27.04.2024

Ибп потребление на холостом ходу – Как выбрать инвертор или ИБП с учетом пусковых токов и потребляемой мощности?

Содержание

Ибп потребление на холостом ходу — Про стройку и не только

17 Апр by admin
  трехфазный ИБП

[Интент]
EN  
FR  

Содержание статьи:

Глава 7. Трехфазные ИБП

… ИБП большой мощности (начиная примерно с 10 кВА) как правило предназначены для подключения к трехфазной электрической сети. Диапазон мощностей 8-25 кВА – переходный. Для такой мощности делают чисто однофазные ИБП, чисто трехфазные ИБП и ИБП с трехфазным входом и однофазным выходом. Все ИБП, начиная примерно с 30 кВА имеют трехфазный вход и трехфазный выход. Трехфазные ИБП имеют и другое преимущество перед однофазными ИБП. Они эффективно разгружают нейтральный провод от гармоник тока и способствуют более безопасной и надежной работе больших компьютерных систем. Эти вопросы рассмотрены в разделе «Особенности трехфазных источников бесперебойного питания» главы 8. Трехфазные ИБП строятся обычно по схеме с двойным преобразованием энергии. Поэтому в этой главе мы будем рассматривать только эту схему, несмотря на то, что имеются трехфазные ИБП, построенные по схеме, похожей на ИБП, взаимодействующий с сетью.

Схема трехфазного ИБП с двойным преобразованием энергии приведена на рисунке 18.

4929
Рис.18. Трехфазный ИБП с двойным преобразованием энергии

Как видно, этот ИБП не имеет почти никаких отличий на уровне блок-схемы, за исключением наличия трех фаз. Для того, чтобы увидеть отличия от однофазного ИБП с двойным преобразованием, нам придется (почти впервые в этой книге) несколько подробнее рассмотреть элементы ИБП. Мы будем проводить это рассмотрение, ориентируясь на традиционную технологию. В некоторых случаях будут отмечаться схемные особенности, позволяющие улучшить характеристики.

Выпрямитель

Слева на рис 18. – входная электрическая сеть. Она включает пять проводов: три фазных , нейтраль и землю. Между сетью и ИБП – предохранители (плавкие или автоматические). Они позволяют защитить сеть от аварии ИБП. Выпрямитель в этой схеме – регулируемый тиристорный. Управляющая им схема изменяет время (долю периода синусоиды), в течение которого тиристоры открыты, т.е. выпрямляют сетевое напряжение. Чем большая мощность нужна для работы ИБП, тем дольше открыты тиристоры. Если батарея ИБП заряжена, на выходе выпрямителя поддерживается стабилизированное напряжение постоянного тока, независимо от нвеличины напряжения в сети и мощности нагрузки. Если батарея требует зарядки, то выпрямитель регулирует напряжение так, чтобы в батарею тек ток заданной величины.

Такой выпрямитель называется шести-импульсным, потому, что за полный цикл трехфазной электрической сети он выпрямляет 6 полупериодов сингусоиды (по два в каждой из фаз). Поэтому в цепи постоянного тока возникает 6 импульсов тока (и напряжения) за каждый цикл трехфазной сети. Кроме того, во входной электрической сети также возникают 6 импульсов тока, которые могут вызвать гармонические искажения сетевого напряжения. Конденсатор в цепи постоянного тока служит для уменьшения пульсаций напряжения на аккумуляторах. Это нужно для полной зарядки батареи без протекания через аккумуляторы вредных импульсных токов. Иногда к конденсатору добавляется еще и дроссель, образующий совместно с конденсатором L-C фильтр.

Коммутационный дроссель ДР уменьшает импульсные токи, возникающие при открытии тиристоров и служит для уменьшения искажений, вносимых выпрямителем в электрическую сеть. Для еще большего снижения искажений, вносимых в сеть, особенно для ИБП большой мощности (более 80-150 кВА) часто применяют 12-импульсные выпрямители. Т.е. за каждый цикл трехфазной сети на входе и выходе выпрямителя возникают 12 импульсов тока. За счет удвоения числа импульсов тока, удается примерно вдвое уменьшить их амплитуду. Это полезно и для аккумуляторов и для электрической сети.

Двенадцати-импульсный выпрямитель фактически состоит из двух 6-импульсных выпрямителей. На вход второго выпрямителя (он изображен ниже на рис. 18) подается трехфазное напряжение, прошедшее через трансформатор, сдвигающий фазу на 30 градусов.

В настоящее время применяются также и другие схемы выпрямителей трехфазных ИБП. Например схема с пассивным (диодным) выпрямителем и преобразователем напряжения постоянного тока, применение которого позволяет приблизить потребляемый ток к синусоидальному.

Наиболее современным считается транзисторный выпрямитель, регулируемый высокочастотной схемой широтно-импульсной модуляции (ШИМ). Применение такого выпрямителя позволяет сделать ток потребления ИБП синусоидальным и совершенно отказаться от 12-импульсных выпрямителей с трансформатором.

Батарея

Для формирования батареи трехфазных ИБП (как и в однофазных ИБП) применяются герметичные свинцовые аккумуляторы. Обычно это самые распространенные модели аккумуляторов с расчетным сроком службы 5 лет. Иногда используются и более дорогие аккумуляторы с большими сроками службы. В некоторых трехфазных ИБП пользователю предлагается фиксированный набор батарей или батарейных шкафов, рассчитанных на различное время работы на автономном режиме. Покупая ИБП других фирм, пользователь может более или менее свободно выбирать батарею своего ИБП (включая ее емкость, тип и количество элементов). В некоторых случаях батарея устанавливается в корпус ИБП, но в большинстве случаев, особенно при большой мощности ИБП, она устанавливается в отдельном корпусе, а иногда и в отдельном помещении.

Инвертор

Как и в ИБП малой мощности, в трехфазных ИБП применяются транзисторные инверторы, управляемые схемой широтно-импульсной модуляции (ШИМ). Некоторые ИБП с трехфазным выходом имеют два инвертора. Их выходы подключены к трансформаторам, сдвигающим фазу выходных напряжений. Даже в случае применения относительно низкочастоной ШИМ, такая схема совместно с применением фильтра переменного тока, построенного на трансформаторе и конденсаторах, позволяет обеспечить очень малый коэффициент гармонических искажений на выходе ИБП (до 3% на линейной нагрузке). Применение двух инверторов увеличивает надежность ИБП, поскольку даже при выходе из строя силовых транзисторов одного из инверторов, другой инвертор обеспечит работу нагрузки, пусть даже при большем коэффициенте гармонических искажений.

В последнее время, по мере развития технологии силовых полупроводников, начали применяться более высокочастотные транзисторы. Частота ШИМ может составлять 4 и более кГц. Это позволяет уменьшить гармонические искажения выходного напряжения и отказаться от применения второго инвертора. В хороших ИБП существуют несколько уровней защиты инвертора от перегрузки. При небольших перегрузках инвертор может уменьшать выходное напряжение (пытаясь снизить ток, проходящий через силовые полупроводники). Если перегрузка очень велика (например нагрузка составляет более 125% номинальной), ИБП начинает отсчет времени работы в условиях перегрузки и через некоторое время (зависящее от степени перегрузки – от долей секунды до минут) переключается на работу через статический байпас. В случае большой перегрузки или короткого замыкания, переключение на статический байпас происходит сразу.

Некоторые современные высококлассные ИБП (с высокочакстотной ШИМ) имеют две цепи регулирования выходного напряжения. Первая из них осуществляет регулирование среднеквадратичного (действующего) значения напряжения, независимо для каждой из фаз. Вторая цепь измеряет мгновенные значения выходного напряжения и сравнивает их с хранящейся в памяти блока управления ИБП идеальной синусоидой. Если мгновенное значение напряжения отклонилось от соотвествующего «идеального» значения, то вырабатывается корректирующий импульс и форма синусоиды выходного напряжения исправляется. Наличие второй цепи обратной связи позволяет обеспечить малые искажения формы выходного напряжения даже при нелинейных нагрузках.

Статический байпас

Блок статического байпаса состоит из двух трехфазных (при трехфазном выходе) тиристорных переключателей: статического выключателя инвертора (на схеме – СВИ) и статического выключателя байпаса (СВБ). При нормальной работе ИБП (от сети или от батареи) статический выключатель инвертора замкнут, а статический выключатель байпаса разомкнут. Во время значительных перегрузок или выхода из строя инвертора замкнут статический переключатель байпаса, переключатель инвертора разомкнут. В момент переключения оба статических переключателя на очень короткое время замкнуты. Это позволяет обеспечить безразрывное питание нагрузки.

Каждая модель ИБП имеет свою логику управления и, соответственно, свой набор условий срабатывания статических переключателей. При покупке ИБП бывает полезно узнать эту логику и понять, насколько она соответствует вашей технологии работы. В частности хорошие ИБП сконструированы так, чтобы даже если байпас недоступен (т.е. отсутствует синхронизация инвертора и байпаса – см. главу 6) в любом случае постараться обеспечить электроснабжение нагрузки, пусть даже за счет уменьшения напряжения на выходе инвертора.

Статический байпас ИБП с трехфазным входом и однофазным выходом имеет особенность. Нагрузка, распределенная на входе ИБП по трем фазным проводам, на выходе имеет только два провода: один фазный и нейтральный. Статический байпас тоже конечно однофазный, и синхронизация напряжения инвертора производится относительно одной из фаз трехфазной сети (любой, по выбору пользователя). Вся цепь, подводящая напряжение к входу статического байпаса должна выдерживать втрое больший ток, чем входной кабель выпрямителя ИБП. В ряде случаев это может вызвать трудности с проводкой.

Сервисный байпас

Трехфазные ИБП имеют большую мощность и обычно устанавливаются в местах действительно критичных к электропитанию. Поэтому в случае выхода из строя какого-либо элемента ИБП или необходимости проведения регламентных работ (например замены батареи), в большинстве случае нельзя просто выключить ИБП или поставить на его место другой. Нужно в любой ситуации обеспечить электропитание нагрузки. Для этих ситуаций у всех трехфазных ИБП имеется сервисный байпас. Он представляет собой ручной переключатель (иногда как-то заблокированный, чтобы его нельзя было включить по ошибке), позволяющий переключить нагрузку на питание непосредственно от сети. У большинства ИБП для переключения на сервисный байпас существует специальная процедура (определенная последовательность действий), которая позволяет обеспечит непрерывность питания при переключениях.

Режимы работы трехфазного ИБП с двойным преобразованием

Трехфазный ИБП может работать на четырех режимах работы.

  • При нормальной работе нагрузка питается по цепи выпрямитель-инвертор стабилизированным напряжением, отфильтрованным от импульсов и шумов за счет двойного преобразования энергии.
  • Работа от батареи. На это режим ИБП переходит в случае, если напряжение на выходе ИБП становится таким маленьким, что выпрямитель оказывается не в состоянии питать инвертор требуемым током, или выпрямитель не может питать инвертор по другой причине, например из-за поломки. Продолжительность работы ИБП от батареи зависит от емкости и заряда батареи, а также от нагрузки ИБП.
  • Когда какой-нибудь инвертор выходит из строя или испытывает перегрузку, ИБП безразрывно переходит на режим работы через статический байпас. Нагрузка питается просто от сети через вход статического байпаса, который может совпадать или не совпадать со входом выпрямителя ИБП.
  • Если требуется обслуживание ИБП, например для замены батареи, то ИБП переключают на сервисный байпас. Нагрузка питается от сети, а все цепи ИБП, кроме входного выключателя сервисного байпаса и выходных выключателей отделены от сети и от нагрузки. Режим работы на сервисном байпасе не является обязательным для небольших однофазных ИБП с двойным преобразованием. Трехфазный ИБП без сервисного байпаса немыслим.
Надежность

Трехфазные ИБП обычно предназначаются для непрерывной круглосуточной работы. Работа нагрузки должна обеспечиваться практически при любых сбоях питания. Поэтому к надежности трехфазных ИБП предъявляются очень высокие требования. Вот некоторые приемы, с помощью которых производители трехфазных ИБП могут увеличивать надежность своей продукции. Применение разделительных трансформаторов на входе и/или выходе ИБП увеличивает устойчивость ИБП к скачкам напряжения и нагрузки. Входной дроссель не только обеспечивает «мягкий запуск», но и защищает ИБП (и, в конечном счете, нагрузку) от очень быстрых изменений (скачков) напряжения.

Обычно фирма выпускает целый ряд ИБП разной мощности. В двух или трех «соседних по мощности» ИБП этого ряда часто используются одни и те же полупроводники. Если это так, то менее мощный из этих двух или трех ИБП имеет запас по предельному току, и поэтому несколько более надежен. Некоторые трехфазные ИБП имеют повышенную надежность за счет резервирования каких-либо своих цепей. Так, например, могут резервироваться: схема управления (микропроцессор + платы «жесткой логики»), цепи управления силовыми полупроводниками и сами силовые полупроводники. Батарея, как часть ИБП тоже вносит свой вклад в надежность прибора. Если у ИБП имеется возможность гибкого выбора батареи, то можно выбрать более надежный вариант (батарея более известного производителя, с меньшим числом соединений).

Преобразователи частоты

Частота напряжения переменного тока в электрических сетях разных стран не обязательно одинакова. В большинстве стран (в том числе и в России) распространена частота 50 Гц. В некоторых странах (например в США) частота переменного напряжения равна 60 Гц. Если вы купили оборудование, рассчитанное на работу в американской электрической сети (110 В, 60 Гц), то вы должны каким-то образом приспособить к нему нашу электрическую сеть. Преобразование напряжения не является проблемой, для этого есть трансформаторы. Если оборудование оснащено импульсным блоком питания, то оно не чувствительно к частоте и его можно использовать в сети с частотой 50 Гц. Если же в состав оборудования входят синхронные электродвигатели или иное чувствительное к частоте оборудование, вам нужен преобразователь частоты. ИБП с двойным преобразованием энергии представляет собой почти готовый преобразователь частоты.

В самом деле, ведь выпрямитель этого ИБП может в принципе работать на одной частоте, а инвертор выдавать на своем выходе другую. Есть только одно принципиальное ограничение: невозможность синхронизации инвертора с линией статического байпаса из-за разных частот на входе и выходе. Это делает преобразователь частоты несколько менее надежным, чем сам по себе ИБП с двойным преобразованием. Другая особенность: преобразователь частоты должен иметь мощность, соответствующую максимальному возможному току нагрузки, включая все стартовые и аварийные забросы, ведь у преобразователя частоты нет статического байпаса, на который система могла бы переключиться при перегрузке.

Для изготовления преобразователя частоты из трехфазного ИБП нужно разорвать цепь синхронизации, убрать статический байпас (или, вернее, не заказывать его при поставке) и настроить инвертор ИБП на работу на частоте 60 Гц. Для большинства трехфазных ИБП это не представляет проблемы, и преобразователь частоты может быть заказан просто при поставке.

ИБП с горячим резервированием

В некоторых случаях надежности даже самых лучших ИБП недостаточно. Так бывает, когда сбои питания просто недопустимы из-за необратимых последствий или очень больших потерь. Обычно в таких случаях в технике применяют дублирование или многократное резервирование блоков, от которых зависит надежность системы. Есть такая возможность и для трехфазных источников бесперебойного питания. Даже если в конструкцию ИБП стандартно не заложено резервирование узлов, большинство трехфазных ИБП допускают резервирование на более высоком уровне. Резервируется целиком ИБП. Простейшим случаем резервирования ИБП является использование двух обычных серийных ИБП в схеме, в которой один ИБП подключен к входу байпаса другого ИБП.

4930

Рис. 19а. Последовательное соединение двух трехфазных ИБП

На рисунке 19а приведена схема двух последовательно соединенным трехфазных ИБП. Для упрощения на рисунке приведена, так называемая, однолинейная схема, на которой трем проводам трехфазной системы переменного тока соответствует одна линия. Однолинейные схемы часто применяются в случаях, когда особенности трехфазной сети не накладывают отпечаток на свойства рассматриваемого прибора. Оба ИБП постоянно работают. Основной ИБП питает нагрузку, а вспомогательный ИБП работает на холостом ходу. В случае выхода из строя основного ИБП, нагрузка питается не от статического байпаса, как в обычном ИБП, а от вспомогательного ИБП. Только при выходе из строя второго ИБП, нагрузка переключается на работу от статического байпаса.

Система из двух последовательно соединенных ИБП может работать на шести основных режимах.

А. Нормальная работа. Выпрямители 1 и 2 питают инверторы 1 и 2 и, при необходимости заряжают батареи 1 и 2. Инвертор 1 подключен к нагрузке (статический выключатель инвертора 1 замкнут) и питает ее стабилизированным и защищенным от сбоев напряжением. Инвертор 2 работает на холостом ходу и готов «подхватить» нагрузку, если инвертор 1 выйдет из строя. Оба статических выключателя байпаса разомкнуты.

Для обычного ИБП с двойным преобразованием на режиме работы от сети допустим (при сохранении гарантированного питания) только один сбой в системе. Этим сбоем может быть либо выход из строя элемента ИБП (например инвертора) или сбой электрической сети.

Для двух последовательно соединенных ИБП с на этом режиме работы допустимы два сбоя в системе: выход из строя какого-либо элемента основного ИБП и сбой электрической сети. Даже при последовательном или одновременном возникновении двух сбоев питание нагрузки будет продолжаться от источника гарантированного питания.

Б. Работа от батареи 1. Выпрямитель 1 не может питать инвертор и батарею. Чаще всего это происходит из-за отключения напряжения в электрической сети, но причиной может быть и выход из строя выпрямителя. Состояние инвертора 2 в этом случае зависит от работы выпрямителя 2. Если выпрямитель 2 работает (например он подключен к другой электрической сети или он исправен, в отличие от выпрямителя 1), то инвертор 2 также может работать, но работать на холостом ходу, т.к. он «не знает», что с первым ИБП системы что-то случилось. После исчерпания заряда батареи 1, инвертор 1 отключится и система постарается найти другой источник электроснабжения нагрузки. Им, вероятно, окажется инвертор2. Тогда система перейдет к другому режиму работы.

Если в основном ИБП возникает еще одна неисправность, или батарея 1 полностью разряжается, то система переключается на работу от вспомогательного ИБП.

Таким образом даже при двух сбоях: неисправности основного ИБП и сбое сети нагрузка продолжает питаться от источника гарантированного питания.

В. Работа от инвертора 2. В этом случае инвертор 1 не работает (из-за выхода из строя или полного разряда батареи1). СВИ1 разомкнут, СВБ1 замкнут, СВИ2 замкнут и инвертор 2 питает нагрузку. Выпрямитель 2, если в сети есть напряжение, а сам выпрямитель исправен, питает инвертор и батарею.

На этом режиме работы допустим один сбой в системе: сбой электрической сети. При возникновении второго сбоя в системе (выходе из строя какого-либо элемента вспомогательного ИБП) электропитание нагрузки не прерывается, но нагрузка питается уже не от источника гарантированного питания, а через статический байпас, т.е. попросту от сети.

Г. Работа от батареи 2. Наиболее часто такая ситуация может возникнуть после отключения напряжения в сети и полного разряда батареи 1. Можно придумать и более экзотическую последовательность событий. Но в любом случае, инвертор 2 питает нагругку, питаясь, в свою очередь, от батареи. Инвертор 1 в этом случае отключен. Выпрямитель 1, скорее всего, тоже не работает (хотя он может работать, если он исправен и в сети есть напряжение).

После разряда батареи 2 система переключится на работу от статического байпаса (если в сети есть нормальное напряжение) или обесточит нагрузку.

Д. Работа через статический байпас. В случае выхода из строя обоих инверторов, статические переключатели СВИ1 и СВИ2 размыкаются, а статические переключатели СВБ1 и СВБ2 замыкаются. Нагрузка начинает питаться от электрической сети.

Переход системы к работе через статический байпас происходит при перегрузке системы, полном разряде всех батарей или в случае выхода из строя двух инверторов.

На этом режиме работы выпрямители, если они исправны, подзаряжают батареи. Инверторы не работают. Нагрузка питается через статический байпас.

Переключение системы на работу через статический байпас происходит без прерывания питания нагрузки: при необходимости переключения сначала замыкается тиристорный переключатель статического байпаса, и только затем размыкается тиристорный переключатель на выходе того инвертора, от которого нагрузка питалась перед переключением.

Е. Ручной (сервисный) байпас. Если ИБП вышел из строя, а ответственную нагрузку нельзя обесточить, то оба ИБП системы с соблюдением специальной процедуры (которая обеспечивает безразрыное переключение) переключают на ручной байпас. после этого можно производить ремонт ИБП.

Преимуществом рассмотренной системы с последовательным соединением двух ИБП является простота. Не нужны никакие дополнительные элементы, каждый из ИБП работает в своем штатном режиме. С точки зрения надежности, эта схема совсем не плоха:- в ней нет никакой лишней, (связанной с резервированием) электроники, соответственно и меньше узлов, которые могут выйти из строя.

Однако у такого соединения ИБП есть и недостатки. Вот некоторые из них.
 

  1. Покупая такую систему, вы покупаете второй байпас (на нашей схеме – он первый – СВБ1), который, вообще говоря, не нужен – ведь все необходимые переключения могут быть произведены и без него.
  2. Весь второй ИБП выполняет только одну функцию – резервирование. Он потребляет электроэнергию, работая на холостом ходу и вообще не делает ничего полезного (разумеется за исключением того времени, когда первый ИБП отказывается питать нагрузку). Некоторые производители предлагают «готовые» системы ИБП с горячим резервированием. Это значит, что вы покупаете систему, специально (еще на заводе) испытанную в режиме с горячим резервированием. Схема такой системы приведена на рис. 19б.

4931

Рис.19б. Трехфазный ИБП с горячим резервированием

Принципиальных отличий от схемы с последовательным соединением ИБП немного.

  1. У второго ИБП отсутствует байпас.
  2. Для синхронизации между инвертором 2 и байпасом появляется специальный информационный кабель между ИБП (на рисунке не показан). Поэтому такой ИБП с горячим резервированием может работать на тех же шести режимах работы, что и система с последовательным подключением двух ИБП. Преимущество «готового» ИБП с резервированием, пожалуй только одно – он испытан на заводе-производителе в той же комплектации, в которой будет эксплуатироваться.

Для расмотренных схем с резервированием иногда применяют одно важное упрощение системы. Ведь можно отказаться от резервирования аккумуляторной батареи, сохранив резервирование всей силовой электроники. В этом случае оба ИБП будут работать от одной батареи (оба выпрямителя будут ее заряжать, а оба инвертора питаться от нее в случае сбоя электрической сети). Применение схемы с общей бетареей позволяет сэкономить значительную сумму – стоимость батареи.

Недостатков у схемы с общей батареей много:

  1. Не все ИБП могут работать с общей батареей.
  2. Батарея, как и другие элементы ИБП обладает конечной надежностью. Выход из строя одного аккумулятора или потеря контакта в одном соединении могут сделать всю системы ИБП с горячим резервирование бесполезной.
  3. В случае выхода из строя одного выпрямителя, общая батарея может быть выведена из строя. Этот последний недостаток, на мой взгляд, является решающим для общей рекомендации – не применять схемы с общей батареей.
Параллельная работа нескольких ИБП

Как вы могли заметить, в случае горячего резервирования, ИБП резервируется не целиком. Байпас остается общим для обоих ИБП. Существует другая возможность резервирования на уровне ИБП – параллельная работа нескольких ИБП. Входы и выходы нескольких ИБП подключаются к общим входным и выходным шинам. Каждый ИБП сохраняет все свои элементы (иногда кроме сервисного байпаса). Поэтому выход из строя статического байпаса для такой системы просто мелкая неприятность.

На рисунке 20 приведена схема параллельной работы нескольких ИБП.

4932

Рис.20. Параллельная работа ИБП

На рисунке приведена схема параллельной системы с раздельными сервисными байпасами. Схема система с общим байпасом вполне ясна и без чертежа. Ее особенностью является то, что для переключения системы в целом на сервисный байпас нужно управлять одним переключателем вместо нескольких. На рисунке предполагается, что между ИБП 1 и ИБП N Могут располагаться другие ИБП. Разные производителю (и для разных моделей) устанавливают свои максимальные количества параллеьно работающих ИБП. Насколько мне известно, эта величина изменяется от 2 до 8. Все ИБП параллельной системы работают на общую нагрузку. Суммарная мощность параллельной системы равна произведению мощности одного ИБП на количество ИБП в системе. Таким образом параллельная работа нескольких ИБП может применяться (и в основном применяется) не столько для увеличения надежности системы бесперебойного питания, но для увеличения ее мощности.

Рассмотрим режимы работы параллельной системы

Нормальная работа (работа от сети). Надежность

Когда в сети есть напряжение, достаточное для нормальной работы, выпрямители всех ИБП преобразуют переменное напряжение сети в постоянное, заряжая батареи и питая инверторы.

Инверторы, в свою очередь, преобразуют постоянное напряжение в переменное и питают нагрузку. Специальная управляющая электроника параллельной системы следит за равномерным распределением нагрузки между ИБП. В некоторых ИБП распределение нагрузки между ИБП производится без использования специальной параллельной электроники. Такие приборы выпускаются «готовыми к параллельной работе», и для использования их в параллельной системе достаточно установить плату синхронизации. Есть и ИБП, работающие параллельго без специальной электроники. В таком случае количество параллельно работающих ИБП – не более двух. В рассматриваемом режиме работы в системе допустимо несколько сбоев. Их количество зависит от числа ИБП в системе и действующей нагрузки.

Пусть в системе 3 ИБП мощностью по 100 кВА, а нагрузка равна 90 кВА. При таком соотношении числа ИБП и их мощностей в системе допустимы следующие сбои.

Сбой питания (исчезновение напряжения в сети)

Выход из строя любого из инверторов, скажем для определенности, инвертора 1. Нагрузка распределяется между двумя другими ИБП. Если в сети есть напряжение, все выпрямители системы работают.

Выход из строя инвертора 2. Нагрузка питается от инвертора 3, поскольку мощность, потребляемая нагрузкой меньше мощности одного ИБП. Если в сети есть напряжение, все выпрямители системы продолжают работать.

Выход из строя инвертора 3. Система переключается на работу через статический байпас. Нагрузка питается напрямую от сети. При наличии в сети нормального напряжения, все выпрямители работают и продолжают заряжать батареи. При любом последующем сбое (поломке статического байпаса или сбое сети) питание нагрузки прекращается. Для того, чтобы параллельная система допускала большое число сбоев, система должна быть сильно недогружена и должна включать большое число ИБП. Например, если нагрузка в приведенном выше примере будет составлять 250 кВА, то система допускает только один сбой: сбой сети или поломку инвертора. В отношении количества допустимых сбоев такая система эквивалентна одиночному ИБП. Это, кстати, не значит, что надежность такой параллельной системы будет такая же, как у одиночного ИБП. Она будет ниже, поскольку параллельная система намного сложнее одиночного ИБП и (при почти предельной нагрузке) не имеет дополнительного резервирования, компенсирующего эту сложность.

Вопрос надежности параллельной системы ИБП не может быть решен однозначно. Надежность зависит от большого числа параметров: количества ИБП в системе (причем увеличение количества ИБП до бесконечности снижает надежность – система становится слишком сложной и сложно управляемой – впрочем максимальное количество параллельно работающих модулей для известных мне ИБП не превышает 8), нагрузки системы (т.е. соотношения номинальной суммарной мощности системы и действующей нагрузки), примененной схемы параллельной работы (т.е. есть ли в системе специальная электроника для обеспечения распределения нагрузки по ИБП), технологии работы предприятия. Таким образом, если единственной целью является увеличение надежности системы, то следует серьезно рассмотреть возможность использование ИБП с горячим резервированием – его надежность не зависит от обстоятельств и в силу относительной простоты схемы практически всегда выше надежности параллельной системы.

Недогруженная система из нескольких параллельно работающих ИБП, которая способна реализвать описанную выше логику управления, часто также называется параллельной системой с резервированием.

Работа с частичной нагрузкой

Если нагрузка параллельной системы такова, что с ней может справиться меньшее, чем есть в системе количество ИБП, то инверторы «лишних» ИБП могут быть отключены. В некоторых ИБП такая логика управления подразумевается по умолчанию, а другие модели вообще лишены возможности работы в таком режиме. Инверторы, оставшиеся включенными, питают нагрузку. Коэффициент полезного действия системы при этом несколько возрастает. Обычно в этом режиме работы предусматривается некоторая избыточность, т.е. количестов работающих инверторов больше, чем необходимо для питания нагрузки. Тем самым обеспечивается резервирование. Все выпрямители системы продолжают работать, включая выпрямители тех ИБП, инверторы которых отключены.

Работа от батареи

В случае исчезновения напряжения в электрической сети, параллельная система переходит на работу от батареи. Все выпрямители системы не работают, инверторы питают нагрузку, получая энергию от батареи. В этом режиме работы (естественно) отсутствует напряжение в электрической сети, которое при нормальной работе было для ИБП не только источником энергии, но и источником сигнала синхронизации выходного напряжения. Поэтому функцию синхронизации берет на себя специальная параллельная электроника или выходная цепь ИБП, специально ориентированная на поддержание выходной частоты и фазы в соответствии с частотой и фазой выходного напряжения параллельно работающего ИБП.

Выход из строя выпрямителя

Это режим, при котором вышли из строя один или несколько выпрямителей. ИБП, выпрямители которых вышли из строя, продолжают питать нагрузку, расходуя заряд своей батареи. Они выдает сигнал «неисправность выпрямителя». Остальные ИБП продолжают работать нормально. После того, как заряд разряжающихся батарей будет полностью исчерпан, все зависит от соотношения мощности нагрузки и суммарной мощности ИБП с исправными выпрямителями. Если нагрузка не превышает перегрузочной способности этих ИБП, то питание нагрузки продолжится (если у системы остался значительный запас мощности, то в этом режиме работы допустимо еще несколько сбоев системы). В случае, если нагрузка ИБП превышает перегрузочную способность оставшихся ИБП, то система переходит к режиму работы через статический байпас.

Выход из строя инвертора

Если оставшиеся в работоспособном состоянии инверторы могут питать нагрузку, то нагрузка продолжает работать, питаясь от них. Если мощности работоспособных инверторов недостаточно, система переходит в режим работы от статического байпаса. Выпрямители всех ИБП могут заряжать батареи, или ИБП с неисправными инверторами могут быть полностью отключены для выполнения ремонта.

Работа от статического байпаса

Если суммарной мощности всех исправных инверторов параллельной системы не достаточно для поддержания работы нагрузки, система переходит к работе через статический байпас. Статические переключатели всех инверторов разомкнуты (исправные инверторы могут продолжать работать). Если нагрузка уменьшается, например в результате отключения части оборудования, параллельная система автоматически переключается на нормальный режим работы.

В случае одиночного ИБП с двойным преобразованием работа через статический байпас является практически последней возможностью поддержания работы нагрузки. В самом деле, ведь достаточно выхода из строя статического переключателя, и нагрузка будет обесточена. При работе параллельной системы через статический байпас допустимо некоторое количество сбоев системы. Статический байпас способен выдерживать намного больший ток, чем инвертор. Поэтому даже в случае выхода из строя одного или нескольких статических переключателей, нагрузка возможно не будет обесточена, если суммарный допустимый ток оставшихся работоспособными статических переключателей окажется достаточен для работы. Конкретное количество допустимых сбоев системы в этом режиме работы зависит от числа ИБП в системе, допустимого тока статического переключателя и величины нагрузки.

Сервисный байпас

Если нужно провести с параллельной системой ремонтные или регламентные работы, то система может быть отключена от нагрузки с помощью ручного переключателя сервисного байпаса. Нагрузка питается от сети, все элементы параллельной системы ИБП, кроме батарей, обесточены. Как и в случае системы с горячим резервированием, возможен вариант одного общего внешнего сервисного байпаса или нескольких сервисных байпасов, встроенных в отдельные ИБП. В последнем случае при использовании сервисного байпаса нужно иметь в виду соотношение номинального тока сервисного байпаса и действующей мощности нагрузки. Другими словами, нужно включить столько сервисных байпасов, чтобы нагрузка не превышала их суммарный номинальных ток.
[http://www.ask-r.ru/info/library/ups_without_secret_7.htm]



Source: intent.gigatran.com

Расчет мощности и времени автономной работы ИБП по нагрузке

Мощность и тип подключаемой нагрузки — вот основной фактор, который должен влиять на выбор определенной модели источника бесперебойного питания. Правильный расчет мощности ИБП по нагрузке позволит купить эффективно работающее при отключении сети устройство, не переплачивая за лишние заявленные производителем ватты.

Расчет мощности ИБП по нагрузке

Чтобы не возникало ситуаций, при которых ИБП выключается под нагрузкой без особых видимых причин, учитывайте следующие электротехнические показатели подключаемых приборов и самого бесперебойника:

  • Активная мощность подключаемых приборов (Вт).
  • Коэффициент мощности. Для обычного компьютера составляет 0,6-0,7, для серверного оборудования стремится к 1 (при расчетах используют значение 0,95), для бытовых приборов с электродвигателем — 0,7-0,8. Коэффициент необходим для определения полной потребляемой мощности (ВА).
  • Величина пускового тока. Актуально для устройств с электрическими двигателями. Этот показатель может составлять 3-10 А. Именно во столько раз и придется увеличить мощность ИБП, чтобы обеспечить запуск двигателя. В противном случае получите ситуацию, когда ИБП не держит нагрузку при отключении основной сети электроснабжения.
  • Собственный КПД источника бесперебойного питания. Зависит от типа ИБП, обычно находится в пределах 0,7-0,9.

Для получения ориентировочного значения мощности бесперебойника потребуется просто перемножить значения всех приведенных характеристик. Не лишним будет добавить и 10-20% запас.

К каким последствиям приведет неправильный расчет нагрузки ИБП

Выбор источника с меньшей мощностью приведет к тому, что в момент отключения основной сети ИБП не сможет обеспечить обслуживаемые приборы электроэнергией и отключится. Кстати, такая ситуация характерна не только при переходе на питание от аккумуляторов. Особенно это актуально для приборов, работающих по принципу двойного преобразования и линейно-интерактивных ИБП. При недостаточной мощности источника бесперебойного питания будет происходить постоянный переход в режим «Байпаса». То есть, нагрузка будет переподключаться к основной сети, а не получать стабилизированное питание от преобразователя.

Стоит отметить, что совместная параллельная работа ИБП на нагрузку не решит проблему. Подключение 2-3 источников к одному потребителю технически сложно реализовать. Дело в том, что потребуется максимальная синхронизация режимов работы. А достичь этого сложно даже при подборе устройств по характеристикам. Решением может стать разделение нагрузки с последующим подключением отдельных потребителей к разным ИБП. Если такой возможности нет, тогда придется приобретать бесперебойник большей мощности.

Особенности работы ИБП без нагрузки

Еще один момент, на который стоит обращать внимание при выборе — собственное энергопотребление источника бесперебойного питания. То, сколько потребляет ИБП без нагрузки, зависит от режима работы устройства в определенный момент времени. Можно выделить 2 основные ситуации, при которых энергопотребление будет существенно отличаться:

  • При полностью заряженном аккумуляторе величина потребляемой энергии зависит исключительно от тока холостого хода устройства, то есть, от конструктивных особенностей ИБП. Для качественных устройств этот показатель не превышает 5-10 Вт. А вот приборы бюджетного ценового сегмента на собственные нужды потратят 20 Вт и более.
  • Увеличение собственного потребления происходит в период заряда аккумуляторов. Стандартный показатель силы тока в этом режиме обычно не превышает 0,15 емкости АКБ. Умножив это значение на напряжение заряда, получите расходуемую бесперебойником мощность.

Расчет времени резерва питания нагрузки от ИБП

Влияет мощность подключаемой нагрузки и на общую автономность работы устройства при отключении сети. Чтобы определить предельное время резервирование необходимо знать емкость (С) и напряжение (V) АКБ, величину подключаемой мощности (Р) и КПД источника. Формула имеет вид:

Т = С х V х КПД / Р

Более точный расчет, позволяющий определить время работы ИБП в зависимости от нагрузки, требует учета дополнительных коэффициентов. Принимайте во внимание коэффициент, определяемый по разрядной кривой аккумулятора. Чем выше подключаемая мощность, тем больше сила разрядного тока и тем быстрей батарея отдаст всю свою мощность. Именно от этих показателей и зависит значение уточняющего коэффициента. Обратите внимание, величина этого значения изменяется нелинейно.

Кстати, это не единственный уточняющий коэффициент. При точных расчетах придется учитывать тип батареи, ее возраст, температуру окружающей среды.

Если для вас сложны электротехнические расчеты, можно воспользоваться онлайн-калькулятором для определения мощности ИБП в зависимости от параметров подключаемой нагрузки. Но более точный результат можно получить, воспользовавшись консультацией специалиста. Позвоните нам прямо сейчас или оставьте заявку на бесплатный обратный звонок. Поможем определить оптимальные параметры источника бесперебойного питания для эксплуатации в ваших условиях.

Что учитывать при выборе источника бесперебойного питания / НАГ corporate blog / Habr

Источник бесперебойного питания важный элемент при построении сложных систем, где нужна гарантия безопасности от непредвиденных перебоев в энергоснабжении и других проблем в электросети. Под катом расскажем о том, какие критерии необходимо учесть при выборе ИБП.

Сейчас рынок забит множеством устройства отличающихся, как ценником, так и качеством. Разобраться во всем этом многообразии невероятно сложно. Если же бюджет ограничен, то нужно подходить к выбору максимально ответственно. Поэтому для начала стоит ответить себе на несколько вопросов:

— Насколько ответственное оборудование вы собираетесь защищать?

— Какое время автономной работы оборудования в случае пропадания напряжения будет оптимальным?

Дабы ответить на поставленные вопросы стоит разобраться с тем какие классы ИБП сейчас существуют, и определиться с основными критериями, которые нужно учитывать при выборе ИБП.

Классы ИБП


Классы, представленных на рынке ИБП, отличаются друг от друга поведением в разных режимах работы и схематикой. Выделяют:

— Резервные или off-line ИБП (BackUp),
— Линейно-интерактивные ИБП (Line-interactive),
— ИБП с двойным преобразованием (on-line, double-conversion).

Off-Line ИБП считаются наиболее простыми и неприхотливыми. В нормальном режиме работы от сети электричество поступает на вход такого “бесперебойника, а после транзитом подается на основную нагрузку. При возникновении неполадок сети (перепадов и потерь напряжения) ИБП автоматически переходит на работу от аккумулятора.

Недостатки такой схемы работы — это длительное переключение питания на аккумуляторы (от 4 до 10 миллисекунд). Кроме того при работе ИБП от аккумулятора на оборудование подается не привычный для сети синус, а аппроксимированный синус.

Следующий класс источников бесперебойного питания Line-interactive не имеет кардинальных отличий от схемы Off-line. В случае аварии питание также переключается на аккумулятора, а затрачивается на это аналогичные (от 4 до 10 миллисекунд). На выходе также получается аппроксимированный синус.

Однако в ИБП этого класса на входе присутствует трансформатор, благодаря которому удается компенсировать те самые перепады напряжения. Стоит подчеркнуть, что ИБП класса Off-line и Line-interactive не предназначены для подключения ответственного оборудования.

При подключении ответственного оборудования рекомендуется использовать ИБП с двойным преобразованием (double conversion) или On-line ИБП. Работа таких источников бесперебойного питания устроена так, что входящее напряжение выправляется благодаря выпрямителю. После этого инвертор преобразует постоянное напряжение в переменное. При такой схеме аккумуляторы подключены к выходу выпрямителя и входу инвертора, что обеспечивает мгновенный переход (0 миллисекунд) к работе от аккумулятора.

Мощность


Один из наиболее важных параметров на который стоит обратить внимание при выборе ИБП — это мощность подключаемого оборудования. Недооценка этого фактора может привести к очень плачевным результатам — ИБП может просто не справиться с нагрузкой в случае аварии. При этом неэффективным будет и использование ИБП, мощность которого превышает, возлагаемую на него нагрузку.

Мощность применительно к источникам бесперебойного питания можно разделить на:

— Полную мощность — это это сумма активной и реактивной мощностей, а также отклонение от формы тока и напряжения от синусоидальной.

— Активную мощность — это та энергия, которую нагрузка отбирает от источника энергии для дальнейшего преобразования другую полезную энергию.

Чтобы определить мощность ИБП, нужно знать коэффициент мощности подключаемого оборудования. Иными словами, отношение активной мощности к полной

Как правило, в технических характеристиках ИБП указываются входной и выходной коэффициенты мощности. Входной указывает на поведение ИБП по отношению к электрической сети. Очень важен коэффициент мощности на выходе, потому что именно он показывает мощность, получаемую нагрузкой

Для расчета мощности ИБП, которая будет необходима для обеспечения нагрузки, нужно учесть сумму номинального потребления оборудования и нагрузку при запуске оборудования. При эт не стоит забывать о запасе мощности в 25%, то есть Мощность ИБП должна быть на 25% выше мощности оборудования.

Коэффициент полезного действия ИБП


Определиться с КПД источника бесперебойного питания очень важно, поскольку это главный показатель эффективности его использования. Неэффективная работа ИБП приводит к необоснованным затратам.

Помимо этого КПД определяет какое количество тепла в окружающую среду выделяет ИБП. Этот показатель важен при проектировании серверной. Например, если будет установлен ИБП небольшой мощности, то он не будет выделять много тепла. Напротив, при большой мощности “бесперебойника” в несколько десятков киловатт, тепловыделение будет большим. Чтобы избежать перегрева оборудования придется каким-то образом удалять тепло из помещения, а это дополнительные траты на мощные кондиционеры. Итог таков: чем больше коэффициент полезного действия ИБП, тем меньше будет выделяться тепло.

В качестве примера представим несколько вариантов эффективного и неэффективного использования ИБП:

— В первом случае, к ИБП мощностью 800 Ватт подключили оборудование мощностью 50 Ватт. На самообеспечение ИБП использует около 70 Ватт. Рассчитываем КПД по формуле и получаем 42%.

— Во втором случае, при нагрузке же в 600 Вт, коэффициент полезного действия ИБП будет значительно выше — 89%. Этот вариант более предпочтителен и эффективен.

Время автономной работы


Время автономной работы ИБП — это время, которое источник бесперебойного питания сможет поддерживать работу оборудования в случае аварийной ситуации в электросети. Время автономной работы в больше степени зависит от состояния аккумуляторов и потребляемой нагрузки.

Когда при проблемах в сети важно лишь корректно завершить работу оборудования в течение короткого промежутка времени, то свой выбор можно остановить на ИБП со встроенными аккумуляторами.

Если есть потребность в гораздо большем времени работы оборудования, то стоит рассчитать необходимый ток разряда батарей. Для расчета этого показателя есть специальная формула:

Для тех у кого нет времени или желания возиться с расчетами и учитывать множество технических, так и чисто физических нюансов, на сайте нашего магазина есть удобный инструмент — Калькулятор ИБП, при помощи которого можно определить все необходимые параметры.

Как выбрать ИБП, часть 2

Выбор ИБП

Какой выбрать ИБП? Эту тему мы подняли в предыдущей статье и рассмотрели типы бесперебойников, которые предлагают производители. Сегодня поговорим о том, как выбрать источник бесперебойного питания в зависимости от ваших задач и типа вашего оборудования, а также рассчитаем необходимую мощность UPS.

То, какой бесперебойник вам нужен, зависит от нескольких основных моментов:

  1. От каких именно неполадок в сети вы хотите защитить оборудование?
  2. Особенности конструкции оборудования, которое вы хотите подключить к ИБП.
  3. Планируемая мощность нагрузки на ИБП.
  4. Необходимое время автономной работы.

 

Итак, в этой статье мы рассмотрим выбор бесперебойника, учитывая следующие вопросы:

 

Зачем вам нужен ИБП?

Ответ на вопрос: какой бесперебойник выбрать  — зависит прежде всего от того, зачем он вам нужен.

 Для чего? Что покупать 
Выбор ИБПКорректно выключить компьютер и успеть сохранить данные при отключении электроэнергии.В этом случае смело берите недорогой ИБП off-line типа или линейно-интерактивный с запасом работы батарей на 5-15 минут.
Выбор ИБПОбеспечить питанием оборудование в случае достаточно долгого отключения электроэнергии.

Если вашему оборудованию подходит несинусоидальная форма сигнала, покупайте ИБП офф-лайн или линейно-интерактивный, но повышенной емкости, с расчетом на долгую работу от батарей. Как рассчитать емкость, вы можете прочитать ниже.

Самый большой запас времени работы в автономном режиме – у ИБП с внешними  батареями, за счет возможности увеличить емкость дополнительными аккумуляторами (подключаются параллельно). Такие бесперебойники чаще всего – из категории дорогих, с двойным преобразованием.

Если необходимо действительно долгое время работы, десятки часов, возможно, лучшим выходом будет приобретение генератора.

Выбор ИБПЗащитить оборудование от повышенного или пониженного напряжения, провалов, опасных для техники отключений на несколько секунд (любят у нас электрики дергать рубильник туда-сюда).Для этих целей вам нужен ИБП с функцией AVR (автоматической регулировки напряжения): линейно-интерактивный ИБП или более дорогой с двойным преобразованием. Стабилизация напряжения в линейно-интерактивных UPS чаще всего реализована в ступенчатом, грубом виде, в онлайн моделях стабилизатор работает плавно.
Выбор ИБПЗащитить чувствительное оборудование от максимального количества сбоев и помех в электрической сети.Для этих целей подойдет только бесперебойник on-line типа.

 

Отметим, что если вам необходима только стабилизация питания и не требуется обеспечение автономной работы оборудования при отключении электричества, целесообразнее купить отдельный стабилизатор.

Также, довольно часто используют связку стабилизатор + недорогой ИБП (бесперебойник включается в сеть ПОСЛЕ стабилизатора). Такой тандем не только позволяет регулировать напряжение в том случае, если в UPS этого не предусмотрено, но и продлевает срок эксплуатации батарей ИБП.

Для защиты какого оборудования вы покупаете ИБП?

Какой выбрать бесперебойник – также  зависит от особенностей конструкции подключаемой техники.  

Общее правило таково: к ИБП с правильной синусоидой на выходе можно подключать практически любую технику, требуется лишь правильно рассчитать мощность. К остальным UPS, особенно оффлайн типа, можно подключать далеко не все оборудование.

Особенность Оптимальный тип ИБП Пояснение 

Выбор ИБП

Элементы, чувствительные к несинусоидальной форме сигнала.

Линейно-интерактивные с правильной синусоидой,

ИБП с двойным преобразованием (онлайн).

Наиболее часто встречаемый случай – это устройства с электродвигателем, насосом, компрессором, в том числе насосы газовых котлов, а также практически вся бытовая техника: холодильники, фены, стиральные машинки, электродрели и т. д.  На электродвигатель ступенчатая синусоида или, тем более, меандр, воздействуют негативно: возникают вихревые токи, падает индуктивное сопротивление, в результате двигатель перегревается вплоть до сгорания.

Подробнее о правильной синусоиде здесь.

В некоторых устройствах, например, лазерных принтерах, ксероксах также могут присутствовать компоненты, которым для работы требуется синусоидальная форма напряжения, и при работе от ИБП с прямоугольной или ступенчатой формой сигнала они прослужат гораздо меньше.

Выбор ИБП

Индуктивные элементы (катушки индуктивности, дроссели).

ИБП on-line типа.

Довольно часто возникает вопрос – можно ли подключать к обычному дешевому бесперебойнику устройства с индуктивной нагрузкой, к примеру,  люминесцентные лампы? На практике подключают, и все вроде как работает.  Но следует учитывать, что многие производители этого категорически не рекомендуют и относят случаи поломки бесперебойника после подключения индуктивной нагрузки к негарантийным.

Кроме того, встречались случаи, когда реактивная нагрузка повреждала не рассчитанный на нее ИБП. 

Выбор ИБП

Трансформаторный (линейный) блок питания.

ИБП on-line типа.

Выбирая ИБП для устройств с трансформаторными блоками питания, нужно с осторожностью относиться к UPS, который не выдает на выходе чистую синусоиду. При питании напряжением в форме меандра или ступенчатой синусоиды потери в трансформаторе увеличиваются, что, при сильной его нагруженности, приведет к уменьшению ресурсов трансформатора в десятки раз. Также на практике встречались случаи, когда сгорал сам УПС, к которому подключалась такая нагрузка.  С другой стороны, довольно часто аппаратура с маломощными трансформаторными блоками питания, например,  радиотелефоны, спокойно работает в паре с ИБП off-line типа.

Однако многие производители, как и в случае индуктивной нагрузки, чаще всего не советуют подключать трансформаторные БП к обычным ИБП.

Как отличить трансформаторный блок питания от обычного импульсного?  Если мы говорим о внешнем БП, то импульсный – обычно легкий и небольшой, а трансформаторный – тяжелее и больше, за счет того, что внутри него размещен, собственно, трансформатор. Тип встроенного блока питания определить сложнее, здесь нужно ориентироваться на документацию производителя.

Хорошая новость – в большинстве случаев в электронной технике, такой как модемы, коммутаторы, роутеры, компьютеры сейчас используются именно импульсные БП.

Выбор ИБП

Конструктивные элементы, чувствительные к качеству питания.

Только ИБП on-line типа.

Практически все знают, что техника болезненно воспринимает перепады напряжения в сети, или постоянно заниженное (завышенное) напряжение. Однако качество электропитания определяется не только напряжением. Чувствительное телекоммуникационное, аудио-видео, измерительное, медицинское оборудование  также негативно реагирует на:

  • нестабильную частоту питания,
  • радиочастотные помехи в сети,
  • гармонические искажения напряжения,
  • наносекундные и микросекундные импульсы напряжения.

 

Все это может не только искажать работу техники, но и сокращать срок ее работы.

Выбор ИБП

Пусковые токи.

ИБП on-line типа с соответствующей нагрузке мощностью.

Оборудование, имеющее электродвигатели, насосы, компрессоры и прочие конструктивные элементы, которые в момент пуска потребляют большое количество электроэнергии, нельзя подключать к маломощным ИБП. Пусковые токи могут превышать стандартное потребление в 3-7 и более раз. 

 

Как рассчитать мощность ИБП?

Для того, чтобы правильно выбрать бесперебойник, необходимо посчитать общую мощность оборудования, которое вы собираетесь к нему подключить. Значения мощности можно уточнить в технических характеристиках (паспорте или инструкции к технике).

Рассмотрим условный пример.

Мы хотим подключить к ИБП:

  • компьютер на 250 Вт,
  • монитор LCD на 60 Вт,
  • кондиционер на 2000 Вт (cos φ = 0,8).

 

Здесь есть один момент: даже если мощность всех устройств выражена в одной единице, в данном случае в Вт, подсчитать нужно две мощности: в вольт-амперах и ваттах.

 

Мощность в вольт-амперах и ваттах — в чем разница?

Мощность, которая выражается в вольт-амперах (ВА, VA) называют полной мощностью. Она показывает реальную нагрузку оборудования, с учетом активной и реактивной.

Мощность, которая выражается в ваттах (Вт, W), называют активной мощностью.

Это две разные величины, и обе нужно учитывать при выборе ИБП нужной вам мощности. Это особенно важно, если вы собираетесь подключать к ИБП реактивную нагрузку, так как в таком оборудовании полная и активная мощность могут серьезно отличаться.

Выбор ИБП Расчет мощности в вольт-амперах.

Для пересчета активной мощности (в ваттах) в полную мощность в вольт-амперах используем формулу:

Как пересчитать мощность в Вт в ВА

где:

  • VA  — полная мощность,
  • W — активная мощность,
  • P — коэффициент мощности оборудования.

 

Если оборудование относится к активной нагрузке, а это практически все сетевое, телекоммуникационное оборудование, приборы освещения и обогрева, то есть техника без индуктивности, без реактивной мощности, а также компьютерная техника с блоками питания с регулировкой коэффициента мощности (APFC), то коэффициент можно принять равным 1, или лучше с небольшим запасом — 0,95.

Power Factor устройств без реактивной нагрузки

Если вы собираетесь подключать к ИБП лазерный принтер, кондиционер, люминесцентные лампы — оборудование, в котором есть электродвигатели и тому подобное, все, где есть индуктивность и реактивная мощность, а также компьютеры с блоками питания без APFC, то коэффициент мощности нужно посмотреть в паспорте устройства или на наклейке на задней стенке. Для такой техники его чаще всего указывают. Обозначается коэффициент мощности как Power Factor (PF) или cos φ.

В том случае, когда производитель не указал значение коэффициента мощности, но нагрузка однозначно не является полностью активной, можно взять наиболее распространенную величину: 0,7.

Power Factor устройств с реактивной нагрузкой

Вернемся к нашему примеру.

Блок питания в компьютере без регулировки коэффициента мощности, поэтому берем значение P равным 0,7. По монитору аналогично. Итого получаем полную мощность:

  • для компьютера с монитором:(250+60)/0,7 =442 VA,
  • для кондиционера: 2000/0,8 =2500 VA,
  • Вместе: 2942 VA.

 

Итак, что же, покупаем бесперебойник на 3000VA?  Не торопитесь, не все так просто.

Выбор ИБП Расчет мощности в ваттах.

Чаще всего встречается самый простой случай — когда мощность в ваттах, ее также называют активной мощностью, уже указана в документации к оборудованию. Если нет, можно пересчитать мощность из вольт-амперов в ватты, используя ту же методику, что и для полной мощности.

Посчитаем мощность нашего оборудования в ваттах:

  • компьютер с монитором — 310 Вт,
  • кондиционер — 2000 Вт,
  • Вместе: 2310 W.

 

В нашем интернет-магазине, среди ИБП на 3000 VA, к примеру, есть такие:

ProLogix Professional 3000 LB USB ИБП — активная мощность 1800 Вт.

Logicpower LPM-PSW-3000VA — активная мощность 2100 Вт.

PowerCom VGS-3000 — активная мощность 2700Вт.

По полной мощности для нашего условного примера подходят все три, а вот по активной только один — PowerCom VGS-3000.

Покупаем его? Не тут-то было. Считаем дальше.

 

Запас мощности

Во-первых, нужно учесть, что ИБП не должен работать с максимальной загрузкой. Разные производители советуют разный запас мощности, в среднем бесперебойник не должен быть загружен больше чем на 70-80% от максимума. Значит, нам нужно «накинуть» еще хотя бы 20% на расчетное потребление подключенного оборудования.

Также нужно учесть возможный апгрейд техники (хотя бы 10%). Установка более мощной видеокарты в компьютер, замена монитора на модель большей диагонали — все это повлечет за собой увеличение потребляемой мощности, как активной, так и полной. 

Запас мощности ИБП

Посчитаем запас для нашего оборудования.

Полная мощность: 2942+20% + 10%= 3883 VA.

Активная мощность: 2310+20% + 10% = 3049 W.

Итак, выбранная нами перед этим модель ИБП не подходит, ведь там всего лишь 3000VA и 2700W.

Но и это еще не все.

 

Пусковые токи

Оборудование, имеющее электродвигатели, насосы, компрессоры, отличается от обычного тем, что в момент включения потребляет в 3-7 и выше раз большую мощность, чем обычно. Это и есть так называемые пусковые токи. Если не учесть их наличие при расчете мощности и взять ИБП, который не выдержит эту нагрузку, то бесперебойник в лучшем случае будет выключаться при включении такой техники, в худшем — сгорит.

Пусковые токи

Пусковые токи есть также у устройств, которые содержат инерционные элементы или катушки индуктивности. Например, обычные лампочки накаливания и люминесцентные лампы при включении потребляют гораздо большую мощность, чем во время работы. Другое дело, что изначально это малые величины, и если мы говорим о нескольких лампах, такой пусковой ток можно не учитывать. Если же речь идет, к примеру, об огромном помещении с сотнями ламп, то скачок мощности может быть довольно заметным.

Большинство моделей ИБП рассчитаны на перегрузку, но редко больше чем на 150%. Опять же лучше перестраховаться и ориентироваться на меньшую, чем указано в паспорте, например, 120-130%. 

В нашем примере наибольшее значение имеют пусковые токи кондиционера. Допустим, они в 3,5 раза превышают обычную мощность, тогда мы имеем 7кВт активной и 8,75 кВА полной нагрузки при старте. 

Пусковые токи компьютера и монитора в этом примере рассматривать не будем, так как вероятность одновременного старта всего оборудования чрезвычайно мала (или же можно целенаправленно избегать такой ситуации).

Итого расчетная мощность ИБП, который нам нужен:

Полная:

8750 (кондиционер) + 442 (комп и монитор) + 10% на апгрейд + 20% запас = 12133 Ва (12,1 кВА).

Активная:

7000 (кондиционер) + 310 (комп и монитор) + 10% на апгрейд + 20% запас = 9650 Вт (9,6 кВт).

Сбросим 30% на перегрузочную способность, которую должен взять на себя ИБП.

Итого, вместо бесперебойника на 3000 VA, который был нам нужен на первый взгляд, на самом деле требуется купить мощный ИБП не менее, чем на 9300 VA/7420W.

Такие бесперебойники можно найти только в линейке дорогих.

И вот в этом месте стоит задуматься о целесообразности покупки ИБП примерной стоимостью выше 80 000 грн для кондиционера c ценником, к примеру, 5 000 грн 🙂

 

Именно из-за большой величины пусковых токов мало кто покупает ИБП для холодильников, стиральных машин и прочей подобной техники. Это просто экономически нецелесообразно.

Выбросив кондиционер из нашего примера, получим гораздо более адекватную величину нагрузки: ≈580 VA (400W) (пусковые токи для компьютера и монитора не считаем, так как они чаще всего покрываются перегрузочной способностью стандартного ИБП).

Для этих целей вполне подойдет, к примеру, APC Back UPS ES 700VA.

Как рассчитать необходимую емкость бесперебойника?

Обычно при выборе источника бесперебойного питания у нас есть какие-то определенные требования к времени, на протяжении которого он будет поддерживать работу подключенного к нему оборудования в случае отключения электроэнергии. Многие производители указывают примерный диапазон, например, пишут, что в зависимости от нагрузки, время работы от батарей составит 4-20 минут. Или указывают, что при работе с максимальной нагрузкой это время составит 5 минут.

Но это приблизительно, а нам нужно точно быть уверенным, что купленный нами UPS обеспечит работу от батарей для определенного перечня оборудования. Или же рассчитать, сколько времени будет держать нашу нагрузку какая-то выбранная нами модель ИБП.

Рассчитываем емкость аккумуляторов для известного времени автономной работы

Для расчетов нам понадобится:

  • Общая активная мощность (в ваттах), оборудования, которое мы собираемся подключить к ИБП (W).
  • Время автономной работы (T).
  • КПД UPS (примерно можно взять 0,85).
  • Номинальное напряжение батарей.

 

Используем формулу:

Расчет емкости аккумулятора в Вт*ч

где:

  • T — время планируемой автономной работы (ч),
  • P — мощность подключенного оборудования (ВТ),
  • KPD — КПД источника бесперебойного питания (можно взять примерно 0,85).

 

И формулу пересчета емкости в Вт*ч в емкость  в AH:

Пересчет ватт-часов в ампер-часы

 

Допустим, нам нужно, чтобы компьютер и монитор из приведенного выше примера проработали 2 часа после отключения электроэнергии. 

Емкость (Вт*ч) = 2 * 310 / 0,85 = 730 Вт*ч.

Однако емкость батарей принято указывать в ампер-часах. Чтобы пересчитать емкость в ватт-часах в ампер-часы, потребуется указать номинальное напряжение батарей.

Для батарей 12В:

Емкость (А*ч) = 730/12 =  = 60,83 ≈ 61Ah.

Для батарей 24В:

730/24 = 30,42 ≈ 30Ah.

Поскольку чаще всего в ИБП используется 1-2 батареи, реже 4, емкостью 7-9AH, то подобрать ИБП стандартной комплектации для таких значений общей емкости нам будет сложно. Лучше всего купить источник бесперебойного питания с возможностью подключения внешних батарей и подбирать емкость по потребностям.

ИБП с возможностью подключения дополнительных батарей

Каталог ИБП с возможностью подключения внешних батарей.

  

Например, могут подойти такие модели:

 

Преимуществом в этом случае также является то, что при увеличении нагрузки, подключаемой к ИБП, можно будет купить и подключить еще одну дополнительную батарею.

Рассчитываем время автономной работы, зная емкость ИБП

Для расчетов нам понадобится:

  • Общая активная мощность (в ваттах), оборудования, которое мы собираемся подключить к ИБП (W).
  • Общая емкость всех батарей ИБП в ватт-часах (Вт*ч). 
  • КПД UPS (примерно можно взять 0,85).

 

Используем формулы: 

Расчет общей емкости ИБП

где:

  • V — номинальное напряжение батарей (V),
  • AH — емкость одной батареи (AH),
  • N — количество батарей.

 

и

Расчет времени работы ИБП

где:

  • E — общая емкость (Вт*ч),
  • KPD — КПД источника бесперебойного питания (по умолчанию можно взять 0,85,
  • P — потребляемая мощность подключенного оборудования.

 

Возьмем для примера ИБП PowerCom BNT-800AP USB. Производитель заявляет время автономной работы 5 минут при максимальной загрузке. А сколько смогут проработать наш компьютер с монитором с потребляемой мощностью 310 Вт?

Общая емкость (Вт*ч) ИБП = 12В * 7,2AH * 1 = 86,4 Вт*ч.

Время = 86,4*0,85 / 310 = 0,237 часа ≈ 14 мин. 

 

Заключение

Расчет времени работы ИБП

Теперь давайте коротко подведем итоги.

Для того, чтобы выбрать ИБП, необходимо:

  • Определить, какой тип UPS вам нужен.
  • Рассчитать необходимую полную и активную мощность ИБП, с учетом пусковых токов и небольшим запасом.
  • Если нужно поддержание питания в течение какого-то определенного времени — рассчитать, какая емкость ИБП для этого нужна. И в зависимости от рассчитанной емкости покупать обычный бесперебойник или же ИБП и комплект дополнительных батарей к нему.

Современные источники бесперебойного питания

Журнал «Электронные компоненты» №9,2008

Валерий Климов, к.т.н., технический директор, «Русэлт»

При сравнении источников бесперебойного питания (ИБП) различных производителей следует, прежде всего, обращать внимание на их технические характеристики, отражающие потребительские свойства и качества. В статье рассматриваются  важные энергетические показатели ИБП и его перегрузочные характеристики.  Динамические характеристики отражают надежную работу ИБП при коммутации нагрузки, скачках сетевого напряжения, перегрузках и других возмущениях, возникающих в системе «сеть – ИБП – нагрузка». Приведены результаты экспериментального исследования динамических режимов однофазных ИБП с двойным преобразованием, рассмотренных в части 1 («ЭК» 6, 2008).

Классификация электрических характеристик ИБП

Требования к ИБП и классификация электрических характеристик современных ИБП наиболее полно представлены в новом международном  стандарте [3]. Действовавший ранее в нашей стране стандарт [4] не отражает всей полноты требований к современным структурам ИБП. Предлагаемый автором перечень электрических параметров ИБП дополнен рядом энергетических показателей:

— входные характеристики включают: номинальные значения мощностей, напряжений, токов и их допустимые отклонения, пусковые токи, входной коэффициент мощности, гармонический состав входного тока;

 входные характеристики отражают: статические и динамические показатели точности, коэффициент искажения синусоидальности, КПД, выходной коэффициент мощности, перегрузочную способность ИБП;

— переходные (системные) показатели характеризуют: синхронизацию по частоте, время резерва, время восстановления заряда аккумуляторной батареи (АБ), обобщенный энергетический коэффициент;

— параметры цепи постоянного тока характеризуют требования к номинальным значениям напряжения АБ [1, 2];

— эксплутационные требования (условия окружающей среды) отражают влияние температуры, влажности, высотности и т.д. на рабочие характеристики ИБП.

    Рассмотрим более подробно основные электрические характеристики ИБП.

Входные характеристики ИБП

Номинальные значения входного напряжения, принятые в нашей стране: для однофазных ИБП – 220 В; для трехфазных ИБП – 220/380 В, 50 Гц.

*Первая, вторая и третья части статьи были опубликованы в «ЭК» 6, 8, 9, 2008.

Допустимые отклонения входного напряжения характеризуют пределы изменения входного напряжения, при которых ИБП продолжает работать в сетевом режиме без перехода в автономный режим питания от АБ. Современные структуры ИБП с бустером обеспечивают диапазон +/–20% и более. Следует отметить, что для ряда однофазных моделей ИБП нижний предел входного напряжения расширяется с уменьшением нагрузки [1].

Номинальная входная полная мощность (Sвх.ном) – полная мощность, загружающая сеть при 100% коэффициенте нагрузки и стандартных условиях эксплуатации. Различают входную мощность, потребляемую при заряженной АБ (Sвх.мин), и мощность при форсированном заряде батареи (Sвх.макс), превышающую первое значение на 25 – 30%, в зависимости от величины емкости батареи и степени ее разряженности. Например, для ИБП с номинальной выходной мощностью 30 кВА и входным коэффициентом мощности 0,8 имеем: Sвх.мин = 32,8 кВА и Sвх.макс = 41 кВА.

Номинальная входная активная мощность (Рвх.ном) характеризует энергопотребление на входе ИБП при номинальной нагрузке:

Рвх.ном=КрвхSвх.ном

Входной коэффициент мощности
 (Крвх) характеризует отношение активной входной мощности к  полной при номинальном входном напряжении и 100% нагрузке.

Значения Крвх для различных моделей и мощностей ИБП могут изменяться от 0,8 до 0,99. Чем больше значение Крвх, тем ниже искажение синусоидальности входного тока. При этом входное сопротивление ИБП по отношению к сети будет чисто активным. Наиболее высокое значение Крвх = 0,99 достигнуто в структурах ИБП с входным ШИМ-преобразователем  на IGBT-транзисторах [2].

Составляющие токов реактивной мощности и мощности искажения во входной цепи преобразователя (мостовой схеме трехфазного выпрямителя) будут замыкаться во входном контуре системы и зависеть от параметров входного фильтра, реактивных параметров звена постоянного тока (так как это влияет на форму тока, потребляемого от сети) и степени загруженности системы.

Максимальный входной ток – параметр, определяющий выбор внешнего автомата защиты ИБП. Величина максимального тока определяется при 100% коэффициенте нагрузки, минимальном входном напряжении в режиме форсированного заряда АБ:

Iвх.макс=Sвх.макс/Uвх.мин

Величина пускового тока – характеризует бросок входного тока за счет заряда накопительных конденсаторов при включении ИБП. Для ограничения скачка тока в современных ИБП используют пусковые цепи или алгоритм мягкого старта ИБП.  

Выходные характеристики ИБП

Статическая точность выходного напряжения для однофазных маломощных ИБП двойного преобразования составляет +/–2%, для средней мощности и трехфазных ИБП достигает +/–1%, что позволяет обеспечивать параллельную работу 4 – 8 блоков на общую нагрузку [10]. Показатели динамической точности современных ИБП составляют +/–5% при 100% скачке нагрузки [2].

Внешняя характеристика ИБП характеризует степень статической точности выходного напряжения. В общем случае жесткость внешней характеристики определяется внутренним сопротивлением силовой цепи, включающей выпрямитель, корректор коэффициента мощности (ККМ), преобразователь постоянного напряжения (ППН) и инвертор. ККМ – ППН обладают стабилизирущими свойствами. Благодаря этому напряжение питания инвертора также стабильно, поэтому можно считать, что основным параметром, определяющим внешнюю характеристику ИБП, является выходное сопротивление инвертора. Современные инверторы на IGBT-транзисторах с широтно-импульсной модуляцией (ШИМ) выходного напряжения обладают низким значением внутреннего сопротивления. По сравнению с силовыми трансформаторами инвертор обладает в 5 раз меньшим внутренним сопротивлением [5], что обеспечивает не только высокую точность стабилизации выходного напряжения (1 – 2)%, но и низкие значения коэффициента искажения синусоидальности выходного напряжения (менее 3%) при токах в нелинейных нагрузках с коэффициентом амплитуды до 3.

Номинальная полная выходная мощность (Sвых.ном) – предельная полная мощность, которую инвертор может отдать в линейную нагрузку с коэффициентом мощности (Крн), равным выходному коэффициенту мощности ИБП (Крвых) при стандартных условиях эксплуатации (температура, влажность, высотность).

Выходной коэффициент мощности (Крвых), указанный производителем, соответствует тому значению коэффициента мощности нагрузки, при котором обеспечивается максимальная эффективность потребления электроэнергии от ИБП. Значения Крвых для современных ИБП составляют 0,7…0,9 [6].

Номинальная активная выходная мощность (Рвых.ном) – максимальная активная мощность, отдаваемая в нагрузку:

Рвх.ном=КрвхSвх.ном

КПД и тепловые потери

КПД характеризует эффективность использования ИБП и представляет отношение выходной активной мощности, потребляемой нагрузкой, к входной активной мощности, потребляемой ИБП из сети. Потери активной мощности (тепловые потери) в ИБП характеризуются рядом составляющих:

∆P=Pвх  Pвых=∆Pхх+∆Pсц+∆Pдоп

∆Pхх – постоянная составляющая потерь (потери холостого хода ИБП) не зависит от коэффициента нагрузки и определяется энергией, необходимой для обслуживания системы управления силовых узлов, питания вентиляторов охлаждения  и других вспомогательных блоков. В ИБП малой и средней мощности 1 – 10 кВА потери холостого хода составляют 20 – 30% от общих потерь. С ростом мощности ИБП относительная доля потерь холостого хода снижается.

∆Pсц – переменная составляющая потерь, которая зависит от коэффициента нагрузки

∆Pсц = ∆P1+∆P2+∆P3+∆P4 

∆P1 – потери в силовой цепи выпрямителя;

∆P2 – потери в силовой цепи корректора коэффициента мощности;

∆P3 – потери в силовой цепи преобразователя постоянного напряжения;

∆P4 – потери в силовой цепи инвертора.

Технические данные производителей ИБП содержат значения КПД отдельных силовых узлов ИБП (в основном выпрямителя и инвертора) и значения общего (системного) КПД, составляющего 85 – 88% для ИБП малой мощности и 90 – 94% для ИБП средней и большой мощности;

∆Pдоп – дополнительные потери на заряд АБ, являющиеся переменными во времени и зависящие от степени разряженности батареи и ее емкости. Наибольшие дополнительные потери возникают при форсированном заряде батареи. Например, потери при номинальной нагрузке в ИБП мощностью 30 кВА составляют: 2,8 кВт – при форсированном режиме заряда батареи и 2,2 кВт – при заряженной батарее.

Нагрузочная характеристика ИБП представляет нелинейную зависимость коэффициента передачи полной мощности от коэффициента мощности нагрузки  ФОРМУЛА 

Введем понятия коэффициента передачи полной мощности в нагрузку и нагрузочной характеристики инвертора [6].

Коэффициент передачи полной мощности в нагрузку – отношение предельно допустимой мощности нагрузки к номинальной полной мощности оборудования:  ФОРМУЛА  Коэффициент К5    коррелируется с понятием коэффициента снижения мощности Kd (derating factor), указывающим на процент величины активной составляющей мощности нагрузки, которую можно подключить к инвертору.

Коэффициент снижения мощности зависит от характера нагрузки. В таблице 1 приведен пример значений коэффициентов снижения мощности при выходном коэффициенте мощности инвертора 0,8 и различных значениях коэффициентов мощности нагрузки.

Таблица 1. Зависимость коэффициента снижения мощности от характера нагрузки.

Ток конденсатора выходного фильтра суммируется с током емкостной составляющей нагрузки, что снижает предельно допустимую нагрузку на выходе инвертора. Реактивная составляющая мощности и высокочастотные гармонические составляющие мощности искажения на выходе преобразователя будут обмениваться между нагрузкой, выходным фильтром инвертора и емкостью фильтра звена постоянного тока. Замыкаясь в указанном контуре силовой цепи преобразователя, их величины будут зависеть от коэффициента мощности нагрузки. Причем выходной коэффициент мощности может отличаться от коэффициента мощности нагрузки. Значение коэффициента передачи полной мощности в нагрузку достигает 100% при равенстве коэффициента мощности линейной нагрузки индуктивного характера выходному коэффициенту мощности ИБП. На рисунке 1а приведены нагрузочные характеристики при различных типах линейной нагрузки RL, RC и нелинейной нагрузки RCD. При нелинейной нагрузке коэффициент передачи мощности снижается. Наиболее распространены однофазные нелинейные нагрузки типа RCD – неуправляемые выпрямители с емкостным фильтром. Коэффициент амплитуды тока такой нагрузки достигает 2,5 – 3 при коэффициенте мощности 0,7 – 0,6. На рисунке 1б

приведены зависимости коэффициента мощности и коэффициента амплитуды RCD-нагрузки в функции длительности импульса тока на полупериоде сетевого напряжения [7]. При работе ИБП на разнотипные нагрузки за эквивалентную нелинейную нагрузку принимают сумму нагрузок: 50% – RL – линейная нагрузка с Крн = 0,8 и 50% – RCD –нагрузка – неуправляемый выпрямитель с емкостью фильтра 2,5 мкФ/Вт. Коэффициент передачи мощности в нелинейную нагрузку при токе с коэффициентом амплитуды Ка = 3 не превышает значения Кs = 70 – 80%.     

Векторная диаграмма мощностей инвертора (см. рис. 2) наглядно отражает нагрузочные способности ИБП, и в последнее время приводится в каталогах ряда ведущих мировых производителей ИБП. Верхний квадрант диаграммы характеризует мощности при активно-емкостной нагрузке (кВАр-С), в нижний – при активно-индуктивной нагрузке (кВАр-L). Здесь приняты обозначения:

  • горизонтальная ось соответствует относительным значениям активной мощности P ;
  • О — центр окружности максимальной полной мощности при индуктивном характере нагрузки ;
  • ОВ — вектор относительной максимальной полной мощности, отдаваемой в  нагрузку индуктивного характера (Sмакс) при номинальной активной мощности ;
  • О1 — центр окружности максимальной полной мощности при емкостном характере нагрузки ;
  • ВС – значение номинальной активной мощности на выходе преобразователя (Pном) ;
  • ОА – предельное значение относительной полной мощности, отдаваемой в индуктивную нагрузку при пониженной активной мощности ;
  • ОD – предельное значение относительной полной мощности, отдаваемой в емкостную нагрузку при пониженной активной мощности.

Косинусы углов поворота векторов полных мощностей относительно действительной оси координат будут соответствовать коэффициентам мощности нагрузок на выходе инвертора. Положение вертикальной линии номинальной выходной активной мощности (Pном) определяется выходным коэффициентом мощности инвертора  КРвыхном/Sном.

При емкостном характере нагрузки происходит смещение центра максимальной полной мощности О1 вниз относительно начала координат О и снижение границы полной мощности CD. Выход за указанные границы на векторной диаграмме мощностей (A-B-C-D-O) означает перегрузку инвертора. Современные системы управления инвертором в ИБП анализируют значения полной и активной составляющей мощностей, фиксируя превышения предельных значений.

Коэффициенты реактивных мощностей выходного фильтра инвертора

При выборе параметров фильтра рекомендуется принимать: Kc = Qc/Sном =  0,25 – 0,5; Kl = Ql/Sном =  0,07 – 0,2. Меньшие значения коэффициентов могут быть приняты для пониженных мощностей инверторов. Увеличение коэффициента емкостной мощности приводит к снижению расчетной мощности инвертора, обеспечивающего номинальные режимы работы в безопасной области векторной диаграммы мощностей [6].

Перегрузочные характеристики ИБП и ток короткого замыкания инвертора Различают перегрузочные способности инвертора и цепи «байпас». При значительных и длительных перегрузках ИБП переходит в режим автоматического байпаса, который характеризуется большой перегрузочной способностью. Однако современные инверторы на IGBT-транзисторах с ШИМ-регулированием тоже отличаются достаточно высокими перегрузочными характеристиками и значениями токов короткого замыкания (Iкз), достигающими 200 – 300% номинального выходного тока. При перегрузках, не превышающих 5 – 10% номинальной мощности, ИБП могут работать в инверторном режиме длительное время, не переходя в режим «байпас». На рисунке 3 приведены типичные перегрузочные характеристики ИБП. Допустимые области работы ИБП: 1– инверторный режим; 2 –  режим автоматического байпаса; 3 – область отключения ИБП. Следует иметь в виду, что количественные показатели приведенных токо-временных зависимостей у разных моделей ИБП могут отличаться. Знание перегрузочных характеристик позволяет оптимально выбирать необходимую номинальную мощность ИБП для нагрузок, обладающих большими пусковыми токами, исключая низкий коэффициент загрузки ИБП в статическом режиме при номинальных токах нагрузки.

Вопрос ограничения тока инвертора в режиме перегрузки является важным для  понимания перегрузочных свойств ИБП. При росте тока нагрузки свыше номинального значения инвертор переходит в режим генератора тока, ограничивая максимальное значение тока на определенной величине Iогр. Чтобы искажение синусоидальности выходного напряжения не превышало 5%, необходимо устанавливать порог ограничения максимального (амплитудного) значения выходного тока в 1,5 раза больше амплитудной величины номинального тока инвертора при линейной нагрузке:
Iогр=1,5√2iвых.ном
Соответственно, коэффициент амплитуды тока ограничения составляет: 
Ко.огр=Iогр

Инвертор с ШИМ-регулированием выходного напряжения способен реагировать на изменения тока нагрузки, ограничивая его по амплитуде. При этом происходит увеличение длительности импульса тока на полупериоде выходного напряжения [8]. Так, например, инвертор с номинальной мощностью 5 кВА способен отдать 4 кВт активной мощности в RCD-нагрузку с искажением синусоидальности выходного напряжения не более 5%. Таким образом, выходной коэффициент мощности такого инвертора Крвых = 0,8.

В таблице 2 приведены типовые перегрузочные характеристики  ИБП малой и средней мощности.

Таблица 2. Типовые перегрузочные характеристики ИБП малой и средней мощности

Переходные характеристики ИБП

Эти характеристики носят так же название системных или «вход – выход». К ним относятся такие параметры, как энергетический коэффициент, показатели синхронизации, временные характеристики автономной работы ИБП и восстановление заряда АБ.

Энергетический коэффициент определяет соотношение полных мощностей — потребляемой ИБП из сети и отдаваемой ИБП  в нагрузку [8]:

ФОРМУЛА

Если выполняется условие Кэ ≥ Крн, то ИБП потребляет из сети полную мощность равную или меньше той, что ИБП отдает в нагрузку:

ФОРМУЛА

Данное положение распространяется на ИБП с высоким входным коэффициентом мощности при работе на нелинейные нагрузки с низким коэффициентом мощности. Это явление объясняется тем, что при нелинейной нагрузке ток реактивной мощности и высокочастотные гармоники тока мощности искажения замыкаются в контуре «инвертор – нагрузка» и не проявляются во входной цепи ИБП. Можно показать, что при заданном коэффициенте мощности нагрузки Крн и КПД активная мощность на входе ИБП будет составлять:

ФОРМУЛА 9

Полная мощность на входе ИБП будет определяться входным коэффициентом мощности:

ФОРМУЛА 10

При условии Uвх = Uвых, имеем:

ФОРМУЛА 11 

Рассмотрим пример использования ИБП со следующими показателями: Крвх = 0,95, КПД = 90%, при работе на нелинейную нагрузку с коэффициентом мощности Крн = 0,63.

Из соотношения (11) имеем: Iвх = 0,74 Iвых. Уменьшение действующего значения входного тока ИДП относительно выходного тока приводит к снижению загруженности сети по сравнению с тем, когда нагрузка подключена к сети напрямую. Так как потери мощности пропорциональны квадрату тока, то потери мощности в линиях электропередачи с использованием ИБП в нашем примере составят 54% от потерь при питании той же нагрузки от сети без ИБП. Это обстоятельство особо важно при наличии, так называемых, «мягких» линий электропередачи. Таким образом, обобщенный энергетический коэффициент является одним из важнейших показателей, определяющих целесообразность применения ИБП с двойным преобразованием не только для обеспечения бесперебойного электропитания нагрузки при пропадании или искажении сети, но и для оптимизации энергопотребления при нагрузках с низким коэффициентом мощности.

Временные характеристики автономной работы ИБП показывают предельные времена работы ИБП от энергии АБ при отсутствии или недопустимых отклонениях сети в зависимости от коэффициента нагрузки. Значительное увеличение времени резерва достигается внешним подключением дополнительных аккумуляторных модулей. Следует обратить внимание на нелинейную зависимость временных характеристик от значения коэффициента нагрузки [8].

Время восстановления заряда аккумуляторной батареи АБ характеризует возможность работы ИБП в повторных автономных режимах и зависит от используемой емкости АБ. Время заряда АБ от 20% до 90% емкости составляет в среднем 6 – 8 часов.

Показатели синхронизации характеризуют синхронную работу инвертора и цепи «байпас», которая должна поддерживаться при отклонениях частоты в пределах +/–8% от номинальной со скоростью изменения частоты в пределах 1 – 4 Гц/с. При автономной работе выходная частота инвертора должна поддерживаться с точностью +/–0,1% от номинальной.

Характеристики динамических режимов работы и спектральные характеристики ИБП

Данный раздел посвящен результатам экспериментального исследования динамических режимов и спектральных характеристик ИБП с двойным преобразованием мощностью 1 – 3 кВА [9]. При этих исследованиях определялись:

·        провалы и всплески мгновенных значений выходного напряжения и тока и время возврата в установившийся режим работы ИБП после скачков нагрузки;

·        реакция ИБП на скачки входного напряжения;

·        перегрузочные и защитные способности ИБП;

·        гармонический состав выходного напряжения и тока в установившихся процессах при различном характере нагрузок и форме входного напряжения.

Названный перечень динамических характеристик отражает общие требования к ИБП, изложенные в стандартах [3, 4]. Результаты исследования переходных процессов при скачках нагрузки приведены на рисунках  4 а, б. Анализ показывает, что при скачке линейной нагрузки до 100%  выходное напряжение снижается на 3,5% от величины установившегося значения и затем восстанавливается до исходного уровня за 60 мс (см. рис. 4а). Отметим, что статическая точность стабилизации ИБП составляет +/–2%. При скачкообразном сбросе 100% линейной нагрузки зарегистрировано увеличение выходного напряжения на 4% и возврат к установившемуся значению в течение 100 мс (см. рис. 4б).

На рисунке 5а приведены осциллограммы выходного напряжения и тока при включении двигательной нагрузки, суммарная мощность которой составила 150%  номинальной мощности ИБП. В связи с перегрузкой ИБП автоматически перешел в режим «байпас», а затем, по окончании режима пуска двигателя ИБП, вновь перешел в режим двойного преобразования. При этом видно, что переход из режима двойного преобразования в байпас и наоборот происходит мгновенно, без искажений кривых напряжения и тока.     

Процесс перехода на байпас и возврат в режим двойного преобразования был приведен на рисунке 5а. При превышении нагрузки более 110% инвертор продолжает работу в течение 30 с, а затем ИБП переходит на байпас. В случае увеличения нагрузки до 150% инвертор продолжает работать 0,2 с до перехода на байпас.

На рисунке 5б приведены осциллограммы выходного напряжения и тока ИБП 3 кВА при включении нелинейной нагрузки, коэффициент амплитуды (крест-фактор) которой равен 2,84, а полная мощность – 1,8 кВА. Первоначальный всплеск тока превысил в 2,4 раза пиковое значение тока в установившемся режиме. При этом выходное напряжение снизилось на 9% от установившегося значения и затем восстановилось до исходного уровня в течение 40 мс.

При исследовании поведения ИБП при скачках входного напряжения было отмечено, что он обеспечивает практически мгновенную реакцию на возмущения, и стабильность выходного напряжения остается в пределах статической точности +/–2%. Эффективность электронной защиты инвертора проверялась при автономной работе ИБП путем включения двигательной нагрузки с превышением 150% номинальной нагрузки (пуск двигателя). Через 0,22 с после включения двигателя ИБП был отключен электронной защитой от перегрузки (см. рис. 6). Эксперимент подтвердил паспортные данные о перегрузочной способности инвертора (200 мс) и надежность срабатывания электронной защиты ИБП.

Исследование гармонического состава выходного напряжения и тока при линейной и нелинейной нагрузках показало, что коэффициент искажения синусоидальной формы выходного напряжения не превышает допустимые значения [11] при любом характере нагрузки, как в сетевом, так и в автономном режимах.

В таблице 3 приведены результаты испытаний ИБП мощностью 3 кВА на состав высших гармоник в выходном и входном напряжениях и токах при нелинейной нагрузке мощностью 1,8 кВА.

Таблица 3. Спектральный состав токов и напряжений при нелинейной нагрузке   

Как следует из анализа гармонического состава выходного напряжения при использовании ИБП с двойным преобразованием имеем незначительный коэффициент искажения синусоидальности Ки = 3,8% при существенно нелинейной нагрузке и при допустимом содержании высших гармоник выходного напряжения инвертора не более 10% [9]. При существенно несинусоидальной форме входного напряжения, соответствующей  коэффициенту искажения синусоидальности 36 – 41% (прямоугольное напряжение со значительном коэффициентом третьей гармоники),  выходное напряжение ИБП имеет синусоидальную форму Ки вых = (0,6 – 1)%. Это обстоятельство особо важно при питании ИБП от дизель-генераторной установки (ДГУ) малой мощности, когда напряжение ДГУ имеет значительные искажения от синусоидальной формы.

Литература:
   1. Климов В. Современные источники бесперебойного питания: классификация и структуры однофазных ИДП. Часть1//Электронные компоненты, №6, 2008.
   2. Климов В. Структуры силовых цепей трехфазных ИБП. Часть 2//Электронные компоненты, №8, 2008.
   3. International Standard IEC 62040-3.1999, Uninterruptible Power Systems (UPS), part 3: Method of Specifying the Performance and Test Requirements.
   4. ГОСТ 27699-88. Системы бесперебойного питания приемников переменного тока. Общие технические условия.
   5. Jean N. Fiorina Inverters and Harmonics, MGE UPS Systems, MGE 159, 1993
  6. Климов В., Москалев А. Коэффициент мощности и нагрузочная характеристика ШИМ-инвертора в системах бесперебойного питания//Силовая Электроника, №3, 2007.
   7.  Климов В., Смирнов В. Коэффициент мощности однофазного бестрансформаторного импульсного источника питания//Практическая силовая электроника, вып.5, 2002.
   8. Климов В., Климова С. Энергетические показатели источников бесперебойного питания переменного тока, Электронные компоненты,  №4, 2004.
   9. Климов В. и др. Однофазные источники бесперебойного питания серии ДПК: динамические и спектральные характеристики//Силовая Электроника, №2, 2007.
  10. Климов В. Многомодульные структуры ИБП и организация параллельной работы мономодульных ИБП. Часть 3//Электронные компоненты, №9, 2008.
  11. ГОСТ 13109-97. Нормы качества электрической энергии в системах электроснабжения общего назначения.


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *