brighthubengineering.com )

Преимущества и недостатки двухтрубных теплообменников

Двухтрубные теплообменники имеют одну из самых простых конструкций, благодаря чему их легко изготовить и отремонтировать. Все устройства имеют свои преимущества и недостатки, и здесь мы покажем вам, подходят ли двухтрубные теплообменники для вашего применения.

Преимущества двухтрубных теплообменников

Этот тип теплообменника имеет некоторые уникальные преимущества перед другими сложными теплообменниками. Основные преимущества двухтрубных теплообменников перечислены ниже:

  • Вы можете обеспечить высокую эффективность при меньших капитальных затратах.
  • Они маленькие по сравнению с кожухом и трубкой и не требуют много места для обслуживания, при этом передача тепла приемлема.
  • Поскольку они очень популярны, все детали стандартизированы, что упрощает ремонт и обслуживание.
  • Они имеют гибкую конструкцию, и другие детали добавления и удаления могут быть легко выполнены.
  • Этот тип теплообменника можно использовать при высоком давлении и температуре.
  • Конструкция теплообменника допускает большее тепловое расширение без компенсатора.

Недостатки двухтрубных теплообменников

Следует знать о недостатках этого типа и его конструкции, например:

  • Они обычно используются в противоточных конструкциях и не могут использоваться в некоторых приложениях.Это не означает, что их нельзя использовать в параллельном потоке.
  • Они имеют ограничения по теплопередаче, а не сложную конструкцию, и их следует использовать в условиях низкой теплоотдачи.
  • У этого типа чаще встречается утечка (в паре с большим количеством устройств)

Двухтрубный теплообменник

Зная некоторые спецификации двухтрубных теплообменников и ваши требования, проектирование может быть выполнено с помощью простого уравнения теплопередачи, как показано ниже:

Q = UA \ bigtriangleup T_ {lm}

где:

Q — скорость теплопередачи между жидкостями, U — коэффициент теплопередачи в системе, A — поверхность теплопередачи, а \ bigtriangleup T_ {lm} — средняя логарифмическая температура (может быть вычислена, зная температуру вход и выход жидкостей).

Зная необходимую площадь теплопередачи, мы можем выбрать диаметр и длину как внутренних, так и внешних труб. В итоге можно выбрать длину прямой части и количество изгибов.

Заключение

Двухтрубные теплообменники — это простейшие теплообменники, подходящие для работы при высоких температурах и давлениях. Их легко ремонтировать, а благодаря простоте конструкции они широко используются во многих приложениях и являются лучшим выбором для многих проектов.Их можно использовать в двух типах противотока, и параллельный поток зависит от приложения, и конструкция этого типа проста.

Единственная в мире двухтрубная система // Mitsubishi Electric City Multi

Mitsubishi Electric City Multi VRF (регулируемый поток хладагента) — передовая технология коммерческого кондиционирования воздуха. единственная в мире двухтрубная система одновременного нагрева и охлаждения. Проверено на практике в суровых условиях, двухтрубная Технология не только дешевле в установке, но и долговечна, надежна, энергоэффективна и обеспечивает высочайший уровень точности управления.

Преимущества двухтрубного VRF

1. Меньше трубных соединений

В VRF серии City Multi R2 с системой из четырех внутренних блоков имеется 20 стыков хладагента по сравнению с эквивалентной трехтрубной системой с 58 соединения. Каждый лишний стык требует дополнительных затрат труда, материалов и времени. Цены на медь значительно выросли, и меньшее количество медных труб означает гораздо меньше капитальные затраты на равноценные проекты. Это делает City Multi R2 значительно более дешевым в установке.Также нет дорогих фирменных требуется штуцер ответвления. Меньшее количество мест соединения труб также означает меньшее количество потенциальных мест утечки.

2. Жесткий контроль зоны нечувствительности

Двухтрубная архитектура позволяет быстро и индивидуально переключать внутренние блоки с обогрева на охлаждение. Благодаря уникальной инженерии БК (управление ответвлением), возможно +/- 1 ° C уставки с +/- 1,5 ° C, определяющим режим переключения.

3. Гибкость для будущих изменений

Двухтрубная архитектура упрощает будущую проверку и обслуживание системы VRF, сокращая эксплуатационные расходы.Изменения и дополнения к индивидуальным Ответвления упрощаются за счет установки шаровых кранов ответвлений во время установки. Это позволяет работать с отдельными ветвями, в то время как остальная часть системы все еще в строю. Все соединения BC запаяны, что сокращает дальнейшие возможные места утечки. Будущие дополнения к системе могут быть спроектированы и добавлены во время система все еще работает.

4. Цикл без нефтеотдачи

В отличие от трехтрубных систем, системы R2 не требуют регулярных циклов сбора нефти.С меньшими объемами хладагента и меньшими скоростями во время переключения режима, нефтеотдача сведена к минимуму. Это предотвращает дрейф зонной температуры во время циклов восстановления и повышает энергоэффективность и точность управления.

5. Рекуперация тепла в коробке BC

Рекуперация тепла между внутренними блоками осуществляется в боксах BC. Это позволяет отвлечь рекуперацию энергии от технологии пинч (интеграция тепла), снижение потерь при передаче по трубам. Тепло перенаправляется в блоках клапанов непосредственно в ответвление, которое в нем нуждается, что снижает общие эксплуатационные расходы и увеличивает количество рабочих COP.

6. Меньше участков подключения к электросети

Двухтрубный VRF имеет значительно меньше точек электрического подключения, чем эквивалентные трехтрубные системы. Это снижает сложность первоначального процесса подключения и упрощает поиск ошибок; сокращение затрат на установку, времени и материалов. Меньшее количество компонентов в системе означает, что меньше оборудования может выйти из строя в будущем.

Как системы City Multi работают только с 2 трубками?

Секрет городских систем рекуперации тепла кроется в контроллере BC.Контроллер BC содержит сепаратор жидкости / газа, позволяющий наружному блоку подавать смесь (2 фазы) горячего газа. для нагрева и жидкости для охлаждения, все через одну трубу. Трехтрубные системы выделяют трубу на каждая из этих фаз. Когда эта смесь поступает в контроллер BC, она разделяется и правильный фаза подается на каждый внутренний блок в зависимости от индивидуальных требований нагрева или охлаждения.

Гидравлические системы переключения первичного / вторичного нагрева-охлаждения

Время от времени мы все еще видим двухтрубную систему отопления или охлаждения с ручным или автоматическим процессом переключения, который владелец использует для переключения между сезонами.Меня вызвали для устранения неполадок в более чем дюжине систем, где владелец предоставлен самому своему устройству, чтобы изменить систему. Сопровождающий ушел на пенсию, а новый человек не прошел необходимой подготовки. Пара простых элементов управления в первичной / вторичной гидравлической системе может иметь решающее значение, обеспечивая правильную работу этой системы.

Проблемы двухтрубной системы отопления и охлаждения

Бывают случаи, когда владелец не хочет вкладывать капитал в комбинированную систему отопления и охлаждения, которую иногда называют четырехтрубной системой.Конструкция двухтрубной системы обеспечивает отопление зимой и охлаждение летом. Переключение может происходить автоматически в зависимости от изменения температуры наружного воздуха, но обычно это системы ручного переключения.

Есть две проблемы, и я много раз сталкивался с обеими, когда меня вызывали для устранения неполадок. Первая — это проблема подачи горячей воды в чиллер. Переключение должно происходить, когда температура воды в гидравлической системе достаточно низка для используемого чиллера.

Вторая проблема касается чиллеров с воздушным охлаждением, которые опорожняются зимой. После того, как отопительный сезон закончился и требуется охлаждение, в реальном мире владелец имеет тенденцию просто открывать клапаны и позволять воде замкнутой системы заполнить трубопровод к чиллеру. Это приводит к попаданию большого количества воздуха в систему, что может вызывать проблемы на несколько недель.

Системы переключения первичного / вторичного трубопроводов

Первая проблема может быть решена очень просто, используя метод первичной / вторичной обвязки.Рисунок 57 выше взят из Руководства по применению первичного вторичного насоса Bell & Gossett TEH-775A. Это показывает котел в первичном контуре и чиллер в первичном контуре с общим вторичным насосом для системы.

Зимой чиллер выключен. Котел не работает в обычном режиме управления отоплением. Обратите внимание на то, что насос системы откачивает от места расположения расширительного бака или от точки, где нет изменения давления.

Система включает в себя несколько простых элементов управления, когда мы переключаемся на охлаждение.В режиме охлаждения отключаем котел. Системный насос продолжает перекачивать, и температура подаваемой воды начинает падать. Аквастат во вторичном контуре определяет температуру и снижение температуры до значения, безопасного для чиллера; после этого запускается насос чиллера. Как только поток будет подтвержден средствами управления чиллера, чиллер может быть активирован.

Что делать, если охладитель сливается зимой?

Часто встречаются гидравлические системы с чиллерами с воздушным охлаждением.В двухтрубной системе с обогревом или охлаждением, но не с обоими одновременно, необходимо что-то предпринять, чтобы предотвратить замерзание трубопроводов чиллера зимой. Иногда систему заполняют смесью гликоля Dowtherm или Dowfrost. Это означало бы, что вся система должна была бы состоять из гликоля, если не использовался отдельный теплообменник. Потеря эффективности теплопередачи может быть большой. В большинстве случаев осушение этих чиллеров осуществляется с помощью запорной арматуры внутри здания. Когда владелец готов запустить чиллер, он должен заполнить трубопровод.

Мой опыт включает в себя многих владельцев, которые просто открывали запорные клапаны и позволяли воде гидравлической системы заполнять трубопровод охладителя. Что происходит со всем воздухом в трубе? В конечном итоге он попадает в систему и, возможно, попадает в оконечные устройства. Возникнут проблемы с охлаждением.

Лучшее решение — установить ручное заполнение и вентиляционное отверстие. Письменные ламинированные инструкции на стене будут включать последовательность открытия ручного заправочного клапана и наполнения системы водой на «X» минут.По завершении закройте ручную заливку и откройте запорные клапаны. Теперь переведите насос чиллера и чиллер в автоматическое положение и начните процесс переключения.

Такое простое использование первичного / вторичного трубопровода — лишь одно из многих применений, которые Bell & Gossett описывает в своих технических руководствах и программах обучения. Если вы хотите посетить занятия по этой теме или узнать больше о системах переключения, просто свяжитесь со своим инженером по продажам RLD или местным представителем B&G.

Заявление об ограничении ответственности: R. L. Deppmann и его аффилированные лица не несут ответственности за проблемы, вызванные использованием информации на этой странице. Хотя эта информация исходит из многолетнего опыта и может быть ценным инструментом, она может не учитывать особые обстоятельства в вашей системе, и поэтому мы не можем нести ответственность за действия, вытекающие из этой информации. Если у Вас возникнут вопросы, обращайтесь к нам.

Трубный теплообменник — обзор

Пример 1: Двухтрубный теплообменник

Тепловая нагрузка Q = 3.53 кВт LMTD = 32,46 ° C
Внутренняя труба 21,3 × 2 ( d i = 17,3 мм) Кожух 33,7 × 2 ( D i = 29,7 мм)
V T = 0,05 м 3 / ч V кожух = 0,3 м 3 / ч
ρ = 1000 кг / м 3 ρ = 1000 кг / м 3
ν = 0.41 мм 2 / с ν = 0,8 мм 2 / с
c = 1,16 Втч / кг K c = 1,16 Втч / кг K
λ = 0,66 Вт / м K λ = 0,61
Pr = 2,594 Pr = 5,476

Сторона трубки :

wT = 0,053600 × 0,01732 × π / 4 = 0,05 / с

Re = 0,059 × 0,01730,41 × 10-6 = 2490Nu = (0,037 × 24900,75-6.66) × 2,5940,42 = 9,52αi = 9,52 × 0,660,0173 = 363Вт / м2Kαio = 363 × 17,321,3 = 295Вт / м2K

Сторона оболочки :

ashell = π4 × (0,02972−1 × 0,02132) = 336,3 × 10−6m2dh = 0,02972−0,021320,0213 = 0,0201Re = 0,248 × 0,02010,8 × 10−6 = 6230

Nu = (0,037 × Re0,75−6,66) × 5,4760,42 = 39,39

αo = 39,39 × 0,610,0201 = 1195 Вт / м2 · K

Общий коэффициент теплопередачи U :

1U = 11195 + 1295 + 0,00214 + 0,0002 = 0,00457U = 219 Вт / м2Kreq = 353032,46 × 219 = 0,5 м2Lreq = 0,5π × 0,0213 = 7,5 mpipe

Расчет потери давления для 2 × 3.75 м длинных труб :

Сторона трубы :

ΔPnozz = 1,5 × 0,0592 × 10002 = 2,6 Паф = 0,27524900,2 = 0,058 ΔPt = (0,058 × 7,50,0173 + 1) × 0,0592 × 10002 = 46 Па

ΔPtot = 2,6 + 46 = 48,6 Па

Сторона кожуха :

2 впускных и 2 выпускных сопла DN 20 w сопла = 0,265 м / с для 0,3 м 3 / ч

ΔPnozz = 3 × 0,2652 × 10002 = 105 Па

dh ′ = Di − da = 0,0297−0,0213 = 0.0084m

Re ′ = 0,248 × 0,00840,8 × 10−6 = 2604

Коэффициент трения f = 0,275Re0.2 = 0,27526040,2 = 0,057

ΔPshell = (0,057 × 7,50,0084 + 1) × 0,2482 × 10002 = 1596PaΔPtot = 105 + 1596 = 1701 Па

Пример 2: Коэффициент теплоотдачи со стороны кожуха в многотрубном теплообменнике

V кожух = 2,3 м 3 / ч Pr = 7,1 λ = 0,58 Вт / м K ν = 1 мм 2 / с

Диаметр кожуха D i = 84 мм с семью внутренними трубками 20 × 2, длиной 3 м

как кожух = π4 × (0.0842-7 × 0,022) = 0,0033м2dh = 0,0842-7 × 0,0227 × 0,02 = 0,0304mdh ′ = 0,0842-7 × 0,0220,084 + 7 × 0,02 = 0,019mwshell = 2,30,0033 × 3600 = 0,194 м / с Re = 0,194 × 0,03041 × 10−6 = 5897

Расчет коэффициента теплоотдачи со стороны кожуха при Re = 5897:

Nu = (0,037 × 58970,75−6,66) × 7,10,42 = 41,5αo = Nu × λdh = 41,5 × 0,580 .0304 = 792Вт / м2K

Пример 3: Сравнение двухтрубных или многотрубных теплообменников

Расчет двухтрубного теплообменника :

Сторона трубы :

5.2 м 3 / ч 20/30 ° C Q = 51,480 Вт
ρ = 1100 кг / м 3 λ = 0,4 Вт / м K c = 0,9 Втч / кг K
ν = 2,4 мм 2 / с w T = 1,248 м / с Pr = 21,38
Внутренняя труба 42,4 × 2 мм d i = 38,4 мм

Re = 1.248 × 0,03842,4 × 10−6 = 19,968Nu = 0,023 × 19,9680,8 × 21,380,33 = 174,14αi = 174,14 × 0,40,0384 = 1814 Вт / м2Kαio = 1814 × 38,442,4 = 1643 Вт / м2 · K

Сторона корпуса :

V оболочка = 5,2 м 3 / ч 80 / 71,25 ° C Pr = 2,35
λ = 0,666 Вт / м K ν = 0,385 мм 2 / с c = 1,16 Втч / кг K ρ = 974,65 кг / м 3
Наружная труба 70 × 2 d i = 66 мм

ashell = π4 × (0.0662−0,04242) = 0,002 м2 wshell = 0,719 м / sdh = 0,0662−0,042420,0424 = 0,06033 mRe = 0,719 × 0,060330,385 × 10−6 = 112,668Nu = 335,4α = 335,4 × 0,6660,06033 = 3703 Вт / м2K

Расчет общего коэффициента теплопередачи U :

1U = 11643 + 13703 + 0,00250 + 0,0002 = 0,001119U = 894 Вт / м2 KLMTD = 50,6 ° Creq = 51,480894 × 50,6 = 1,138 м2Lreq = 1,138π × 0,0424 = 8,54 м трубы

Выбрано: 3 × 3 м = труба 9 м.

Расчет потери давления для двухтрубного теплообменника , 3 × 3 м = 9 м Длина трубы .

Сторона трубки :

Потери давления в форсунке ΔPnozz = 1,5 × 1,2482 × 11002 = 1285 Па

Потери давления в трубопроводе Δ P T с коэффициентом трения f = 0,034 для Re = 19,968

ΔPt 90,0 +2) × 1,2482 × 11002 = 8540 Па ΔPобщ = 1285 + 8540 = 9825 Па

Кожух с тремя впускными и выпускными патрубками DN 50

Скорость потока через сопло w St = 0,736 м / с

ΔPnozz = 3 × 1,5 × 0,7362 × 974,62 = 1188 Па

dh ′ = 0.066−0,0424 = 0,0236mRe ′ = 0,719 × 0,02360,385 × 10−6 = 44,073

Коэффициент трения f = 0,0278 для Re ′ = 44,073

ΔPshell = 0,0278 × 90,0236 × 0,7192 × 974,62 = 2674Pa ΔPtot = 2674Pa ΔPtot = 2674Pa = 3862 Па

Расчет многотрубного теплообменника :

Кожух 76,1 × 2, d i = 72,1 мм с семью внутренними трубками 16 × 1

Сторона трубы : Площадь поперечного сечения a T = 0,0011077 м 2

wt = 5.20,001077 × 3600 = 1,34 м / сRe = 1,34 × 0,0142,4 × 10−6 = 7816Pr = 21,38Nu = 87,2αi = 87,2 × 0,40,014 = 2491Вт / м2Kαio = 2491 × 1416 = 2179Вт / м2K

Сторона корпуса :

ashell = π4 × (0,07212−7 × 0,0162) = 0,00267 м2wshell = 0,54 м / сPr = 2,35dh = 0,07212−7 × 0,01627 × 0,016 = 0,0304mRe = 0,54 × 0,03040,385 × 10−6 = 42,639Nu = 0,023 × 42,6390,8 × 2,350,33 = 154,2

αo = 154,2 × 0,660,0304 = 3378 Вт / м2K

1U = 12179 + 13378 + 0,00250 + 0,0002 = 0,000995U = 1005 Вт / м2KAreq = 51,4801005 × 50,6 = 1,01 m2Lreq = 1,01π × 7 × 0,016 = 2,9 м

Требуется теплообменник с семью трубками размером 16 × 1,3 м.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *