25.01.2021

Принцип работы вентиля – Типы трубопроводной арматуры и её конструктивные разновидности. Задвижки, вентили, клапаны, краны, заслонки, регуляторы и их отличия. | Трубопроводы

Вентиль

Вентилем называют клапан, затвор которого перемещается при помощи резьбовой пары (ходовой гайки и шпинделя) и управление которым осуществляется вручную. Как и клапан, устройство позволяет перекрыть поток рабочей среды при помощи затвора, выполненного в форме плоской или конусной тарелки. Но в клапане перемещение затвора обеспечивается за счет поступательного движения шпинделя — элемента конструкции арматуры, осуществляющего передачу крутящего момента от исполнительного механизма (например, привода) к диску затвора. У такой конструкции есть существенный недостаток — необходимость использования дополнительных устройств для фиксации тарелки затвора. В вентиле эта конструкционная задача решена при помощи неподвижной ходовой гайки, которая прикреплена к крыше или бугелю вентиля, и в резьбу которой вкручивается шпиндель. Резьба обладает свойствами самоторможения, поэтому положение тарелки не изменяется под действием давления рабочей среды.

Устройство и принцип действия вентиля

Рабочий орган вентиля представляет собой затвор и седло. Седло — неподвижная часть, расположенная внутри корпуса арматуры, представляющая собой отверстие для прохода среды. При передаче движения от шпинделя к тарелке затвора, затвор начинает поступательное движение при закрытии вентиля и возвратное — при открытии. В положении «закрыто» тарелка затвора плотно прилегает к отверстию седла, перекрывая проход для рабочей среды. Чтобы обеспечить герметичность вентиля в закрытом положении, в конструкции вентиля используются уплотнительные поверхности. Рабочий орган вентиля располагается внутри его корпуса. От корпуса отходят два присоединительных патрубка, позволяющих подключить вентиль к трубопроводу.

Виды вентилей

Классифицировать вентили можно по следующим критериям:

  • Назначение: запорный вентиль, запорно-регулирующий вентиль и специальный вентиль;
  • Конструкция корпуса: проходной вентиль, угловой вентиль, прямоточный вентиль и смесительный вентиль;
  • Материал изготовления: титан, чугун, бронза, сталь, цветные сплавы, латунь, а также неметаллические материалы;
  • Тип герметизации: сильфонный вентиль и сальниковый вентиль.

Запорный и запорно-регулирующий вентиль характеризуются возвратно-поступательным движением запорного органа вдоль корпуса, которое обеспечивает перекрытие потока.

Запорно-регулирующие вентили посредством ручного или дистанционного управления регулируют расход среды путем изменения гидравлического сопротивления дроссельной пары с надёжно зафиксированными промежуточными положениями.

Специальные вентили используются при повышенной температуре или в коррозийной среде. Вентили для коррозионных сред применяются при высоких давлениях и температурах рабочей среды свыше 150 °C.

Проходные вентили предназначены для прямолинейных трубопроводов. К недостаткам можно отнести: сравнительно высокое гидравлическое сопротивление, наличие зоны застоя, большие строительные размеры, сложность конструкции корпуса и довольно большой вес.

Угловые вентили применяются для соединения двух частей трубопровода, расположенных перпендикулярно друг другу или для монтажа на повороте. Особенностью угловых вентилей является то, что они могут эксплуатироваться при невысоких температурах рабочей среды и номинальном давлении до 6,4 МПа.

Прямоточные вентили отличаются сравнительно малым гидравлическим сопротивлением, компактностью конструкции, отсутствием зон застоя, а также большой длиной и относительно большим весом.

Смесительные вентили обеспечивают смешивание двух потоков жидкой среды с целью разжижения основной среды, стабилизации её температуры, поддержания качества и другое. Смешивание потоков происходит непосредственно в корпусе вентиля.

Сильфонные вентили предназначены для работы в средах, утечка которых в окружающую атмосферу недопустима. Среди преимуществ выделяются такие качества, как надежность уплотнительного элемента, а также полное исключение утечки рабочей среды.

Сальниковые вентили обладают рядом достоинств, среди которых простота конструкции, возможность смены или донабивки сальника, сравнительно низкая стоимость.

Достоинства и недостатки конструкции

Основное преимущество вентилей — отсутствие трения между тарелкой затвора и уплотнительными поверхностями, поскольку затвор движется перпендикулярно им. Это обеспечивает их более высокую по сравнению с задвижками надежность в эксплуатации. Кроме того, устройство отличается простотой конструкции и высокой степенью герметичности, в силу чего они получили широкое распространение в качестве запорной арматуры. Еще одно достоинство вентиля — малая строительная длина.

Область и особенности применения

Вентили чаще всего используются при небольших диаметрах прохода, начиная от 50 мм. Уже при диаметрах 200-250 мм вентили используются редко.

Для этой конструкции арматуры принципиальную роль играет ее положение при установке, поскольку при неправильной установке давление рабочей среды будет прижимать тарелку к седлу, из-за чего для открытия вентиля будут требоваться значительные усилия. Поэтому вентили устанавливаются так, чтобы движение рабочей среды шло навстречу тарелке затвора.

Чаще всего вентили устанавливаются на трубопровод при помощи фланцевого, муфтового или цапкового присоединения. Однако в энергетических установках используются вентили, которые ввариваются в трубопровод, для чего конструкция оснащается соответствующими патрубками.

описание моделей и стальных конструкций клапана

Вентиль запорный фланцевый предназначен для того, чтобы перекрывать поток жидкости в системе трубопровода. Также, благодаря дополнительным техническим характеристикам, с помощью данной конструкции регулируются объемы воды и скорость, с которой жидкость перемещается по трубам. Надежная и удобная конструкция запорного вентиля сделала его популярным на рынке.

Популярные модели фланцевого вентиля

На сегодняшний день существует несколько разновидностей запорного вентиля. Все зависит от того, какой метод используется для того, чтобы перекрывать рабочую среду. К перечню популярных моделей относятся следующие механизмы:

Модели вентелей

  1. винтовые;
  2. шиберные;
  3. шаровые;
  4. пробковые.

У винтовых деталей подвижный клапан крепится с помощью резьбового соединения. Его необходимо прижимать к седлу, которое расположено в главном цилиндре вентиля. Сальниковая набивка представлена уплотняющей шайбой, обеспечивающей герметичность устройства.

Разновидности вентелей

К специфическим недостаткам механизма можно отнести то, что он пропускает воду только в одном направлении, а его резиновые или паронитовые трубки периодически изнашиваются, и их нужно менять. При попадании в цилиндр песка или окалины прокладки могут быть полностью или частично разрушены.

Конструкция шиберных вентилей очень схожа с задвижкой, поскольку их резьбовой шток способствует тому, что происходит спуск конического клапана между двух зеркал. Вместо сальниковой набивки можно устанавливать уплотнители из резины или полимерной глины, которые отличаются сроком эксплуатации на протяжении длительного периода времени.

Особенности

Для изготовления шаровых фланцевых арматур используется латунь или нержавейка, а конструкция представляет собой шар со сквозными отверстиями. Поворот рукоятки обеспечивает вращение шара, находящегося в цилиндре вентиля, а его фиксация осуществляется с помощью пары кольцевых седел, выполненных из тефлона или фторопласта. Для герметизации рекомендуется использовать такой же материал.

Поток жидкости в пробковых фланцевых задвижках перекрывается с помощью конической пробки, оснащенной сквозным отверстием. К типичным проблемам таких устройств относится то, что набивку сальника нужно периодически менять.

Если у вентиля большой размер, то для того, чтобы повернуть пробку, следует приложить немалые усилия.

Особенности и разновидности устройства

Перед тем, как приобрести фланцевую арматуру, необходимо ознакомиться с особенностями его конструкции, а также с информацией касательно того, из какого материала выполнена деталь. В промышленных целях зачастую используют механизмы, которые сделаны из чугуна или стали, а для бытовых нужд рекомендуется отдавать предпочтение бронзовым или латунным изделиям.

Стальные конструкции устанавливают в системах трубопроводов для отвода пара и жидкости. Кроме этого, рабочая среда может быть представлена такими элементами:

Диаметр

  • сжиженный или природный газ;
  • аммиак;
  • углекислота;
  • различные корродирующие вещества.

К существенному плюсу механизма из стали можно отнести небольшую массу, которой не могут похвастаться изделия из чугуна. Благодаря таким преимуществам требования к техническим параметрам системы трубопровода упрощаются в несколько раз, поскольку нет необходимости использовать в процессе монтажа дополнительные элементы и специальную арматуру. Для того чтобы изготовить стальной фланцевый клапан, следует использовать нержавеющую сталь, а для корпуса нужно выбирать материал таких марок, как А25 и А30.

Конструкция детали

Впрочем, существуют технологии, позволяющие использовать металлы, в состав которых не входят легирующие компоненты. Стальной фланцевый клапан достигает 100 мм в диаметре, поэтому его можно устанавливать даже в трубопроводах, где большой расход жидкости.

Существует два типа корпуса такой конструкции: угловой и проходной. Если участки магистрали являются прямолинейными, то специалисты рекомендуют отдавать предпочтение проходным вентилям, но их минус представлен высоким гидравлическим сопротивлением. Угловой трубопроводный вентиль используется в местах, где трубы соединяются перпендикулярно друг с другом.

Газопровод

Специалисты выделяют отдельную группу фланцевых стальных вентилей, которые являются проходными и паровыми. Их установка требуется на тех трубопроводах, где рабочая среда транспортируется при температуре более 400 градусов Цельсия. Достоинством паровых фланцевых конструкций является то, что в них отсутствуют зоны застоя, а из недостатков можно выделить большую массу и размеры.

Задвижку фланцевую из латуни устанавливают на трубопроводах, по которым транспортируется парообразная и жидкая рабочая среда. Для производства уплотнительных колец используется паронит, а набивка сальника выполнена из асбеста. Латунный инструмент отличается ручным приводом, где в качестве рукоятки представлен маховик.

Еще одной разновидностью фланцевых задвижек являются чугунные конструкции, для изготовления которых производители используют серый или ковкий чугун. Запорные узлы представлены сложной конструкцией, состоящей из трех основных элементов:

В разрезе

  1. золотника;
  2. маховика с резьбовым штоком;
  3. сальника.

Уникальность фланцевой арматуры из чугуна заключается в том, что все детали, из которых состоит запорный узел, выполнены из стали. Исключением являются только уплотнительные запчасти золотника у чугунных механизмов, на который устанавливается прокладка из резины или фторопласта.

Конструкция детали

Клапан запорный фланцевый необходим для того, чтобы перекрывать или регулировать поток жидкости при высоких показателях давления и температуры в трубопроводах небольшого диаметра. В качестве запорного элемента здесь представлен золотник, обеспечивающий высокую герметичность при нахождении в седле в закрытом положении.

Принцип работы

Поток жидкости перекрывается за счет того, что золотник выполняет поступательные движения параллельно оси движения рабочей среды. Ручным маховиком или электроприводом осуществляется передача крутящего момента с помощью шпинделя, после чего он проходит через неподвижную ходовую гайку и преобразуется в поступательные движения золотника.

Ходовая резьба в процессе эксплуатации отличается свойствами самостоятельного торможения, а под воздействием высокого давления запорный орган может оставаться в любом промежуточном положении без самопроизвольных изменений. Клапаны фланцевых вентилей выступают в качестве запорной арматуры, которая обеспечивает высокую герметизацию в запорном элементе простой конструкции. Клапаны необходимы для того, чтобы перекрывать газообразную или жидкую среду, температура которой достигает 700 градусов выше нуля, а давление — до 300 МПа.

Принцип работы

Конструкция фланцевого вентиля может быть прямоточной, проходной или угловой. В прямоточных клапанах направление жидкости сохраняется, но шпиндель располагается наклонно к оси прохода, а не перпендикулярно. Конструкция прямоточных вентилей предназначена для уменьшения гидравлического сопротивления, а также для спрямления потока рабочей среды.

Запорная арматура

У проходных клапанов жидкость на входе и выходе направлена одинаково, но внутри главного цилиндра осуществляет два поворота на 90 градусов. С помощью таких клапанов перекрывается движение жидкостей, у которых высокие температурные показатели и давление. Чрезмерные нагрузки для проходных фланцевых вентилей не представляют никакой опасности, поскольку клапаны способствуют сохранению герметичности. Но внутри подобных конструкций нередко происходит высокое гидравлическое сопротивление, что приводит к тому, что в цилиндре появляются застойные зоны.

С помощью угловых клапанов осуществляется поворот потока жидкости на 90 градусов, а устанавливают их на тех участках, где трубопровод поворачивает. Если сравнивать такой клапан с проходными деталями, то они отличаются меньшим гидравлическим сопротивлением.

Рекомендации по выбору вентиля

В силу того, что фланцевые вентили широко распространены, к их подбору следует подходить крайне внимательно и скрупулезно. Если устройство будет выбрано неверно, есть вероятность того, что оно в скором времени выйдет из строя. При покупке инструмента следует учитывать несколько ключевых параметров:

Виды запорной арматуры

  • материал, из которого выполнен корпус;
  • тип корпуса;
  • разновидность приводного механизма.

Вентили, корпус которых выполнен из стали, отличаются износоустойчивость и прочностью, но устанавливать их рекомендуется на трубопроводах, по которым транспортируется пар, газ, нефтепродукты или вода. Преимущество легированной стали заключается в том, что она способна выдерживать низкие температуры окружающей среды, достигающие 60 градусов ниже нуля.

Нержавеющий вентиль

У клапанов из нержавейки высокая устойчивость к образованию коррозии, а также стойкость к агрессивным химическим элементам. Фланцевые вентили из нержавейки широко используются в сфере пищевой промышленности, поскольку здесь необходимо соблюдать высокую чистоту среды, которая транспортируется по трубопроводу. У чугунных деталей низкая устойчивость к воздействию окружающих факторов, а также они отличаются хрупкостью и солидной удельной массой. На системах водоснабжения рекомендуется устанавливать именно такие механизмы.

При покупке запорного клапана нужно учитывать конструкцию его корпуса, которая может быть цельносварной или разборной. От конструкции будут зависеть размеры детали и возможность осуществлять тот или иной тип ремонтных работ. У цельносварных запчастей цельный корпус, не предусматривающий возможности проводить ревизионные мероприятия, поэтому устанавливать такой вентиль следует на тех участках, где регулировка потока среды происходит крайне редко. Такая мера предосторожности необходима для того, чтобы продлить срок эксплуатации устройства.

Нефтепровод

Конструкция разборных вентилей состоит из отдельных запчастей, которые при необходимости можно заменить, если любая из них станет непригодной. Именно благодаря тому, что клапан разбирается, с его помощью можно проводить любой вид ремонтных работ, но такой инструмент отличается высокой стоимостью.

В зависимости от того, какими будут особенности технологического процесса, можно подобрать фланцевый вентиль с подходящим механизмом управления. Самым простым приводным механизмом фланцевой арматуры является ручка, с помощью которой кран переводят в открытый или закрытый режим. При выборе клапана для регулировки потока густых веществ следует учитывать то, что ручка должна быть крепкой и выполненной из прочных материалов.

Соединение труб

Еще одним распространенным типом приводного механизма является редуктор, который нужно устанавливать на трубах, если их сечение составляет более 300 мм. Шток приводят в движение с помощью маховика, который начинает вращаться при переключении тумблера. Автоматические приборы представлены пневмоприводными и электрическими системами регулировки, с помощью которых можно управлять вентилем даже на расстоянии. Такие устройства способствуют максимально эффективному регулированию всех технических процессов.

Для исправный работы запорного фланцевого вентиля рекомендуется приобретать запчасти только у официальных и надежных поставщиков. В противном случае есть риск купить подделку, которая придет в негодность через короткий промежуток времени.

Ферритовый вентиль — Википедия

Материал из Википедии — свободной энциклопедии

Ферритовый вентиль, состоящий из волновода wg16 и двух полосок феррита (чёрные прямоугольники возле правого угла каждой из широких стенок волновода), которые подмагничиваются подковообразным постоянным магнитом. Направление пропускания указано на надписи с правой стороны.

Ферри́товый ве́нтиль (феррит + нем. ventil — клапан) — СВЧ-устройство с односторонним прохождением электромагнитной волны, то есть с очень малым затуханием волны, проходящей в одном направлении, и очень большим — для волны обратного направления.

Вентили применяют для поглощения отражённых волн в линии передачи, улучшая тем самым согласование различных элементов цепи. Их эффективность определяется вентильным отношением В, то есть отношением ослаблений отражённой и падающей волн:

B=αdirectαinverse{\displaystyle B={\frac {\alpha _{\mathrm {direct} }}{\alpha _{\mathrm {inverse} }}}}

где αdirect,inverse{\displaystyle \alpha _{\mathrm {direct} ,\mathrm {inverse} }} — коэффициенты затухания падающей и отражённой волны. Обычно данное отношение выражается в децибелах.

Принцип действия вентилей основан на том, что намагниченная ферритовая пластина является невзаимной средой. То есть при прямом прохождении волны вектор её поляризации поворачивается из положения A в положение А′, а при обратном прохождении, он не возвращается в исходное положение A.

Наиболее широко применяются вентили трёх типов: резонансные, со смещением поля и фарадеевские.

Резонансные вентили[править | править код]

В резонансных вентилях используется то, что поглощение мощности при ферромагнитном резонансе имеет место в переменном магнитном поле с круговой поляризацией и правым направлением вращения относительно направления постоянной намагниченности M0 (то есть с направлением вращения головки правого винта при поступательном движении винта в направлении M0). В прямоугольном волноводе с ферритовой пластиной при некотором (близком к четверти ширины волновода) положении пластины переменное магнитное поле в пластине имеет круговую поляризацию с разными направлениями вращения поляризации для различных направлений распространения. Поэтому потери энергии при резонансе оказываются малыми для одного направления распространения и большими для другого.

Вентили со смещением поля[править | править код]

Вентили со смещением поля используют то, что распределения переменного электрического поля в волноводе с намагниченной ферритовой пластиной различаются для разных направлений распространения. И может быть найдено положение пластины, для которого электрическое поле на её поверхности равно нулю для одного из направлений распространения. На эту поверхность помещается поглотитель, например тонкая плёнка металла.

Фарадеевские вентили[править | править код]

Фарадеевский вентиль состоит из отрезка круглого волновода с ферритовым стержнем, расположенным по оси, и внешнего соленоида, создающего продольное поле подмагничивания. С обеих сторон круглый волновод оканчивается плавными переходами к прямоугольным волноводам. Внутри переходов параллельно широким стенкам входного и выходного прямоугольных волноводов установлены поглощающие пластины. Выходной прямоугольный волновод повёрнут по отношению к входному на угол 45°. Волна, поданная на вход 1, не испытывая ослабления в поглощающей пластине, преобразуется в волну H11 круглого волновода с вертикальной поляризацией. Диаметр и длина ферритового стержня и напряжённость подмагничивающего поля выбраны так, что плоскость поляризации волны при распространении по отрезку круглого волновода с ферритом поворачивается по часовой стрелке на угол 45°, и волна без потерь проходит через переход с поглощающей пластиной в выходной прямоугольный волновод, узкие стенки которого оказываются параллельными вектору E.

Для уменьшения отражений концы ферритового стержня и поглощающих пластин имеют скосы. Волна, поступающая на вход 2, без ослабления преобразуется в волну H11 круглого волновода. При распространении на участке с ферритовым стержнем плоскость поляризации волны поворачивается по часовой стрелке на 45° (направление поворота плоскости поляризации при эффекте Фарадея не зависит от направления распространения волны и определяется только направлением поля подмагничивания). На выходе участка с ферритом вектор E оказывается параллельным широким стенкам прямоугольного волновода входа 1 и поглощающей пластине. На вход 1 волна не проходит, и вся переносимая ею мощность рассеивается в поглощающей пластине. Такой вентиль может рассматриваться как частный случай фарадеевского циркулятора.

  • ММВ 3-4 — 3,5—4,1 МГц
  • ММВ 9-1 — 8,5—9,8 МГц
  • ММВ 16-2 — 14,5—16,5 МГц
  • ИВ 15 — 145—174 МГц, 300—360 МГц, 400—470 МГц
  • ИВ 50 — 145—174 МГц, 300—360 МГц, 400—470 МГц
  • ФВП1-6 — 50—200 МГц
  • ФВП2-8 — 150—900 МГц

Основные нормируемые характеристики[править | править код]

Литература[править | править код]

  • Сазонов Д. М., Гридин А. М., Мишустин Б. А. Устройства СВЧ — М: Высш. школа, 1981.
  • Чернушенко А. М. Конструирование экранов и СВЧ-устройств — М: Радио и связь, 1990.
  • Вамберский М. В. и др. Передающие устройства СВЧ.
  • Вольман В. И., Пименов Ю. В. Техническая электродинамика — М.: Связь, 1971.

Нормативно-техническая документация[править | править код]

  • ГОСТ Р 50730.1-95. Приборы ферритовые СВЧ. Общие требования при измерении параметров на высоком уровне мощности.
  • ГОСТ Р 50730.2-95. Приборы ферритовые СВЧ. Методы измерения прямых потерь на высоком уровне мощности.
  • ГОСТ Р 50730.3-95. Приборы ферритовые СВЧ. Методы измерения обратных потерь и развязок на высоком уровне мощности.
  • ГОСТ Р 50730.4-95. Приборы ферритовые СВЧ. Методы измерения фазового сдвига на высоком уровне мощности.
  • ГОСТ Р 50730.5-95. Приборы ферритовые СВЧ. Методы измерения коэффициента стоячей волны по напряжению и максимального коэффициента стоячей волны по напряжению на высоком уровне мощности.
  • ОСТ11-480.005.1-79. Приборы ферритовые СВЧ. Методы измерения прямых потерь на низком уровне мощности.
  • ОСТ11-480.005.2-79. Приборы ферритовые СВЧ. Методы измерения прямых потерь на высоком уровне мощности.
  • ОСТ11-480.005.3-81. Приборы ферритовые СВЧ. Методы измерения коэффициента стоячей волны по напряжению на низком уровне мощности.
  • ОСТ11-480.005.4-81. Приборы ферритовые СВЧ. Методы измерения обратных потерь на низком уровне мощности.
  • ОСТ11-480.005.5-81. Приборы ферритовые СВЧ. Методы измерения коэффициента стоячей волны по напряжению на высоком уровне мощности.
  • ОСТ11-480.005.6-82. Приборы ферритовые СВЧ. Методы измерения обратных потерь на высоком уровне мощности.
  • ОСТ11-480.005.7-83. Приборы ферритовые СВЧ. Методы измерения развязок трёхплечных циркуляторов на низком уровне мощности.
  • ОСТ11-480.005.8-84. Приборы ферритовые СВЧ. Метод измерения развязок трёхплечных циркуляторов на высоком уровне мощности.
  • ТУ 11-ПЯ0.707.434ТУ-86. Детали ферритовые СВЧ-диапазона.

Дисковый затвор — Википедия

Материал из Википедии — свободной энциклопедии

Типичный дисковый затвор с ручным штурвалом и редуктором. Небольшие размеры дисковых затворов делают их очень удобными для применения. Современный дисковый затвор большого диаметра


Дисковый затвор — тип трубопроводной арматуры, в котором запирающий или регулирующий элемент имеет форму диска, поворачивающегося вокруг оси, перпендикулярной или расположенной под углом к направлению потока рабочей среды[1]. Также эти устройства называют заслонками, поворотными затворами, герметичными клапанами, гермоклапанами[2]. Наиболее часто такая арматура применяется при больших диаметрах трубопроводов, малых давлениях среды и пониженных требованиях к герметичности рабочего органа, в основном в качестве запорной арматуры[3].

В дисковых затворах запирающий элемент, то есть затвор, имеет форму диска, который может перекрывать проход рабочей среде через кольцевое седло в корпусе путём поворота (как правило на 90°) затвора вокруг оси, перпендикулярной направлению потока среды, при этом ось вращения диска может являться его собственной осью (осевые дисковые затворы) или же не совпадать с осью (эксцентриковые дисковые затворы). В связи с некоторой схожестью формы затвора с бабочкой, в англоязычных странах дисковые затворы носят название butterfly valve[4][5].

  • для систем водо- и теплоснабжения;
  • в гидроэнергетике и гидротехнике;
  • вентиляции и кондиционирования;
  • газоснабжения и газораспределения;
  • на спец. среды (абразивные среды, слабоагрессивные среды, бензин, морская вода и т.д.)
  • для систем пожаротушения.

Дисковые затворы, как и шаровые краны, являются одними из самых современных и прогрессивных типов арматуры, обладающий многими важными достоинствами, среди которых:

Но имеются и недостатки, например:

  • в положении «открыто» диск располагается в проходе корпуса, что ухудшает гидравлические характеристики и делает весьма затруднённой очистку трубопровода при помощи механических устройств[6][7].
  • относительно небольшие (у кранов шаровых и задвижек моменты еще больше) крутящие моменты для управления затворами;

Класс герметичности «А» достигается не только на затворах с мягким седловым уплотнением, современные затворы с ламинарным уплотнением «металл по металлу» также имеют класс герметичности «А», в том числе при тестировании газом

Небольшой затвор с плоским диском.

Дисковый затвор представляет собой короткий цилиндрический корпус (1), через который протекает рабочая среда. Внутри корпуса расположена подвижная часть, диск (3), имеющий возможность вращаться вокруг своей оси и таким способом, прижимаясь к уплотнительной поверхности корпуса (2), которая на поясняющем изображении выполнена с резиновым уплотнительным кольцом, перекрывать проход рабочей среды[6].

  1. Поворотный, тип butterfly
  2. Поворотный затвор с двойным эксцентриситетом (2-х эксцентриковый)
  3. 3-х эксцентриковый дисковый поворотный затвор
  4. 4-х эксцентриковый дисковый поворотный затвор
Обратный дисковый затвор с синхронизированными гидравлическими демпферами и рычаги с грузами Обратный дисковый затвор с синхронизированными гидравлическими демпферами и рычаги с грузами Герметичный клапан.

Затвором (подвижной частью запорного органа) этих устройств может быть плоский диск или двояковыпуклый (линзовый), чечевичного сечения.

Конструкция дисковых затворов даёт возможность применения их на различных рабочих средах с обеспечением защиты от коррозии и повышенного износа внутренних поверхностей корпуса и диска, для чего используются различные способы. Самым простым из них является изготовление этих деталей из нержавеющих сталей с уплотнением резиновым кольцом (если защита не требуется, детали изготавливаются из углеродистой или легированной стали, корпуса также из чугуна). Существуют также конструкции, внутренние полости которых защищены химически- и износостойкими покрытиями в виде эластомерных или резиновых вкладышей в корпусе и резиновых или полимерных покрытий диска, что заменяет собой дополнительные прокладки.

Присоединение затвора к трубопроводу чаще всего стяжное, то есть отверстия по краю корпуса арматуры пронизывают шпильки от одного фланца трубопровода до другого, что идеально подходит к конструкции устройства, в редких случаях затворы изготавливаются с собственными фланцами для соединения с обратными фланцами трубопровода.

Управление дисковыми затворами сходно с управлением шаровыми кранами, так как эти типы арматуры требуют для полного открытия поворота запирающего элемента на 90°. Оно осуществляется вручную (на больших диаметрах с маховиком и редуктором) или механизированно, с помощью однооборотных или (для больших диаметров) многооборотных электроприводов, а также поршневых пневмо- и гидроприводов.

Разновидностью дисковых затворов являются герметичные клапаны, применяемые для установки на трубопроводы малых диаметров для небольших давлений и на воздуховоды, также с небольшими давлениями[6][7].

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *