25.01.2021

Нагреватель самодельный индукционный – описание простейшей схемы самодельного устройства. Как сделать индукционный нагреватель воды своими руками Простой индукционный нагреватель 12 в

Схема самодельного индукционного нагревателя | 2 Схемы

Вот проект индукционного нагревателя металлов простейшей конструкции, он собран по схеме мультивибратора и часто выступает как первый нагреватель, который делают радиолюбители.

Принцип действия ТВЧ установки

Катушка создает высокочастотное магнитное поле, и в металлическом предмете в середине катушки возникают вихревые токи, которые будут его разогревать. Даже маленькие катушки раскачивают ток около 100 A, поэтому параллельно с катушкой, подключена резонансная емкость, которая компенсирует ее индукционный характер. Схема катушка-конденсатор должна работать на их резонансной частоте.

ТВЧ катушка самодельная

Схема принципиальная электрическая

Схема индукционного нагревателя от 12В

Вот оригинальная схема генератора индукционного нагревателя, а ниже неё чуть изменённый вариант, по которому и была собрана конструкция мини ТВЧ установки. Ничего дефицитного тут нет — купить придётся только полевые транзисторы, использовать можно BUZ11, IRFP240, IRFP250 или IRFP460. Конденсаторы специальные высоковольтные, а питание будет от автомобильного аккумулятора 70 А/ч — он будет очень хорошо держать ток.

Проект на удивление оказался успешным — всё заработало, хоть и собрано было «на коленке» за час. Особенно порадовало что не требует сеть 220 В — авто аккумуляторы позволяют питать её хоть в полевых условиях (кстати, может из неё походную микроволновку сделать?). Можно поэкспериментировать в направлении чтобы снизить напряжение питания до 4-8 В как от литиевых АКБ (для миниатюризации) с сохранением хорошей эффективности нагрева. Массивные металлические предметы конечно плавить не получится, но для мелких работ пойдёт.

Ток потребления от источника питания 11 А, но после прогрева падает до примерно 7 A, потому что сопротивление металла при нагреве заметно увеличивается. И не забудьте сюда использовать толстые провода, способные выдержать более 10 А тока, иначе провода при работе станут горячие.

Нагрев отвертки до синего цвета ТВЧНагрев ножа ТВЧ

Второй вариант схемы — с питанием от сети

Чтоб удобнее настраивать резонанс можно собрать более совершенную схему с драйвером IR2153. Рабочая частота настраивается регулятором 100к в резонанс. Частотами можно управлять в диапазоне примерно 20 — 200 кГц. Схема управления нуждается в вспомогательном напряжении 12-15 В от сетевого адаптера, а силовая часть через диодный мост может быть подключена напрямую к сети 220 В. Дроссель имеет около 20 витков 1,5 мм на ферритовом сердечнике 8×10 мм.

Схема индукционного нагревателя от сети 220В

Рабочая катушка ТВЧ должна быть из толстой проволоки или лучше медной трубки, и имеет около 10-30 витков на оправке 3-10 см. Конденсаторы 6 х 330n 250V. И то, и другое через некоторое время сильно нагревается. Резонансная частота около 30 кГц. Эта самодельная установка индукционного нагрева собрана в пластиковом корпусе и работает уже более года.

2shemi.ru

Индукционный нагреватель металла своими руками

Когда перед человеком встает необходимость нагреть металлический объект, ему на ум обязательно приходит огонь. Огонь – старомодный, неэффективный и медленный способ нагреть металл. Он тратит львиную долю энергии на тепло, и от огня всегда идет дым. Как было бы здорово, если бы всех этих проблем можно было избежать.

Сегодня я покажу вам как собрать индукционный нагреватель своими руками с ZVS-драйвером. Это приспособление нагревает большинство металлов с помощью ZVS-драйвера и силы электромагнетизма. Такой нагреватель высокоэффективен, не производит дыма, а нагрев таких небольших металлических изделий, как, допустим, скрепка — вопрос нескольких секунд. Видео демонстрирует нагреватель в действии, но инструкция там представлена другая.

Шаг 1: Принцип работы

Многие из вас сейчас задаются вопросом – что такое этот ZVS-драйвер? Это высокоэффективный трансформатор, способный создавать мощное электромагнитное поле, нагревающее металл, основа нашего нагревателя.

Чтобы стало понятно, как работает наш прибор, я расскажу о ключевых моментах. Первый важный момент — источник питания 24 В. Напряжение должно быть 24В при максимальной силе тока 10А. У меня будут два свинцово-кислотных аккумулятора, соединенных последовательно. Они запитывают плату ZVS-драйвера. Трансформатор дает установившийся ток на спираль, внутрь которой помещается объект, который надо нагреть. Постоянное изменение направления тока создает переменное магнитное поле. Оно создает внутри металла вихревые токи, преимущественно высокой частоты. Из-за этих токов и низкого сопротивления металла выделяется тепло. Согласно закону Ома, сила тока, трансформируемая в тепло, в цепи с активным сопротивлением, будет P=I^2*R.

Очень важен металл, из которого состоит объект, который вы хотите нагреть. У сплавов на основе железа более высокая магнитная проницаемость, они могут использовать больше энергии магнитного поля. Из-за этого они быстрее нагреваются. Алюминий имеет низкую магнитную проницаемость и нагревается, соответственно, дольше. А предметы с высоким сопротивлением и низкой магнитной проницаемостью, например, палец, вообще не нагреются. Сопротивление материала очень важно. Чем выше сопротивление, тем слабее ток пройдет по материалу, и тем, соответственно, меньше выделится тепла. Чем ниже сопротивление, тем сильнее будет ток, и согласно закону Ома, меньше потеря напряжения. Это немного сложно, но из-за связи между сопротивлением и выдачей мощности, максимальная выдача мощности достигается, когда сопротивление равно 0.

Трансформатор ZVS самая сложная часть прибора, я объясню, как он работает. Когда ток включен, он идет через два индукционных дросселя к обоим концам спирали. Дроссели нужны, чтобы убедиться, что устройство не выдаст слишком сильный ток. Далее ток идет через 2 резистора 470 Ом на затворы МДП-транзисторов.

Из-за того, что идеальных компонентов не существует, один транзистор будет включаться раньше, чем другой. Когда это происходит, он принимает на себя весь входящий ток со второго транзистора. Он также будет коротить второй на землю. Из-за этого не только ток потечет через катушку в землю, но и через быстрый диод будет разряжаться затвор второго транзистора, тем самым блокируя его. Из-за того, что параллельно катушке подключен конденсатор, создается колебательный контур. Из-за возникшего резонанса, ток поменяет свое направление, напряжение упадет до 0В. В этот момент затвор первого транзистора разряжается через диод на затвор второго транзистора, блокируя его. Этот цикл повторяется тысячи раз за секунду.

Резистор 10К призван уменьшить избыточный заряд затвора транзистора, действуя как конденсатор, а зенеровский диод должен сохранять напряжение на затворах транзисторов 12В или ниже, чтобы они не взорвались. Этот трансформатор высокочастотный преобразователь напряжения позволяет нагреваться металлическим объектам.
Пришло время собрать нагреватель.

Шаг 2: Материалы

Для сборки нагревателя материалов нужно немного, и большую их часть, к счастью, можно найти бесплатно. Если вы видели где-то валяющуюся просто так электронно-лучевую трубку, сходите и заберите ее. В ней есть большая часть нужных для нагревателя деталей. Если вы хотите более качественных деталей, купите их в магазине электрозапчастей.

Вам понадобятся:

Шаг 3: Инструменты

Для этого проекта вам понадобятся:

Шаг 4: Охлаждение полевых транзисторов

В этом приборе транзисторы выключаются при напряжении 0 В, и нагреваются не очень сильно. Но если вы хотите, чтобы нагреватель работал дольше одной минуты, вам нужно отводить тепло от транзисторов. Я сделал обоим транзисторам один общий поглотитель тепла. Убедитесь, что металлические затворы не касаются поглотителя, иначе МДП-транзисторы закоротит и они взорвутся. Я использовал компьютерный теплоотвод, и на нем уже была полоса силиконового герметика. Чтобы проверить изоляцию, коснитесь мультиметром средней ножки каждого МДП-транзистора (затвора), если мультиметр запищал, то транзисторы не изолированы.

Шаг 5: Конденсаторная батарея

Конденсаторы очень сильно нагреваются из-за тока, постоянно проходящего через них. Нашему нагревателю нужна емкость конденсатора 0,47 мкФ. Поэтому нам нужно объединить все конденсаторы в блок, таким образом, мы получим требуемую емкость, а площадь рассеивания тепла увеличится. Номинальное напряжение конденсаторов должно быть выше 400 В, чтобы учесть пики индуктивного напряжения в резонансном контуре. Я сделал два кольца из медной проволоки, к которым припаял 10 конденсаторов 0,047 мкФ параллельно друг другу. Таким образом, я получил конденсаторную батарею совокупной емкостью 0,47 мкФ с отличным воздушным охлаждением. Я установлю ее параллельно рабочей спирали.

Шаг 6: Рабочая спираль

Это та часть прибора, в которой создается магнитное поле. Спираль сделана из медной проволоки – очень важно, чтобы была использована именно медь. Сначала я использовал для нагревания стальную спираль, и прибор работал не очень хорошо. Без рабочей нагрузки он потреблял 14 А! Для сравнения, после замены спирали на медную, прибор стал потреблять только 3 А. Я думаю, что в стальной спирали возникали вихревые токи из-за содержания железа, и она тоже подвергалась индукционному нагреву. Не уверен, что причина именно в этом, но это объяснение кажется мне наиболее логичным.

Для спирали возьмите медную проволоку большого сечения и сделайте 9 витков на отрезке ПВХ-трубы.

Шаг 7: Сборка цепи

Я сделал очень много проб и совершил много ошибок, пока правильно собрал цепь. Больше всего трудностей было с источником питания и со спиралью. Я взял 55А 12В импульсный блок питания. Я думаю, этот блок питания дал слишком высокий начальный ток на ZVS-драйвер, из-за чего взорвались МДП-транзисторы. Возможно, это исправили бы дополнительные индукторы, но я решил просто заменить блок питания на свинцово-кислотные аккумуляторы.
Потом я мучился с катушкой. Как я уже говорил, стальная катушка не подходила. Из-за высокого потребления тока стальной спиралью взорвались еще несколько транзисторов. В общей сложности у меня взорвались 6 транзисторов. Что ж, на ошибках учатся.

Я переделывал нагреватель множество раз, но здесь я расскажу, как собрал его самую удачную версию.

Шаг 8: Собираем прибор

Чтобы собрать ZVS-драйвер, вам нужно следовать приложенной схеме. Сначала я взял зенеровский диод и соединил с 10К резистором. Эту пару деталей можно сразу припаять между стоком и истоком МДП-транзистора. Убедитесь, что зенеровский диод смотрит на сток. Потом припаяйте МДП-транзисторы к макетной плате с контактными отверстиями. На нижней стороне макетной платы припаяйте два быстрых диода между затвором и стоком каждого из транзисторов.

Убедитесь, что белая линия смотрит на затвор (рис.2). Затем соедините плюс от вашего блока питания со стоками обоих транзисторов через 2 220 Ом резистора. Заземлите оба истока. Припаяйте рабочую спираль и конденсаторную батарею параллельно друг другу, затем припаяйте каждый из концов к разным затворам. Наконец, подведите ток к затворам транзисторов через 2 50 мкгн дросселя. У них может быть тороидальный сердечник с 10 витками проволоки. Теперь ваша схема готова к использованию.

Шаг 9: Установка на основание

Чтобы все части вашего индукционного нагревателя держались вместе, им нужно основание. Я взял для этого деревянный брусок 5*10 см. плата с электросхемой, конденсаторная батарея и рабочая спираль были приклеены на термоклей. Мне кажется, агрегат выглядит круто.

Шаг 10: Проверка работоспособности

Чтобы ваш нагреватель включился, просто подсоедините его к источнику питания. Потом поместите предмет, который вам нужно нагреть, в середину рабочей спирали. Он должен начать нагреваться. Мой нагреватель раскалил скрепку до красного свечения за 10 секунд. Предметы крупнее, как гвозди, нагревались примерно за 30 секунд. В процессе нагревания потребление тока выросло приблизительно на 2 А. Этот нагреватель можно использовать не только для развлечения.

После использования прибора не образуется сажи или дыма, он воздействует даже на изолированные металлические объекты, например, газопоглотители в вакуумных трубках. Также прибор безопасен для человека – с пальцем ничего не случится, если поместить его в центр рабочей спирали. Однако, можно обжечься о предмет, который был нагрет.

Спасибо за чтение!

masterclub.online

Самодельный индукционный нагреватель своими руками: схема и устройство

Принцип индукционного нагрева пришел в наш быт относительно недавно и сразу завоевал большую популярность. Причина – бесконечный поиск человеком недорогих и экономичных источников тепла для обогрева своего жилища. Многие даже решились попробовать сделать индукционный нагреватель своими руками с целью присоединить его к системе отопления частного дома. Попытаемся разобраться, что из этого получилось и оправдывают ли себя затраченные усилия и время.

Схема индукционного нагревателя

Благодаря открытию М. Фарадеем в 1831 году явления электромагнитной индукции в нашей современной жизни появилось множество устройств, нагревающих воду и другие среды. Мы каждый день пользуемся электрочайником с дисковым нагревателем, мультиваркой, индукционной варочной панелью, поскольку реализовать это открытие для быта удалось только в наше время. Ранее оно использовалось в металлургической и других отраслях металлообрабатывающей промышленности.

Заводской индукционный котел использует в своей работе принцип воздействия вихревых токов на металлический сердечник, помещенный внутрь катушки. Вихревые токи Фуко имеют поверхностную природу, поэтому есть смысл задействовать в качестве сердечника полую металлическую трубу, сквозь которую протекает нагреваемый теплоноситель.

Принцип действия индукционного нагревателя

Возникновение токов обусловлено подачей на обмотку переменного электрического напряжения, вызывающего появление переменного электромагнитного поля, меняющего потенциалы 50 раз в секунду при обычной промышленной частоте 50 Гц. При этом индукционная катушка выполнена таким образом, чтобы ее можно было подключить к сети переменного тока напрямую. В промышленности для такого нагрева используют токи высокой частоты – до 1 МГц, поэтому добиться работы устройства при частоте 50 Гц достаточно непросто.

Толщина медной проволоки и количество витков обмотки, которую используют индукционные нагреватели воды, рассчитано отдельно для каждого агрегата по специальной методике под требуемую тепловую мощность. Изделие должно работать эффективно, быстро нагревать протекающую по трубе воду и при этом не перегреваться. Предприятия вкладывают немалые средства в разработку и внедрение подобных продуктов, поэтому все задачи решены успешно, а показатель КПД нагревателя составляет 98%.

Помимо высокой эффективности особо привлекает скорость, с которой происходит нагрев протекающей через сердечник среды. На рисунке представлена схема работы индукционного нагревателя, сделанного в заводских условиях. Такая схема применена в агрегатах известной торговой марки «ВИН», выпускаемых Ижевским заводом.

Схема работы нагревателя

Долговечность работы теплогенератора зависит только от герметичности корпуса и целостности изоляции витков провода, а это получается достаточно большой период, производители декларируют – до 30 лет. За все эти достоинства, которыми в действительности обладают данные аппараты, надо выложить немалые деньги, индукционный нагреватель воды – самый дорогой из всех видов отопительных электроустановок. По этой причине некоторые умельцы взялись за изготовление самодельного прибора с целью задействовать его в отоплении дома.

Самодельные индукционные котлы

Самая простая схема устройства, которую собирают, состоит из отрезка пластиковой трубы, в полость которую закладываются различные металлические элементы с целью создать сердечник. Это может быть тонкая нержавеющая проволока, скатанная шариками, нарубленная мелкими кусочками проволока – катанка диаметром 6—8 мм или даже сверло диаметром, соответствующим внутреннему размеру трубы. Снаружи к ней приклеиваются палочки из стеклотекстолита, а на них наматывается провод толщиной 1.5—1.7 мм в стеклоизоляции. Длина провода – порядка 11 м. Технологию изготовления можно изучить, просмотрев видео:


Затем самодельный индукционный нагреватель испытали, заполнив его водой и подключив к индукционной варочной панели заводского изготовления ORION мощностью 2 кВт вместо штатного индуктора. Результаты испытаний показаны на следующем видео:


Другие мастера рекомендуют в качестве источника принять сварочный инвертор небольшой мощности, подключив клеммы вторичной обмотки к выводам катушки. Если внимательно изучить проделанную автором работу, то напрашиваются выводы:

  • Автор хорошо потрудился и его изделие, несомненно, работает.
  • Никаких расчетов по толщине провода, числу и диаметру витков катушки не производилось. Параметры обмотки были приняты по аналогии с варочной панелью, соответственно, индукционный водонагреватель получится мощностью не выше 2 кВт.
  • В лучшем случае самодельный агрегат сможет нагревать воду для двух радиаторов отопления по 1 кВт каждый, этого хватит на обогрев одной комнаты. В худшем случае нагрев будет слабым или вообще пропадет, ведь испытания проводились без протока теплоносителя.

Более точные выводы сделать трудно из-за недостатка информации о дальнейших испытаниях прибора. Другой способ, как самостоятельно организовать индукционный нагрев воды для отопления, показан на следующем видео:

Сваренный из нескольких металлических труб радиатор выполняет роль внешнего сердечника для вихревых токов, создаваемых катушкой той же индукционной варочной панели. Выводы следующие:

  • Тепловая мощность получившегося отопителя не превышает электрической мощности панели.
  • Количество и размер труб были выбраны случайно, но обеспечили достаточную поверхность для передачи тепла, возникающего от вихревых токов.
  • Данная схема индукционного нагревателя оказалась успешной для конкретного случая, когда квартира окружена помещениями других отапливаемых квартир. Кроме того, автор не показывал работу установки в холодное время года с фиксацией температуры воздуха в комнатах.

В подтверждение сделанных выводов предлагается просмотреть видео, где автор пытался применить подобный нагреватель в условиях отдельно стоящего утепленного здания:

Заключение

Конструирование и изготовление индукционных котлов – процесс непростой и требующий серьезного подхода. Представленные примеры показывают, что на данный момент пока не удалось создать надежный и работоспособный в каждой системе отопления самодельный агрегат. Экспериментальные модели нельзя предложить домовладельцам, которые хотели бы своими руками изготовить подобный индукционный нагреватель в домашних условиях.

Хорошая статья в тему: Как сделать индукционный нагреватель из сварочного инвертора.

cotlix.com

Как сделать индукционный нагреватель воды своими руками

Каждый владелец загородного дома или коттеджа, в первую очередь, заботится о том, чтобы в его жилище всегда было тепло и уютно.

Достичь такого комфорта помогает правильно подобранное отопительное оборудование, которое бы эффективно обогревало дом и, в тоже время, затраты на него были минимальными. На сегодняшний день наиболее эффективными отопительными системами считают те, в которых для обогрева используют электрическое оборудование. Мы предлагаем рассмотреть альтернативный вариант электрического отопления.

Современный полет технической мысли позволил создать новый вид электрического оборудования для отопления, который называется вихревой индукционный нагреватель воды. В этой статье мы попытаемся подробно рассказать о том, что собой представляет этот агрегат и какими преимуществами он обладает, а также опишем технологию его изготовления своими руками. (Об особенностях индукционного отопления Вы можете почитать эту статью).

Из чего состоит и как работает

Любой индукционный нагреватель состоит из основных трех компонентов:
  • инвертор, который преобразует бытовую электроэнергию в высокочастотный ток;
  • индуктор, который создает электромагнитное поле;
  • нагревательный элемент, с помощью которого непосредственно нагревается вода.

Принцип же действия нагревателя этого вида заключается в последовательном взаимодействии всех его основных компонентов. Иначе говоря:

  • инвертор вырабатывает высокочастотный ток и подает его непосредственно на индуктор;
  • катушка из определенного количества витков медной проволоки, которая и является индуктором, создает магнитное поле, считающееся причиной появления вихревых потоков;
  • нагревательный элемент, который находится внутри индуктора, под воздействием вихревых токов хорошо разогревается;
  • и как следствие, теплоноситель, который находится внутри теплообменника, одновременно с ним также разогревается, и в горячем виде непосредственно передается в отопительную систему.

Как видим, принцип работы агрегата этого вида достаточно простой, поэтому, можно смело допустить предположение, что индукционный нагреватель воды обладает целым рядом достоинств.

Преимущества

К числу позитивных характеристик индукционного агрегата можно отнести следующие важные моменты:
  1. Долговечность использования. Благодаря не слишком замысловатой конструкции, индукционный нагреватель можно бесперебойно использовать в течение более 30 лет
  2. Экономичность. Коэффициент полезного действия агрегата этого вида приближается к 100%. Иначе говоря, все электричество полностью перерабатывается в тепловую энергию, практически без потерь.
  3. Удобство. Обслуживание индукционного нагревателя не требует постоянного технического обслуживания. Достигается это благодаря тому, что электромагнитное поле, помимо создания нагрева, образует вибрации, которые не дают возможности появлению накипи на внутренних стенках теплообменника.
  4. Компактность. Нагреватели этого вида имеют небольшие габаритные размеры, что способствует их установке в помещениях любого типа.
  5. Бесшумность. Индукционные агрегаты, благодаря своей конструкции, функционируют достаточно тихо.
  6. Экологичность. Котел этого вида не производит выброс вредных продуктов сгорания, поэтому не требуется оборудования дымохода и системы вентиляции.

По анализу отзывов, основным недостатком такого агрегата является его высокая стоимость. Но существует оптимальный выход – сконструировать индукционный нагреватель воды своими руками.

Необходимые инструменты и материалы

Надумав сделать индукционный агрегат своими руками, прежде всего, нужно приготовить все необходимые материалы и инструменты.

Их перечень выглядит следующим образом:

  • кусачки;
  • плоскогубцы;
  • циркуляционный насос;
  • нержавеющая проволока;
  • медная проволока;
  • отрезок трубы из пластика;
  • шаровые краны и переходники;
  • тиристоры.

Схема и порядок сборки

Электрическая схема индукционного нагревателя воды. (Для увеличения нажмите)Электрическая схема индукционного нагревателя воды. (Для увеличения нажмите)Электрическая схема индукционного нагревателя воды. (Для увеличения нажмите)Конструирование индукционного нагревателя своими руками должно происходить согласно следующим последовательным этапам:

  1. Нагревательный элемент. Один из торцов пластиковой трубы фиксируется металлической сеткой. Затем нержавеющая проволока нарезается кусачками на небольшие отрезки, которые плотно помещаются внутри трубы. При этом очень важно не допускать пустот. Второй торец трубы также фиксируется металлической сеткой.
  2. Индуктор. Поверх пластиковой трубы наматывается медная проволока, которая будет создавать вихревые потоки. При этом очень важно знать, что количество витков должно быть не менее 90.
  3. Инвертор. Этот прибор конструируется на тиристорах, которые позволяют эффективно преобразовывать обычную электроэнергию в высокочастотный ток. Тиристорный инвертор является самым важным компонентом индукционного нагревателя. Стоит также отметить, что у тиристорного преобразователя электронное управление, которое позволяет плавно регулировать подачу тока, а также надежно защищает от аварийных ситуаций.
  4. Подключение. Когда индукционный нагреватель воды полностью смонтирован, то с помощью шаровых кранов и переходников он непосредственно подключается к отопительной системе.

Придерживаясь всех указанных рекомендаций, вы без особых усилий сконструируете индукционный нагреватель своими руками.

Смотрите видео, в котором специалист подробно показывает процесс сборки индукционного нагревателя воды своими руками:

Оцените статью: Поделитесь с друзьями!

teplo.guru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *