23.06.2021

Можно ли шаровыми кранами регулировать температуру: Регулировка с помощью шаровых кранов. Возможности. Опыт применения кранов LD® — СанТехМаркет

Содержание

Регулировка с помощью шаровых кранов. Возможности. Опыт применения кранов LD® — СанТехМаркет

Большинство производителей запорной арматуры, запрещает использовать ее как регулировочную. Задвижки, шаровые краны и многие другие запорные устройства, согласно требований производителя, не могут использоваться как регулировочная арматура, нельзя  производить дросселирование через запорную арматуру. Попробуем разобраться с практической точки зрения.

Приведем пример из эксплуатации различной запорной арматуры на системах отопления в жилых домах.

Предприятия ЖКХ предпочитают применять шаровые стальные краны LD® потому, что у них доступная цена, высокое качество, и они обеспечивают герметичность класса  «А»  по ГОСТ 9544-2005, в то время как задвижки только «С» и «D». 

При эксплуатации систем водяного отопления невозможно избежать работы запорной арматуры в режиме регулировки и даже дросселирования рабочей среды, приведем примеры:

 Пример первый.

Внутренняя система отопления дома отключена. Тепловой пункт с водоструйным элеватором, запорная арматура — фланцевые стальные шаровые краны LD

® Ду100.

Давление на вводе в тепловой пункт 0,7 МПа, на обратном трубопроводе 0,4 МПа, домовые краны отключены, требуется заполнить систему отопления дома.


Согласно инструкции завода, где был изготовлен кран, слесарь обязан сразу полностью открыть шаровой кран, т.к. через него дросселирование воды запрещено!    Если в этом случает резко открыть к примеру кран № 4, то в первые секунды поток воды через сечение крана Ду100 при перепаде давления с 0 до 0,4 МПа составит около 0,45 м3 в секунду, получается практически гидравлический удар, выстрел водой!  Результат такого заполнения системы отопления: разорванные трубы и радиаторы, промочки имущества граждан, последующие ремонтные работы и поиск виновных. На практике слесарь немного (чуть-чуть) приоткроет кран и будет медленно заполнять систему отопления с обратной линии до полного вытеснения воздуха в верхней точке.


Получается дросселирование рабочей среды через кран, что категорически запрещено заводом изготовителем. А что делать!? Это технологическая необходимость.

Что же делать? Как не испортить кран?

Есть метод, который слесари применяют не часто. Если в элеваторе установлено сопло диаметром 3÷20 мм, то можно при закрытых кранах 2 и 3, смело, полностью открыть краны 1 и 4. При такой схеме заполнения  горячая сетевая вода через сопло элеватора будет медленно заполнять систему отопления, при этом краны в режиме дросселирования работать не будут.
После полного вытеснения воздуха открываются краны 2 и 3, после чего  система будет нормально циркулировать.
Подобный метод можно использовать в безэлеваторных системах, заполняя отопление через дроссельные шайбы. Данный метод сохранит краны, но заполнение будет очень длительное, в сильные морозы не рекомендуется, из-за опасности замораживания крайних стояков при верхней (чердачной) разводке. Именно из-за длительности заполнения слесари этот метод не любят.

 

Пример второй:

На улице температура наружного воздуха +15°С, а отопление еще работает. Отключать без распоряжения запрещено. В квартирах неимоверно жарко. Если кран № 2 перекрыть на 90%, то  система отопления значительно остынет, но очень медленно все таки будет работать. Как же так, в этом случае тоже появляется дросселирование, но при перепаде давления между сторонами крана всего в 1÷2 м.в.ст. это никак не повлияет на его дальнейшую работоспособность, т.к. скорость потока жидкости через кран  будет незначительной. Инструкцией

производителя это запрещено, но в практике на протяжении 3 лет с краном ничего не произошло.

 

Мы выяснили, что иногда приходится регулировать поток жидкости и шаровым краном, а вот тут очень важно, какие шаровые краны мы применяем.

 

Сейчас очень модно ставить латунные шаровые краны, тем более они имеют диаметр от Ду15 (1/2″) до Ду100 (4″), красиво и дешево, но вот именно такими кранами действительно лучше не регулировать.

 

Большинство латунных кранов имеют уплотнительные седельные кольца из обыкновенного фторопласта, которые прижаты к шару с помощью резьбовой затяжки  двух половинок корпуса крана. Затворный шар работает по принципу маятника, если избыточное давление с правой стороны крана, то шар прижимается к левому кольцу и не пропускает рабочую среду. Если избыточное давление с левой стороны то все наоборот. Поэтому шаром всегда плотно прижато седельное кольцо, расположенное со стороны меньшего давления. Что из

этого следует, а то что когда мы немного приоткроем кран, через образовавшиеся зазоры с большой скоростью протекает  рабочая среда и именно из-за большой скорости рабочей среды может деформироваться седельное кольцо, наименее прижатое шаром, поток его вырывает из корпуса шара.
Если к тому же кран эксплуатировался достаточно долго, то вероятность деформации седельного кольца возрастает из-за его износа. Именно поэтому производители категорически запрещают любое дросселирование рабочей среды через шаровые краны.

 

Принципиально другая ситуация со стальными шаровыми кранами LD

®, где силами производителя  разработана и  внедрена в производство  другая, более прогрессивная схема  уплотнения «шар-кольцо».

 

Седельное кольцо (поз.1) выполнено из материала Ф4К20, данный материал прочнее простого фторопласта на 30%, имеет увеличенное сопротивление деформациям сжатия на 10%, износостойкость кольца возросла в 600 раз!

Специальное дублирующее уплотнительное кольцо из фторсилоксанового эластомера (поз.2) не допустит попадания рабочей среды в пространство между седельным кольцом и стальной гильзой.

Опорное кольцо из стали (поз.3) обеспечивает равномерное распределение нагрузки по всей опорной площади седельного кольца.

Тарельчатая пружина (поз. 4), выполненная из стали 65Г, компенсирует любые линейные удлинения пакета «шар-кольцо» и постоянно с равномерным усилием прижимает оба седельных кольца к рабочей поверхности шара.

Пакет колец с пружиной плотно сидит в стальной гильзе (поз.

5).

 

Благодаря данной конструкции прочное опорное кольцо защищено стальной гильзой и постоянно прижато к шару. При такой конструкции, потоку рабочей среды практически невозможно вырвать опорное кольцо из седла корпуса крана.

В течение 3 лет эксплуатации шарового крана LD® в системе отопления одного из предприятий ЖКХ г. Иванова, работники проводили ручную регулировку системы отопления путем «поджатия» крана в тепловом пункте на обратном трубопроводе. Кран работал довольно при  высокой скорости проходящего потока (был слышен шум рабочей среды проходящей через зазоры между шаром и седлом, объективные измерения не проводились)  и при этом никаких повреждений в кране выявлено не было, он до сих пор надежно и легко
перекрывается и плотно держит рабочее давление. Работники, по ряду причин, были вынуждены проводить регулировку именно таким методом. Паспорт шарового крана запрещает использовать его в качестве регулировочной арматуры, но как видно из опыта эксплуатации, качество и надежность кранов LD

® позволяет использовать их  даже в несвойственных им функциях. По нашему мнению завод ООО «ЧелябинскСпецГражданСтрой»  недооценивает качество собственного изделия – крана LD®

По сведениям поступивших с завода, в настоящее время запущена в серийное производство серия специальных регулирующих шаровых стальных кранов  LD®  Regula, что наконец-то позволит приобретать надежную регулирующую арматуру по доступным ценам.

Почему нельзя регулировать температуру в батарее шаровым краном? | Строительный двор

В частных домах можно наблюдать картину, когда радиаторный кран повернут не полностью, а частично. Так жильцы обычно пытаются регулировать температуру нагрева и расход теплоносителя. Разберемся, почему такой метод является ошибочным.

Зачем регулировать количество тепла в батареи?

  • Экономия. В некоторых ситуациях жильцы дома просто не пользуются отдельными помещениями или заходят в них редко. Полностью отключить радиаторы не всегда разумно, так как прогрев холодной комнаты отнимет больше энергии.
  • Жара в помещении. Иногда зимой в комнате становится душно из-за работы радиаторов. Некоторые владельцы домов опасаются открывать окна из-за сквозняков. Из положения выходят, понижая расход теплоносителя в системе.
  • Жильцы в разных комнатах предпочитают разную температуру.

Как регулируют температуру с помощью шарового крана?

Тепловая магистраль подключается к радиатору при помощи шарового крана. Это разновидность запорной арматуры, у которой перекрытие потока происходит при вращении стального шара.

Ручка крана обычно меняет свое положение на 90 градусов от открытого до закрытого положения. При необходимости уменьшить температуру радиатора в два раза первое, что приходит в голову, это повернуть рукоятку в среднее положение (на 45 градусов). Тут и кроется основное заблуждение, так как шаровой кран не имеет линейной зависимости расхода теплоносителя и положения рукоятки. При повороте рукоятки на 45 градусов, расход практически не изменяется, а батареи остаются такими же горячими.

При повороте крана больше 50 градусов происходит резкое снижение расхода, поймать в этом промежутке нужное температурное значение практически невозможно.

На этом проблемы с шаровым краном не заканчиваются, когда заслонка имеет промежуточное положение, в трубе появляются зоны повышенного и пониженного давления. В точках пониженного давления формируются кавитационные пузырьки, которые непрерывно лопаются. Этот процесс сопровождается повышенным шумом и вибрацией.

В краткосрочной перспективе кавитация приводит к шумам в радиаторах, в долгосрочной — к протечкам на запорной арматуре. По этой причине регулировка температуры радиатора с помощью шарового крана не только неудобна, но еще и опасна.

Использовать шаровые краны можно только в двух положениях: открыто и закрыто. Они служат для полного перекрытия поступления теплоносителя в радиатор.

Радиаторный кран — брат-близнец шарового крана

В некоторых случаях на батареи устанавливают радиаторный кран, обычно он снабжен рукояткой, которая на первый взгляд напоминает вентиль. На самом деле внутри это все тот же шаровой кран, только вместо привычной рукоятки-бабочки на него ставят округлую ручку. Отличить его можно по небольшому углу поворота на 90 градусов, настоящий вентильный кран может совершать 3 — 12 оборотов в зависимости от конструкции.

Как регулировать температуру в радиаторах с помощью кранов

  • Игольчатый вентиль — разновидность регулирующей арматуры, имеет недостаток в виде небольшой пропускной способности.
  • Регулирующий вентиль — отличный вариант для постепенного изменения расхода теплоносителя.
  • Термоголовка позволяет задавать нужную температуру для радиатора и поддерживать ее на одинаковом уровне в автоматическом режиме.

Смотрите также:

Как сэкономить на арматуре для радиаторов? | Торговый дом «СантехУрал»

Как сэкономить на арматуре для радиаторов?

На первый взгляд, самый бюджетный вариант подключения отопительных приборов – присоединить радиатор непосредственно к трубе простыми фитингами или «американками». На деле все оказывается по-другому.

Такой прибор невозможно «убавить», «прибавить» и даже перекрыть. Поэтому более грамотный подход – использовать специальную радиаторную арматуру. Какая она бывает и почему позволяет сэкономить?

Чаще всего для подключения радиаторов отопления применяют шаровые краны. Они незаменимы при возникновении аварийных ситуаций. Перекрыв поток, вы сможете спокойно демонтировать радиатор и провести его ремонт или замену. Важно помнить, что шаровые краны работают исключительно в двух положениях – открыто и закрыто, неполное закрытие может привести к выходу крана из строя.

Существует арматура, которая позволяет и перекрывать, и регулировать. Это ручные или балансировочные радиаторные клапаны. С их помощью можно балансировать всю систему отопления и добиться равномерного прогрева во всем доме. Зачастую использование таких клапанов обходится дешевле шаровых кранов.

В качестве вспомогательного оборудования вам может понадобиться ручной воздухоотводчик (кран Маевского), однако специалисты рекомендуют все же установить автоматический воздухоотводчик, который будет самостоятельно регулировать сброс лишнего воздуха из системы.

[изображение]

Более современный вид арматуры – терморегулирующие радиаторные клапаны, которые работают в автоматическом режиме. С их помощью можно выставить необходимую температуру, которая будет постоянно поддерживаться. Если требуется дистанционное управление определенными радиаторами, вместо обычной термоголовки можно приобрести термоэлектрический элемент. Регулирование температуры позволяет сэкономить на отоплении.

Есть также частные случаи, когда необходима специфическая арматура. Например, для гравитационной или однотрубной системы отопления используются термостатические клапаны с повышенной пропускной способностью. Они пропускают больше теплоносителя с меньшим сопротивлением. Для установки стальных радиаторов с нижним подключением используется узел нижнего подключения.

Еще один вид радиаторной арматуры – удлинитель потока. Бывают ситуации, когда у отопительного прибора первые несколько секций греют, а остальные – нет. В этом случае вместо радиаторной пробки вкручивается удлинитель потока, который обеспечит равномерный прогрев без переделки труб.

[изображение]

Таким образом, современная радиаторная арматура позволяет добиться стабильной работы системы отопления и даже сэкономить. Важно, чтобы арматура была качественной.

В ассортименте нашей компании всегда в наличии радиаторная арматура под собственной торговой маркой RVC. В зависимости от ваших задач менеджеры ТД «СантехУрал» готовы порекомендовать латунные или полипропиленовые клапаны разных видов по телефону (351) 729-88-58 или по электронной почте [email protected]

Чем лучше регулировать батареи отопления? в 2021 году

Если в квартире с централизованным отоплением холодно, то в зависимости от ситуации может понадобиться проверка радиаторов, монтаж дополнительных секций или приглашение в квартиру специалистов из местного ЖКУ, чтобы разрешить вопрос с недостаточной температурой теплоносителя. А вот когда жарко, можно призадуматься о регулируемых батареях, ведь они позволяют поддерживать комфортную температуру и даже помогают экономить.

Регулируемая батарея: что это?

Если при виде этого словосочетания представляется сложное устройство, то торопимся разочаровать — это обычный радиатор, перед которым в трубу подвода врезается терморегулятор, изменяющий скорость подачи теплоносителя. Говоря простым языком — это кран, который или не ограничивает поступление горячей воды в батарею, или уменьшает поток до нужного значения, вплоть до полного перекрытия.

Простейший пример, хорошо знакомый старшим поколениям — шаровой кран. Его нормальными положениями являются «открыто» и «закрыто», но если повернуть вентиль не до упора, то шар-заглушка ограничит поток горячей воды, не перекрывая его полностью. В результате этого батарея будет прогреваться меньше, чем при полностью открытом кране, но и полностью не остынет.

Комплексный ремонт квартир под ключ

  • Всё включено
    В стоимость ремонта входит всё: работы, материалы, документы.

  • Без вашего участия
    После согласования проекта мы беспокоим хозяев только при сдаче ремонта.

  • Цена известна заранее
    Стоимость ремонта фиксируется в договоре.

  • Фиксированный срок ремонта
    Ремонт квартиры под ключ за 3,5 месяца. Срок закреплен в договоре.

Подробнее о Сделано

Регулировка при помощи крана

Шаровой кран приведен лишь в качестве простейшего примера. Он не предназначен для регулирования потока воды — это запрещено производителем из-за особенностей строения (пустой полости между шаром и корпусом).

Если же искать бюджетную и надежную арматуру для регулировки температуры батареи отопления, то самым простым вариантом станет простой конусный кран с прямым или угловым подключением. В монтаже он прост — как и любой другой кран, его необходимо подключить к трубе подачи перед батареей. Эксплуатация тоже не вызывает трудностей: нужно понизить температуру, значит крутим вентиль в сторону закрытого положения, а если наоборот, то открываем кран.

Но в использовании этой арматуры есть один недостаток — ручное управление. А это значит сложности с поддержанием стабильной температуры в помещении. Поэтому есть смысл отдать предпочтение термостатам.

Регулировка при помощи термостата

Это устройство представляет собой своеобразный гибрид температурного датчика с управляющим механизмом (термоголовка) и конусного крана (термоклапан). В зависимости от особенностей управления выделяют механические и электронные термостаты.

Механические термостаты

Главная особенность механических — сильфон. Это герметичный эластичный цилиндр, заполненный газом или жидкостью. Расширяясь под воздействием температуры окружающей среды, содержимое контейнера расширяется, в результате чего сильфон увеличивается в размерах и начинает давить на шток, перекрывающий подачу горячей воды. А когда температура в комнате падает ниже заданной отметки, сильфон сжимается, из-за чего шток приподнимается, возобновляя подачу теплоносителя в батарею.

Нужный температурный режим задается путем поворота подвижной части термоголовки. Точность регулировки для термостатов с жидкостным сильфоном составляет 1 °C, а для газовых 0,5 °C. При этом первые гораздо проще производить, с чем и связаны их меньшая стоимость и большее распространение.

Для корректной работы термостата, при его монтаже термоголовку ориентируют внутрь помещения, чтобы тепло от батареи не мешало корректной работе устройства. Но если радиатор установлен в глубокой нише или систематически закрывается тяжелыми занавесками, термоголовка нагревается быстрее, чем воздух в комнате, а потому происходит преждевременное расширение сильфона.

Справиться с проблемой призван выносной датчик, который присоединяется к термоголовке при помощи капиллярной трубки. Сам датчик устанавливается в удобном для замеров месте, и в этом случае движение штока управляется уже им.

Электронные термостаты

В более громоздких термоголовках этих устройств находятся элементы питания и микропроцессор, управляющий движением штока. Программа задается при помощи кнопок, а сориентироваться в текущих или задаваемых настройках помогает дисплей.

Электронные термостаты дороже механических, требуют контроля за зарядом батарей, но зато более удобны в использовании. К примеру, один раз настроив их, можно наслаждаться автоматическим изменением температурного режима. Или прелестями дистанционного управления.

Как и механические, электронные термостаты могут дополняться выносным датчиком. Правда, в этом случае связь между ним и управляющим микропроцессором беспроводная.

Что не исправить при помощи термостата?

Регулируемые батареи хороши и эффективны, если речь идет о современных стальных или алюминиевых радиаторах. А вот устанавливая чугунную классику, следует учитывать то, что они долго прогреваются и остывают. Это ограничивает возможности механических и электронных термостатов, поскольку после срабатывания датчика проходит слишком много времени до набора нужной температуры. Поэтому регулировать чугунные батареи отопления лучше при помощи обычного конусного крана, прикрывая или открывая его вручную.

Вторая ситуация, когда термостат бесполезен — холод. Умная арматура помогает понижать температуру, поддерживая ее на заданном уровне, но не способна разогреть теплоноситель в приточной трубе. А это значит, что задачу придется решать иными путями.

Первый из них — увеличение количества секций или подключение дополнительной батареи, что связано с длительной и не всегда продуктивной беготней по коммунальным службам. Второй же — ремонт, включающий в себя герметизацию или замену окон, утепление стен и монтаж отражающих экранов. Все это поможет снизить теплопотери и, соответственно, решить проблему холодной квартиры.

Ну а чтобы ремонт не превратился в стиль жизни, его можно доверить специалистам. Команда опытных мастеров своего дела поможет проработать дизайн квартиры и реализовать задумку в заранее обозначенные сроки. При этом вам не нужно будет задумываться о поиске, перерасходе или недостаче материалов, недобросовестных работниках и качестве их услуг — в указанный в договоре день вам останется войти в обновленную, уютную квартиру и на долгие годы забыть о проблемах климат-контроля.

Опубликовано: 26.02.2020 Автор: Александра Ремонтникова

Регулировка батарей отопления: регулятор, как регулировать температуру радиатора в квартире, батареи с регулятором тепла кранами, радиаторы с регулировкой

Виды

По способу передачи сигнала на термический элемент он может поступать от теплоносителя, воздуха внутри помещения. Вентиль у разных видов может быть практически идентичным. Отличаться они будут термоголовкой. На сегодняшний день все существующие разновидности можно разделить на 2 типа: механические и электронные. Устройства имеют свои особенности, которые отражаются на их эксплуатационных характеристиках.

Приборы отличаются не только по виду материала, но и по способу установки. Они могут иметь угловой либо прямой (проходной) тип, что зависит от вида подсоединения. К примеру, если магистраль подсоединяют к боковой части, монтируют вентиль прямого типа. Угловой метод используют, когда выполняют соединение снизу. Вариант клапана выбирают тот, что лучше становится в систему.

Выбор между ними зависит от предпочтений покупателя и его финансовых возможностей. Продукция может быть рассчитана для конкретной разновидности термоэлемента. Чтобы понять, в чем состоят различия терморегуляторов, нужно коротко отметить их основные нюансы.

Механические

Механические терморегуляторы отличаются простотой эксплуатации, четкостью и слаженностью в использовании. Они не нуждаются в подключении к сети. Ручные изделия отличны от электронных аналогов. Работают они по принципу обычного крана: регулятор поворачивают в нужную сторону, пропуская необходимое количество теплоносителя. Устройства дешевые, но не самые удобные, так как для изменения теплоотдачи необходимо каждый раз вручную крутить вентиль.

Если их установить тора вместо шаровых кранов, можно использовать для регулировки любой из них. Устройства технологичны и не нуждаются в профилактическом обслуживании. Однако зачастую на входе и выходе радиав такой конструкции нет разметки для регулировки температуры нагревания. Практически всегда выставлять ее приходится опытным путем.

Перед установкой таких конструкций необходимо их отрегулировать, а также установить гидравлическое сопротивление. Плавная настройка осуществляется за счет дроссельного механизма, который находится внутри прибора. Сделать это можно на одном из клапанов (впускном либо обратном). Работа терморегулятора механического типа зависит от точек холода и тепла внутри комнаты, а также направления движения воздуха в помещении. Недостатком является и тот факт, что они реагируют на работу бытовых приборов с собственными тепловыми контурами (например, холодильников, электрических обогревателей, а также водопровода с горячей водой).

Электронные

Такие модификации более сложны в конструктивном плане в сравнении с ручными аналогами. С их помощью можно сделать систему отопления гибкой. Они не только позволяют обеспечить контроль температуры отдельного радиатора, но и предусматривают управление основными узлами системы, в том числе насосом, смесителями. В зависимости от модели программируемые приборы оснащены датчиками разного вида.

Электронный механизм может замерять температуру окружающей среды конкретного пространства (места, где он установлен). За счет программного обеспечения осуществляется анализ полученных данных, принимается решение по уменьшению либо увеличению температуры. Такой механизм может быть аналоговым либо цифровым. Цифровой вариант имеет 2 модификации: его логика бывает открытой либо закрытой.

Разница между категориями заключается в том, что изделия с закрытой логикой не способны менять алгоритм функционирования. Они запоминают уровень изначально установленной температуры и поддерживают его. Аналоги открытой логики способны самостоятельно выбирать нужную управляющую программу. Однако их редко используют в бытовых условиях, так как рядовому покупателю будет сложно изначально запрограммировать их, выбирая нужные опции из множества встроенных функций.

Устройство и принцип действия

Предлагаемые на рынке приборы имеют одинаковую конструкцию. Функционируют они тоже по единому принципу. Главные узлы:

  • клапан;
  • термоголовка со штоком и сильфоном.

Последний из элементов съемный. К одному клапану можно подключить разные термоголовки. Устройство электронного аналога несколько сложнее: конструкцией предусмотрен микропроцессор, ответственный за регулировку температуры в комнате. Принцип работы терморегулятора основан на изменении сечения просвета клапана. Чтобы нормализовать микроклимат в помещении, нужно уменьшить объем теплоносителя, который попадает из трубы в радиатор.

Термоклапан соединен с головкой посредством накидной гайки и штока. Последний из элементов перемещается внутри конструкции под воздействием нагрузки, оказываемой средой в сильфоне (газ, жидкость). При нагреве происходит расширение вещества. Давление внутри головки растет. В результате шток опускается, частично или полностью перекрывая просвет в клапане.

Когда воздух в помещении охлаждается, настройки терморегулятора меняются вручную или в автоматическом режиме. Если установлен прибор, оснащенный сильфоном, шток возвращается в исходное положение после того, как характеристики рабочей среды изменятся. Электронные устройства взаимодействуют с термостатом. Этот элемент часто встраивается в конструкцию терморегулятора. Существует и другой вариант: устанавливают термостат на батарею отопления.

Рынок предлагает и более простые терморегуляторы — механического типа. Они оснащены вентилями и кранами. Подобные приборы отличаются примитивным устройством. Они содержат клапан, вентиль. Сильфон внутри конструкции отсутствует. Все действия по регулировке параметров теплоносителя и окружающей среды выполняет человек: если нужно, вентиль частично перекрывает просвет внутри клапана, что приводит к уменьшению объема теплоносителя. Когда воздух в помещении остынет, необходимо вернуть прибор в исходное положение.

Рекомендации по выбору

В зависимости от типа системы отопления и условий монтажа прибора, для управления потоком теплоносителя могут применяться комплекты клапан – термоголовка в различных сочетаниях. В однотрубных системах обогрева рекомендуется устанавливать клапаны с повышенной пропускной способностью и малым гидравлическим сопротивлением (маркировка изделия производства DANFOSS – RA-G, RA-KE, RA-KEW).

Та же рекомендация касается и двухтрубных самотечных систем, где теплоноситель циркулирует естественным образом, без принудительного побуждения. Если же схема обогрева – двухтрубная с циркуляционным насосом, то следует выбрать клапан с возможностью регулировки пропускной способности (маркировка DANFOSS – RA-N, RA-K, RA-KW). Эта регулировка производится достаточно просто и специальный инструмент для нее не нужен.

Когда вопрос с подбором клапана решен, нужно определиться с типом термоголовки. Они предлагаются в следующих исполнениях:

  1. С внутренним термоэлементом (как на схеме, представленной выше).
  2. С выносным температурным датчиком.
  3. С внешним регулятором.
  4. Электронные (программируемые).
  5. Антивандальные.

Обычный терморегулятор для радиаторов отопления с внутренним датчиком принимается к установке, если есть возможность расположить его ось горизонтально, чтобы воздух помещения свободно омывал корпус прибора, как показано на рисунке:

Если горизонтальный монтаж головки невозможен, то лучше приобрести к ней выносной датчик температуры в комплекте с капиллярной трубкой длиной 2 м. Именно на таком расстоянии от радиатора можно расположить данное устройство, прикрепив его к стене:

Помимо вертикального монтажа для покупки выносного датчика бывают и другие объективные причины:

  • радиаторы отопления с регулятором температуры находятся за плотными шторами;
  • в непосредственной близости от термоголовки проходят трубы с горячей водой либо присутствует другой источник тепла;
  • батарея стоит под широким подоконником;
  • внутренний термоэлемент попадает в зону сквозняка.

В комнатах с высокими требованиями к интерьеру батареи зачастую прячут под декоративными экранами из различных материалов. В таких случаях попавший под кожух терморегулятор регистрирует температуру скапливающегося в верхней зоне горячего воздуха и может целиком перекрыть теплоноситель. Мало того, полностью закрыт доступ к управлению головкой. В этой ситуации выбор следует сделать в пользу выносного регулятора, совмещенного с датчиком. Варианты его размещения показаны на рисунке:

Электронные термостаты с дисплеем также бывают двух видов: со встроенным и съемным блоком управления. Последний отличается тем, чтоб электронный блок отсоединяется от термоголовки, после чего она продолжает функционировать в обычном режиме. Назначение подобных устройств — регулировка температуры в помещении по времени суток в соответствии с программой. Это позволяет снижать отопительную мощность в рабочее время, когда дома никого нет и в прочих подобных случаях, что приводит к дополнительной экономии энергоресурсов.

Когда в доме есть маленькие дети, которым все хочется попробовать своими ручками, лучше установить терморегулятор антивандального типа с кожухом, предохраняющим настройки прибора от неквалифицированного вмешательства. Это касается и термостатов, стоящих в других общественных зданиях: детских садах, школах, больницах и так далее.

Устройство и предназначение

Если установлен регулятор температуры воды в системе отопления, он подстраивается под создавшуюся потребность скорость прохода теплоносителя в радиатор. Смонтировав подобное устройство вместе со счетчиком тепла, можно сэкономить и сократить непроизводительный расход энергии. В зависимости от потребностей и возможностей жильцов стоит покупать модели с ручным программированием температуры на день и на ночь либо с заранее запланированными параметрами микроклимата на конкретные дни. Эти функции могут сочетаться между собой. Тогда удастся как исключить лишний прогрев в теплые часы, так и оперативно подготовиться к приближающимся морозам или оттепелям.

Различия выражаются во многом по тому, каким конкретно образом реализован термодатчик, каков его основной принцип работы. Часть моделей измеряет температуру воздуха в комнатах, а другие ориентируются на прогрев воды в магистрали. На точности измерения и подстройке под реальную потребность это не отражается. Главное, чтобы были учтены все нюансы и тонкости. Слишком точная аппаратура в большинстве случаев не нужна, так как она только нагружает личный бюджет.

Каждое помещение может оборудоваться своим термостатом, допускается даже применение устройств различных марок и моделей. Сигнал на управляющее реле может поступать от датчика, измеряющего температуру теплоносителя в радиаторах. Но такая схема считается устаревшей и не отвечает последним техническим требованиям. Терморегулятор несовместим принципиально с батареями из чугуна. Лишь если в помещении установлены радиаторы более современного образца, допускается применять его.

Нужно понимать, что терморегуляторы не являются каким-то «волшебным» средством; с их помощью нельзя извлечь из отопительной системы больше энергии, чем она способна подать. А вот сократить потребление тепла либо увеличить его до максимума по мере необходимости они вполне способны. Типичная конструкция включает не только вентиль и блок, принимающий сигналы с пульта управления. Очень важными элементами оказываются термический клапан и термоголовка. Подбор деталей производится сообразно величине трубопровода и типу обогревательной системы.

Кроме уже названных компонентов, в состав терморегулятора могут входить:

  • разборное соединение;
  • золотник;
  • компенсирующий блок;
  • накидываемая гайка;
  • закрепляющее кольцо;
  • шкала, по которой настраивается температура.

Запорно-регулирующая арматура и ее особенности

Шаровый кран

Запорная арматура такого вида пригодна только для полного отключения радиатора, так как функционирует в режиме – «открыто и закрыто». Данное приспособление не наилучший вариант для корректировки температурных значений. Теоретически – да, он может выполнять эту функцию, но практически – быстро выйдет из строя и потребует ремонта или полной замены.

Дело в том, что твердые микрочастицы железа и прочих мусорных включений, которые курсируют по трубам вместе с водой, неизбежно оставляют повреждения, в виде царапин, на гладко полированном шаровом механизме. Вследствие чего, у крана, находящегося в промежуточном состоянии, нарушается герметичность.

Шаровый кран

Конусный вентиль

Хороший и бюджетный по стоимости способ решить проблему регулировки температуры батареи. Он отлично справляется с задачей смены интенсивности подачи теплоносителя, но минусом его выступает то, что все подобные операции придется проделывать в ручном режиме. Разметка на данном устройстве не предполагается, поэтому подбирать оптимальное положение вентиля нужно будет опытным путем.

Вентили регулировки

Виды термостатов

Все три вида комплектующих изменяют температуру методом количественного объема горячей жидкости в батареях – при увеличении скорости протока последнего, в батарее температура повышается, при обратном действии – понижается.

Установка и регулировка

Терморегулятор работает хорошо, когда его установка выполнена по всем правилам и учетом некоторых нюансов. Чтобы его работа была эффективной, долговечной, корректной, необходимо изначально обеспечить свободный доступ, особенно если это приборы механического управления. Терморегулирующий элемент автоматического вида нельзя закрывать занавесками либо радиаторными экранами. От этого анализ температурных колебаний может иметь погрешности.

Перед непосредственной установкой терморегулятора из отопительной системы сливают всю воду. Подготавливают необходимый инвентарь и монтажный комплект для подключения, не забывая про комплектующие. Монтаж прибора нужно выполнять перпендикулярно по отношению к расположению панели радиатора. Стоит помнить, что направление потока теплоподачи должно совпадать с направлением стрелки терморегулятора.

Если положение термоголовки после монтажа будет вертикальным, это отразится на корректности работ сильфона. Однако данный нюанс не имеет отношения к приборам с выносным датчиком либо внешним блоком управления. Нельзя монтировать терморегулятор там, где на него будут постоянно попадать солнечные лучи. Кроме того, не всегда корректна работа устройства, если его местоположение находится рядом с крупной бытовой техникой с тепловым излучением. То же правило касается и вариантов скрытого типа, которые маскируют внутрь ниш для повышения эстетической привлекательности интерьера помещения.

Как делать?

Если во время подключения отопления в квартире или доме нет, необходимо открыть терморегулятор полностью. Это избавит клапан от деформирования, а регулятор – от засорения. Если монтаж выполняют в частном доме с двумя и более этажами, работу начинают с верхнего, поскольку теплый воздух всегда поднимается

Важно учесть и помещения, где колебания температуры более выражены. К ним относят кухню, комнаты, залитые солнцем, и помещения, где часто собираются домочадцы

Независимо от схемы, терморегулятор всегда устанавливают на трубе подачи. Пока клапан не готов, термоголовку не вынимают из упаковки. Трубы подводки, расположенные горизонтально, обрезают на нужном расстоянии от батареи. Если на батарее ранее был установлен кран, его отсоединяют. От клапана, а также запорного элемента откручивают хвостовики с гайками. Их фиксируют в пробки радиатора отопления.

Трубную обвязку после сборки в выбранном месте крепят к горизонтальным трубам подводки стояка. Клапан прикручивают к входу батареи, следя за тем, чтобы его положение было горизонтальным. Можно перед ним вмонтировать в системы шаровой кран

Это позволит упростить замену терморегулятора при необходимости, будет его профилактикой повышенной нагрузки, что важно при эксплуатации вентиля в качестве запорной арматуры

Клапан соединяют с магистралью, подающей теплоноситель

После этого открывают воду, заполняют ею систему и проверяют герметичность соединений, что особенно важно, когда нужно поставить прибор на старые батареи. Никаких подтеканий и просачивания воды быть не должно

Это нужно устранять путем подтягивания мест креплений. По мере необходимости выполняют предустановку клапана. Для нее оттягивают стопорное кольцо, после этого совмещают метку с необходимым делением. После этого кольцо стопорят.

Остается установить на клапан термоголовку. При этом ее могут крепить посредством накидной гайки либо защелкивающим механизмом. Устанавливать терморегулятор на батарею можно в том случае, если материалом ее изготовления является алюминий либо сталь, а также если конструкция радиатора биметаллическая. Чугунные характеризуются высокой тепловой инертностью, поэтому для таких батарей нет смысла устанавливать данные приборы.

Как настроить?

Если необходимо настроить терморегулятор во избежание путаницы в работе датчика, нужно изначально создать правильные условия в конкретном помещении.

Проводить работу можно по следующей схеме:

  • закрывают окна, двери, выключают имеющиеся кондиционеры или вентиляторы;
  • в комнате кладут термометр;
  • клапан для подачи теплоносителя открывают полностью, поворачивая влево до упора;
  • через 7-8 минут радиатор перекрывают, поворачивая клапан до упора вправо;
  • ждут до тех пор, пока понижающаяся температура не станет комфортной;
  • плавно открывают клапан до тех пор, пока не будет отчетливо слышен шум теплоносителя, указывающий на наиболее комфортные условия температурного фона помещения;
  • вращение прекращают, оставляя клапан в данном положении;
  • если нужно изменить комфортность температуры, используют регулятор термоголовки.

Как установить и настроить терморегулятор на радиаторе отопления, смотрите в видео ниже.

Электронные

Это более дорогое, но и при этом массивное приспособление. Оно предполагает наличие электронного табло и блока для установки аккумуляторов – батареек. Движение штока задается не температурными изменениями в сильфоне, а специальным датчиком.

В таком случае требуемый режим можно легко и удобно задать в любой момент времени, но придется регулярно отслеживать работоспособность батареек.

Различают:

  • Приспособления с закрытой логикой. В них можно менять только основные параметры.
  • Устройства с открытой логикой, допускающие возможность глубокого перепрограммирования.
  • Бытовые модели, работающие по принципу механических аналогов, но имеющие электронный дисплей.

Советы по выбору

Для того чтобы Ваше приобретение приносило ожидаемый результат на протяжении длительного периода, то к его подбору нужно отнестись с полным знанием дела. Ниже представлены общие рекомендации, как выбрать терморегулятор:

  • Автоматические устройства имеют значительно большую стоимость нежели ручные аналоги, но они и не требуют постоянного вмешательства со стороны человека;
  • Приобретая регулятор убедитесь в его соответствии с Вашей системой отопления;
  • Отдавайте предпочтение только проверенным производителям, которые имеют хорошие отзывы и характеризуются, как надежные. Сегодня список торговых марок настолько широк, что даже опытному сантехнику можно потеряться в выборе. Поэтому ниже представлена линейка наилучших брендов, чьи товары занимают ведущие позиции в разнообразных рейтингах: Valtek, Far, Danfoss, Oventrop, Caleffi, «Теплоконтроль». Каждый из них отличается модельным рядом, страной производителем и ценовым сегментом.
  • Качество оборудования должно подкрепляться соответствующими сертификатами и гарантийным сроком не менее трех лет.

Особенности установки

На сегодняшний день существуют термостаты с различным управлением – электрическим блоком и по типу прямого действия. Электроуправление подразумевает два вида регулировки:

  • Отправку импульса клапанам, размещенным на подающих трубах, непосредственно перед обогревателями;
  • Посыл сигнала на автоматику котла или тепловых насосов.

Термостаты прямого спектра действия монтируются на трубу подачи теплой жидкости перед обогревательным прибором. Значение градусов настраивается простым перекрывание/открыванием потока подачи теплоносителя.

Внутреннее устройство терморегуляторов

Для наиболее эффективной работы устройства, необходимо знать, как и где оно ставится, как происходит настройка, как им пользоваться и остальные нюансы, как правило, изложенные в инструкции. Далее приведены общие требования к монтажу подобного оборудования:

  • К механическим терморегуляторам должен быть обеспечен свободный доступ, для удобства их регулировки;
  • Нельзя отопительный прибор, оснащенный автоматическим термостатом, закрывать декором и гардинами, так как возможна погрешность в его работе;
  • Перед монтажом устройства, рекомендовано изучить схему установки, и если работы выполняются на действующей системе отопления, то необходимо слить теплоноситель;
  • Термостат ставится перпендикулярно к корпусу батареи, направление стрелочки на аппарате должно четко совпадать с направлением потока приходящего теплоносителя;
  • На время отключения отопительной системы, регуляторы открываются полностью.

Схема установки

Порядок действий

После того, как система осталась без теплоносителя, можно выполнять следующие шаги:

  • Отрезаются трубы подводки теплоносителя и демонтируется запорная арматура, установленная раннее;
  • Производится отсоединение наконечников с гайками крепления от термостата, далее их вкручивают в места пробок радиатора отопления;
  • Собранную, таким образом, обвязку из труб монтируют в заранее намеченном месте;
  • Соединяют подводные трубы от стояка с обвязкой;
  • Производят настройку оборудования.

Специфика монтажа

Монтаж автоматического устройства в отопительную систему с однотрубным контуром выполняется с некоторыми нюансами – нужно будет поменять схему подключения батареи, путем установки обходной перемычки. Такая труба-перемычка, именуемая байпасом, соединяет линии подачи и обратки радиатора и позволяет не нарушать циркуляцию главного потока горячей жидкости.

Монтаж термостата

В двухтрубном контуре термостат отопителя монтируется на трубу подвода, как правило, находящуюся сверху. Такая установка выполняется намного проще нежели в вышеописанном способе и не требует конструктивных вмешательств в саму систему отопления.

Принцип работы

Механический клапан термостатический для радиатора начинает работать с подпора сильфоном штока. Шток раскрывает просвет трубопровода. Как только температура вещества внутри сильфона растет, он давит на шток, планомерно опуская его. Потому сечение в проходе канала закрывается. Через радиатор проходит все меньше воды либо антифриза, а та жидкость, которая есть внутри, неизбежно остывает. Так как тепловой агент тоже теряет тепло, он переходит в начальную фазу и подтягивает вверх шток.

Так как после подъема штока поток теплоносителя вновь проходит внутрь радиатора без препятствий, цикл повторяется. Газовый тепловой агент отличается повышенным темпом реакции на температуру, но технологическая сложность его использования удорожает механизм. Жидкость не так быстро приспосабливается к нагреву или охлаждению, зато позволяет несколько удешевить аппарат. Впрочем, реальная разница при практическом использовании относительно невелика. Ведь регуляторы корректируют температуру с точностью от 1 градуса.

Виды терморегуляторов и принципы работы

Терморегуляторы разделяют на три вида:

  • механические, с ручной настройкой подачи теплоносителя;
  • электронные, управляемые выносным термодатчиком;
  • полуэлектронные, управляемые термоголовкой с сильфонным устройством.

Главное достоинство механических приборов — невысокая стоимость, простота в эксплуатации, четкость и слаженность в работе. Во время их эксплуатации нет необходимости использовать дополнительные источники энергии.

Модификация позволяет в ручном режиме регулировать количество теплоносителя, поступающего в радиатор, тем самым контролируя теплоотдачу батарей. Прибор отличается высокой точностью регулировки степени нагрева.

Существенный недостаток конструкции заключается в том, что в ней отсутствует разметка для регулировки, поэтому производить настройку агрегата придется исключительно опытным путем. С одним из методов балансировки мы ознакомимся ниже

Основные элементы регулятора механического типа — термостат и термостатический клапан

Механический терморегулятор состоит из следующих элементов:

  • регулятора;
  • привода;
  • сильфона, заполненного газом или жидкостью;

Вещество, содержащееся в сильфоне, играет ключевую роль. Как только положение рычага термостата меняется, вещество перемещается в золотник, тем самым регулируя положение штока. Шток под действием элемента частично перекрывает проход, ограничивая попадание теплоносителя в батарею.

Электронные термостаты — более сложные конструкции, в основе которого лежит программируемый микропроцессор. С его помощью можно задавать определенную температуру в комнате путем нажатия нескольких кнопок на регуляторе. Некоторые модели многофункциональны, пригодны для управления котлом, насосом, смесителем.

Строение, принцип работы электронного прибора практически не отличается от механического аналога. Здесь термостатический элемент (сильфон) имеет форму цилиндра, его стенки гофрированы. Он заполнен веществом, которое реагирует на колебания температуры воздуха в жилище.

По время повышения температуры происходит расширение вещества, в результате чего на стенки образуется давление, что способствует движению штока, который автоматически закрывает клапан. При движении штока проводимость клапана увеличивается или уменьшается. Если температура снижается, то рабочее вещество сжимается, в результате сильфон не растягивается, а клапан открывается, и наоборот.

Сильфон обладают высокой прочность, большим рабочим ресурсом, выдерживают сотни тысяч сжатий на протяжении нескольких десятков лет.

Основной элемент электронного регулятора — термодатчик. В его функции входит передача информации о температуре окружающей среды, в результате чего система генерирует необходимое количество тепла

Электронные терморегуляторые условно разделяют на:

  • Закрытые терморегуляторы для радиаторов отопления не обладают функцией автоматического определения температуры, поэтому они настраиваются в ручном режиме. Отрегулировать возможно температуру, которая будет поддерживаться в комнате, и допустимые колебания температуры.
  • Открытые термостаты можно запрограммировать. Например, при понижении температуры на несколько градусов режим работы может измениться. Также возможно настроить время срабатывания того или иного режима, отрегулировать таймер. Используются такие приборы преимущественно в промышленности.

Электронные регуляторы работают от батареек или специального аккумулятора, который идет в комплекте с зарядкой.

Полуэлектронные регуляторы идеально подходят для бытовых целей. Они идут с цифровых дисплеем, который отображает температуру помещения.

Принцип действия полуэлектронных устройств для регулировки теплоотдачи радиатором позаимствован из механических моделей, поэтому его регулировка осуществляется вручную

Советы по установке и выбору

  • Необходимо быть осторожными, устанавливая датчик, так как в его конструкцию входят и хрупкие детали.
  • Используйте инструкцию от производителя.
  • Клапан устанавливается в отверстие пробки радиатора.
  • Расположите термостат в горизонтальном направлении.
  • Устанавливать клапан надо в соответствии с указанием стрелок.
  • Перед покупкой следует определиться с типом конструкции.

Электронный терморегулятор

  • Если самостоятельно устанавливать терморегулятор вы не можете или не хотите, обратитесь к профессионалам.
  • Настроить прибор следует вначале в закрытом помещении с плотно запертыми окнами и дверьми.

Регулировка температуры

Таким образом, терморегулятор – очень полезная и нужная вещь, которая позволяет регулировать вам температуру воздуха в помещении, а также экономить. Неэффективно использование прибора только на чугунных батареях, во всех остальных случаях он быстро себя окупит.

Правильная установка электронного варианта

Чтобы вам было проще осуществлять самостоятельный монтаж терморегулятора, предлагаем посмотреть следующий видеоматериал.

Увеличение теплоотдачи батарей

Мы выяснили, как настраивать температуру радиаторов отопления с помощью терморегуляторов. Однако следует учитывать, что все приспособления для регулировки могут уменьшать степень нагрева отопительного прибора, но не способны заставить его отдавать большее количество тепла.

Если радиаторы в квартире нуждаются не в снижении, а в увеличении температуры, можно прибегнуть к мерам, способным изменить ситуацию.

  1. Минимальное вмешательство, которое поможет батареям стать горячее, – это прочистка труб и фильтров и освобождение радиаторов от воздушных пробок.
  2. Изменение схемы подключения. Наиболее эффективным считается диагональный монтаж отопительных элементов, самые большие теплопотери наблюдаются при нижнем подключении.
  3. Добавление дополнительных секций.
  4. Установка в радиатор ТЭНа.

Настройка и эксплуатация

Пользоваться температурными датчиками можно, в принципе, уже с промышленными настройками. Но они почти наверняка будут отличаться от оптимальных параметров. Корректировка начинается с запуска отопительной системы без регулятора и с замера создающейся температуры. Этот замер производится строго в том месте, которое необходимо обслуживать в первую очередь. К сведению: при настройке двери и окна основательно закрывают, не оставляя даже небольших щелей.

Головная часть термостата выставляется на режим, обеспечивающий полностью открытый просвет. Как только температура превзойдет желаемый показатель на 5 градусов, регулятор переключают в закрытое положение. Обнаружив падение температуры до наиболее приемлемого уровня, следует плавно открывать регулирующее устройство. Тогда, заметив шум и начало прогрева радиатора, следует остановить дальнейшие манипуляции и записать текущее положение регулятора. Впоследствии, чтобы жить с комфортом, придется указывать именно такое положение регулятора.

Конечно, некоего универсального положения его не будет. Дополнительные настройки выполняются при смене сезона или при резком похолодании (оттепели). Если настройка устройства будет производиться вручную, желательно сразу монтировать его там, где доступ окажется удобнее всего. Впрочем, для автоматизированных систем то же самое правило действует в большинстве случаев. Ведь доступ понадобится все равно для монтажа, первичной настройки, обслуживания, ремонта и последующего демонтажа.

Перед настройкой рекомендуется отключать вытяжки и кондиционирующее оборудование. Если регулятор выполнен на основе современной электроники, настройка сводится к выбору режимов теплоснабжения. В загородном жилье и на дачах выбирают чаще всего интенсивный прогрев в выходные дни и профилактику заморозки системы в будни. Конечно, в зависимости от индивидуальных потребностей ситуация может быть совсем иной. Остальные нюансы настройки зависят от особенностей применяемого оборудования.

Электронные терморегуляторы

Максимальным функционалом обладают электронные устройства, оснащенные блоком управления, как на следующем фото. В него, помимо электронного температурного датчика, входят микропроцессорная схема и панель с кнопками и дисплеем. Запорная головка перемещается с помощью механического реле с электрическим приводом по сигналу, поступающему от управляющей схемы.

Такие терморегуляторы позволяют не только поддерживать требуемую температуру с максимальной точностью, но и дают возможность программировать их работу. Например, ежедневно в будние дни во время отсутствия в квартире жильцов степень нагрева приборов автоматически снижается, а перед приходом хозяев комнаты снова будут прогреваться до оптимальной температуры.

Советы

Можно учесть несколько полезных рекомендаций, которые помогут в установке терморегулятора для отопления батареи.

  • Для двухтрубной системы предпочтительно нижнее боковое подключение с выносным датчиком на байпасе вверху радиатора.
  • Угловой клапан можно монтировать, в том числе для бокового и диагонального подключения.
  • Базовая потребность для обогревания комнаты зависит от метража помещения и высоты потолка.
  • Для компенсации тепловых потерь нужно утеплить перекрытия, контактирующие с улицей (выполнить теплоизоляцию).
  • Уровень высоты от пола до устройства при монтаже должен составлять не менее 80 см.
  • Схема монтажа должна быть правильной, иначе можно не рассчитывать на высокую эффективность терморегулятора.
  • Если при установке замечено подтекание в месте выхода штока из корпуса клапана, проблема может заключаться в сальниковом уплотнении.
  • При монтаже прибора с установкой кольца совпадение риски с нужным значением обязательно.
  • Расположение термоголовки должно быть таким, чтобы ее шкалу было видно.
  • Факторами, оказывающими влияние на терморегулятор, являются вспомогательные источники тепла, лучи солнца, а также сквозняки.

Итоги

Регулировка батарей отопления возможна с использованием разных устройств, но правильно это делать нужно при помощи специальной регулирующей арматуры. Это ручные регуляторы (краны) и автоматизированные — термостаты, в некоторых вариантах возможно использование трехходового клапана с термоголовкой.

В каком случае что использовать? В многоэтажных квартирах с централизованным отоплением предпочтительнее трехходовой клапан и регулировочные краны. А все потому, что зазор в термостатах для теплоносителя не очень широк, и при наличии в теплоносителе посторонних частиц он быстро засоряется. Потому их рекомендуют использовать в системах индивидуального отопления.

Если в квартире очень хочется автоматическую регулировку радиатора, можно до термостата поставить фильтр. Большую часть примесей он будет задерживать, но придется его регулярно промывать. Как почувствуете, что радиатор стал чересчур холодным, проверьте фильтр.

В частных домах с регулировкой батарей все просто: что вам больше подходит, то и ставьте.

Виды радиаторов отопления, тип подключения, регулировка температуры.

03.06.2016Виды радиаторов отопления, тип подключения, регулировка температуры.ТД ВиКоКомпания «ТД ВИКО» подготовила очерк, который описывает, как устранить распространенные причины плохой регулировки температуры радиатора отопления, прояснит принципы подключения радиаторов отопления и расскажет про специальные краны, которые позволяют производить калибровку радиатора.  
.

Отопление радиаторами применяется практически в каждом доме и квартире. Однако  мы никогда не задумываемся о том, в каком варианте подключения батарея будет  греть лучше. Или в большинстве случаев клиенты, поставив радиатор отопления с шаровыми кранами по старинке, не могут понять, почему их батарея не отдает должным образом необходимую температуру, не поддается плавной регулировке. В этой статье наша компания постарается Вас просветить в вариантах подключения радиаторов отопления, видах кранов, которые можно подключить к батарее, опишем преимущества вентилей для радиаторов отопления и объясним причины некорректной регулировки температуры батареи.

Вы готовы начать впитывать силу просветления? Тогда начнем.

Виды радиаторов отопления.

На текущий момент распространено четыре вида батарей:

  • Алюминиевые радиаторы

  • Биметаллические радиаторы

  • Чугунные радиаторы

  • Стальные радиаторы

Алюминиевые радиаторы

Такой вид радиаторов применим для не высотных домов и коттеджей.  По своим характеристикам имеют довольно хорошую теплоотдачу, однако, ввиду свойств самого металла «сплава алюминия» обладает средней  динамичностью к перепадам температур внутри помещения. Конечно, такие радиаторы не рекомендуется использовать в системах центрального водоснабжения, так как в связи наличия агрессивных сред в жидкостях  центрального водоснабжения этот вид радиаторов отопления очень сильно подвержен коррозии. В результате даже очень хорошие радиаторы прослужат максимум 2-3 года. Их просто разъест изнутри, солями, содержащимися в центральном водоснабжении. Исключение составляют новые высотные дома, имеющие собственные котельные. 

Зато использование алюминиевых радиаторов идеально подходит для отопления своих домов и коттеджей. Хорошие итальянские радиаторы «GLOBAL» дают  теплоотдачу 182 Вт при температуре 70 градусов Цельсия. Таким образом, 1 секция высотой 500мм способна обогреть 1,75 кв.м. помещения.  Радиаторы китайского производителя (качественный заводской китай «ROMMER») способны давать 175 Вт при температуре теплоносителя 70 градусов Цельсия, т.е. мы сможем обогреть 1,67 кв.м. помещения одной секцией радиатора высотой 500мм. Все алюминиевые радиаторы отопления способны выдержать давление до 16 атм. Вроде бы разность небольшая, но качественный итальянский радиатор прослужит до 10 лет гарантированно, при условии использования качественного теплоносителя.

Биметаллические радиаторы

Выполнены из стальной сердцевины, покрытой поверх алюминиевым сплавом. Такой вид радиаторов отопления уже не так подвержен коррозии. Это позволяет применять такие радиаторы в центральном отоплении, а стальная сердцевина увеличивает давление, выдерживаемое радиатором. Например, итальянские радиаторы «GLOBAL» выдерживают давление до 35 атм, а специальный способ соединения стальных трубок секции позволяет на 100% быть уверенным, что места соединения никогда не потекут. Дело в том, что перед тем, как приварить сердечник к несущей теплоноситель части, трубка вплавляется трением (притирается), а затем происходит поверхностная сварка автоматом, что дает 100% качество и герметичность соединения. Радиаторы «GLOBAL» рассчитаны на установку в многоэтажных зданиях высотой от 20 этажей и выше.   

 
Конечно, было бы идеально, если бы все компании так соединяли стальной сердечник, но к великому сожалению большинство китайских производителей сваривают некачественно, экономя на материалах и проверке на качество шва. Хороших производителей биметаллических радиаторов отопления из Китая тяжело найти, и есть вариант наткнуться на некачественную подделку. Наша компания может предложить хорошие и качественные биметаллические радиаторы отопления «ROMMER» от Китайского производителя. Эти радиаторы производятся на специализированных заводах в Китае под должным контролем качества. Конечно же, цена таких радиаторов будет повыше, подделок, но продавая их Вам, мы будем уверены, что такой радиатор, отапливая Ваш дом, оправдает затраты.

Теплоотдача биметаллических радиаторов чуть ниже алюминиевых, ввиду того, что имеется стальное наполнение. Это позволяет увеличить динамичность теплоотдачи биметаллических радиаторов, что положительно сказывается на экономии в плане нагрева и поддержания температуры в помещении. Так итальянский биметаллический радиатор «GLOBAL» высотой 500мм выдает 172 Вт на секцию, а биметаллические радиаторы «ROMMER» дадут 165 Вт на секцию. Таким образом, выходит что “GLOBAL” сможет обогреть 1,7 кв.м., а “ROMMER” до 1,6 кв.м. помещения. Устанавливая биметаллический радиатор, можно смело рассчитывать, что такой радиатор выдержит давление в 25 атм.

Чугунные радиаторы


Выполняются методом литья. У этого вида радиаторов хорошая коррозионная стойкость. Но благодаря высокой динамичности нагрева они отлично подходят для обогрева помещений, где имеется частые перепады температуры в помещении. Например, коридоры, входные группы помещений и пр. помещения. Ввиду отсутствия ребер теплоотдачи, такие радиаторы обладают малой теплоотдачей, примерно 150 -160 Вт на секцию. Высокая динамичность нагрева также сказывается на скорости прогрева помещения, но такой минус с легкостью перерастает в плюс, когда радиатор нагревается до рабочей температуры и помещение прогревается, то такой радиатор начинает меньше потреблять тепловой нагрузки. В результате затрата на обогрев компенсируется малым тепловым потреблением при поддержании температуры.

Компания «ТД ВИКО» предлагает чугунные радиаторы серии «МС-140».  Также помимо стандартных отечественных вариантов на рынке систем отопления можно встретить чугунные радиаторы импортных производителей, конечно, они могут уже выглядеть феерически, но и стоимость их тоже не очень маленькая.

Стальные радиаторы


В отличие от алюминиевых и биметаллических радиаторов – стальные радиаторы обладают эстетичным видом. Это не плюс, но приятный вид панели в стиле эстетики очень привлекателен. В отличие от обычных радиаторов, такие радиаторы работают по другому принципу. Новшества компании «KERMI» позволяют отапливать помещение всего при температуре теплоносителя выше 54 градусов Цельсия. Такие радиаторы подключаются либо снизу, либо с боку. Такое исполнение подключения дает возможность спрятать подводящие части и создать вид, что батарея является неким элементом стены. В таких радиаторах уже имеются все элементы регулировки температуры и сброса воздуха. Радиаторы выполнены так, что все тепло отдается ребрам циркуляции воздуха внутри радиатора, а наружные элементы батареи нагреты минимально. Такой подход позволяет максимально отдавать тепло. Стальной  радиатор отопления нельзя накрывать, так как он просто перестанет греть. В отличие от стандартизации алюминиевых и биметаллических радиаторов, стальные радиаторы делятся не только по высоте и толщине радиатора, но еще и по длине радиатора.  Например, маркировка радиатора «KERMI» Kermi Profil-K FKO 22/300/600  означает, что радиатор имеет боковое подключение (серия FKO) толщину радиатора 44мм (22мм до центра), высота радиатора 300мм и длинна радиатора 600мм. Тепловая мощность такого радиатора по каталогу составит 1022 Вт/м. В результате мы получаем 10,22 Вт/см, следовательно, стальной радиатор длиной 600мм выдаст мощность в 613,2 Вт, и Вы сможете обогреть 6 кв.м.

Такой вид радиаторов уже не боится коррозии, как алюминиевые радиаторы. Поэтому их уже можно применять в центральном отоплении. Однако ввиду тонких стенок радиаторов рабочее давление составляет всего 10 атм, а максимальное 13 атм.

Подключение радиаторов отопления

От типа подключения радиатора отопления зависит его теплоотдача. Мы предлагаем  ознакомиться с распространенными видами подключения, для двухтрубной и однотрубной систем отопления.

Двухтрубная система отопления:


Такой вид подключения наиболее распространен. Большинство подключений такого вида используется в многоквартирных домах. КПД по теплоотдаче составляет примерно 60-80% от общей температуры теплоносителя. Допустим, радиатор в 10 секций с мощностью секции 180 Вт, сможет обогреть помещение площадью не 18 кв.м., а намного меньше примерно от 13 до 15 кв.м.


Наиболее практичный вид подключения, позволяет использовать радиатор практически на 102%. Допустим, радиатор в 10 секций с мощностью секции 180 Вт, сможет обогреть помещение площадью примерно в  19 кв.м.

Похож на первый вариант подключения. Удобен тем, что краны располагаются в нижней части радиатора. Однако КПД радиатора с таким подключением намного меньше и составит примерно 40-60%. Допустим, радиатор в 10 секций с мощностью секции 180 Вт, сможет обогреть помещение площадью не 18 кв.м., а намного меньше примерно от 8 до 10 кв.м.

Эти характеристики применимы к двухтрубной системе отопления, но что если у Вас однотрубная система отопления. Например многоквартирный дом, где имеется стояк отопления. Тогда значения совсем становятся другие.

Однотрубная система отопления:


Боковое подключение с  КПД по теплоотдаче составляет около 80% от общей температуры теплоносителя. Допустим, радиатор в 10 секций с мощностью секции 180 Вт, сможет обогреть помещение площадью не 18 кв.м., а немного меньше около 15 кв.м.

 

Значения по силе обогрева останутся те же, в пределах 100-102%

Теплоотдача радиатора в плане КПД с таким подключением в однотрубной системе отопления составит примерно 60-75%. Допустим, радиатор в 10 секций с мощностью секции 180 Вт, сможет обогреть помещение площадью не 18 кв.м., а намного меньше примерно от 10 до 14 кв.м.

Регулировка температуры радиатора

Вроде бы все хорошо, но что, если Вы решили прикрыть свой радиатор отопления, и оказалось что он не поддается регулировке? Как грел на полную, так и греет. Поставить байпас параллельно радиаторным кранам? Да конечно это верный и необходимый вариант подключения, особенно, если у Вас многоэтажный дом. Ведь если не будет стоять байпас, то вы оставите без отопления верхние этажи. Скажете, а ну и ладно? Да возможно Вы брюзга, но и это Вам не поможет. Рано или поздно ЖКХ его заставят установить. Тогда необходимо будет переделать всю подводку к радиатору отопления. 


Но есть более легкий вариант – установить кран для однотрубной системы от компании LUXOR M87 или LUXOR M300 + LUXOR M351 (для красивого бокового подключения). Эти краны не только позволят регулировать температуру радиатора вручную, но и позволит балансировать пропускную способность через радиатор горячего теплоносителя, что избавит от эффекта грубой регулировки температуры радиатора отопления. Также есть виды кранов с автоматической регулировкой температуры – такие краны называются ТЕРМОСТАТИЧЕСКИЕ. Например, аналог LUXOR M87 – кран  LUXOR MT282 и аналог LUXOR M300 – кран LUXOR M320.

А что, если у вас стоят шаровые краны? Такими кранами можно максимум «отрегулировать температуру радиатора только тремя» положениями: максимальный нагрев, 50% (если удастся поймать), радиатор отключен. Еще необходимо помнить то, что шаровые краны рассчитаны на работу, открыт или закрыт и не более. Частые повороты ручки выведут кран из строя и приведут к течи.

В таких ситуациях, когда Вам предлагают специальные краны для радиаторов необходимо соглашаться и не слушать притворства «горе-сантехников». Ведь экономя на качестве кранов – вы обрекаете себя на дальнейшие муки.

В добавку, среди любителей старинных решений блуждает огромное заблуждение, о том, что такие вентиля и блок краны быстро выходят из строя. Давайте рассмотрим на примере крана итальянского производителя LUXOR.

Краны такой компании выполнены из специальной латуни, которая практически стойкая к коррозии. Все краны выполнены, так, что обеспечивают высокую герметичность и ремонтопригодность. В регулировке используется двойной шток, что предотвращает эффект заклинивания. Конец штока сделан под специальным углом по типу игольчатого регулирования, а для предотвращения протечки при забивании штока частицами грязи в центральном водоснабжении, используются два резиновых кольца из температуростойкой EPDM резины. Такая конструкция обеспечивает плотность до 95% при длительной эксплуатации в Российском водоснабжении. Уточним, что практически все качественные импортные производители гарантированно будут работать долго и качественно, все они делаются из практически идентичной марки сплава латуни и схожей конструкции, не ухудшающей их характеристики.

Давайте рассмотрим, в чем отличие кранов для радиаторов от шаровых кранов, ведь по стоимости они практически одинаковые.

Итак, для классических радиаторов отопления существует также два варианта кранов: с ручной регулировкой и автоматической. Также существуют уже готовые комплекты «блистеры», которые содержат уже два крана и термоголовку. Такой комплект позволяет корректировать температуру радиатора по температуре воздуха в помещении.  

Например, блистер LUXOR KT201 или LUXOR KT202. Единственное условие правильной работы такого регулятора – термоголовка должна быть установлена перпендикулярно стене (развернута на 90 гр. относительно радиатора).

В результате мы имеем два крана: первый позволяет регулировать температуру радиатора (вентиль), а второй же зачем? Скажете, что его назначение перекрывать радиатор при демонтаже? Да верно, но это не основное его предназначение. Поэтому заменять его шаровым краном нельзя!!!!

Второй кран называется БЛОК-КРАН. Он предназначен не только для перекрытия обратной от радиатора, но основное его назначение – балансировка пропускной способности теплоносителя через радиатор. Это позволяет при открытом полностью вентиле отрегулировать температуру в помещении, при которой будет тепло, но не жарко. В таком режиме «Вентиль» позволит плавно регулировать температуру радиатора.

Получается, что БЛОК-КРАН выставляет диапазон регулирования температуры вентиля. Что сильно влияет на точность и плавность корректировки температуры в помещении.

Например, у Вас стоит радиатор с вентилем и блок краном, который подключен к центральному отоплению. В период, сильных холодов температура центрального отопления нагревается очень сильно и частенько возникает желание убавить жар радиатора, Вы поворачиваете вентиль на половину, но радиатор продолжает жарить как прежде…. Ох ужас, что, же происходит? Вы убавляете далее, и результат достигнут батарея стала чуть меньше греть процентов на 50, решили еще убавить – эх перекрыли радиатор. Стало холодно L. В чем же причина? Дело в том, что через радиатор проходит слишком большой объем горячего теплоносителя и диапазон регулировки вентиля далеко за пределами регулировки радиатора. У каждого радиатора есть понятие динамичность теплоотдачи – этот параметр характеризует скорость нагрева и остывания радиатора при разных температурах помещения. Так как скорость протока через радиатор высокая, то даже прикрытый вентиль не позволяет ее снизить до диапазона, когда наступит баланс и радиатор начнет остывать.

Для таких целей и служит БЛОК-КРАН. Он позволяет убавить скорость протока теплоносителя, через радиатор, введя его характеристику нагрева под требуемое помещение, что позволит выставить максимальный проток через радиатор, при котором теплоотдача будет максимальной при открытом вентиле и минимальной при почти закрытом вентиле. Что соответственно позволит плавно регулировать температуру в помещении.

Также использование «БЛОК КРАНА» необходимо при наличии большого количества радиаторов подключенных параллельно магистрали отопления. Это избавит от эффекта потери тепла на удаленных радиаторах. Отрегулировав пропускную способность радиаторов, Вы заставите все радиаторы греть одинаково на всем участке магистрали. Конечно, будут потери в тепле, но они уже будут незначительные.

Компания «ТД ВИКО» предлагает вентили и блок краны разных диаметров и производителей. Весь список ассортимента Вы можете посмотреть по этой ссылке.


. Вы можете позвонить нашим менеджерам по телефону +7 (351) 222-10-92 и проконсультироваться по интересующим Вас вопросам. Сайт компании ВИКО: www.td-viko74.ru
«ВИКО» — инженерная сантехника в Челябинске

Возврат к списку

(Голосов: 6, Рейтинг: 4.59)

Выбор кранов для радиаторов отопления

Сегодня все чаще при обустройстве систем отопления устанавливаю краны на радиаторы. Это дает возможность проводить их настройку и облегчает обслуживание отопительных приборов.

Для чего нужен кран на батареи

Одной из составных частей системы отопления являются радиаторы. Для эффективной работы системы их нужно периодически настраивать и обслуживать. Своевременно изменяя расход воды, проходящей через радиатор при смене температуры воздуха на улице можно уменьшить потребление электроэнергии и сэкономить немало средств.

С помощью крана, установленного на радиатор можно при необходимости выполнить такие важные операции:

  • На время отсечь батарею от магистрали;
  • Ограничить поток воды, проходящей через радиатор;
  • При смене погоды изменить расход теплоносителя;
  • Устранить воздушные пробки в отопительном приборе.

Проблематично обслуживать отопительный прибор, который не оснащен запорной арматурой. Решить эту проблему достаточно просто, нужно купить шаровые краны и установить его на батареи. Для настройки работы обустроенной системы отопления проводиться ее балансировка. При наличии на радиаторах запорно-регулирующей арматуры можно перераспределить теплоноситель так, чтобы через каждый прибор он проходил в нужном объеме. При проведении балансировки ограничивают прохождение воды по батареи.

Если оснастить радиаторы кранами способными автоматически регулировать поток теплоносителя, поддерживая комфортную температуру в доме, то можно уменьшить расход энергоносителей, сэкономив тем самым немало средств. И наконец, воздушные пробки, нередко образующиеся в радиаторах при заполнении магистрали, быстро устраняются при наличии крана.

Разновидности запорно-регулирующей арматуры

При монтаже систем отопления используют различные виды запорно-регулирующей арматуры. Для выполнения какой-либо задачи необходимо выбрать подходящий вид арматуры. Из множества разновидностей подобной арматуры можно выделить:

  • Шаровой полуоборотный кран, позволяющий отсечь батарею от магистрали;
  • Кран балансировочный позволяет регулировать расход воды, проходящей через батарею;
  • Термовинтиль, изменяющий ток воды, нагревающей батарею;
  • Шаровой кран со спускным устройством позволяет быстро устранить воздушные пробки в радиаторе.

Все эти устройства подходят для решения задач по обеспечению эффективной работы отопительной системы.

Использование шаровых кранов в условиях высоких температур

Шаровые краны

часто являются экономичным решением для управления потоками на нефтеперерабатывающих заводах при высоких температурах, но их применение может быть сложным, особенно при высоких температурах.

Шаровые краны ( Рис. 1 ) часто являются экономичным решением для управления потоками в высокотемпературных установках нефтепереработки, но их применение может быть сложным, особенно при высоких температурах.

Рис. 1. Плавающий шаровой кран, устанавливаемый в условиях высоких температур.

Для целей этой статьи, «высокая температура» означает все, что превышает 400 ° F (204 ° C). Хотя API RP 615 определяет высокотемпературную работу клапанов с металлическим седлом как температуру выше 750 ° F (400 ° C), 400 ° F (204 ° C) является естественной переходной температурой, при которой разрушается большинство эластомеров и полимеров. Кроме того, некоторые более мягкие металлы, такие как алюминиевые сплавы, начинают ослабевать при повышении температуры.Большинство приложений нефтепереработки имеют температуру ниже 1500 ° F (816 ° C).

Обзор справочной документации по промышленным клапанам не поможет конечным пользователям понять все критические аспекты, связанные с конструкциями высокотемпературных клапанов, поскольку информация, содержащаяся в этих источниках, обычно носит общий характер, например, рекомендации о замене пластмассовых компонентов на металлические или графитовые. Клапаны общего назначения не могут быть перепрофилированы для работы при высоких температурах, поскольку для этих приложений требуется решение, в котором рассматриваются все части узла клапан / привод.

В этой статье рассматривается конструкция и испытания шаровых кранов для использования в высокотемпературных установках нефтепереработки. Конечные пользователи могут работать с поставщиками, чтобы применить эту информацию при выборе шаровых кранов.

Приложения

Для нефтепереработки требуется множество высокотемпературных процессов для разделения сырой нефти на товарные масла и дистилляты. Высокотемпературные клапаны не являются чем-то новым для отрасли, хотя приложения продолжают переходить в сторону более высоких температур.Шаровые краны не всегда были предпочтительным выбором. Однако шаровые краны с шаровой опорой и плавающие шаровые краны используются все чаще из-за эффективности потока и компактных форм-факторов. Вот некоторые из наиболее распространенных приложений и максимальных температур:

  • Сырье для гидрокрекинга: 650 ° F (343 ° C)
  • Нижний продукт дебутанизатора газовой установки: 650 ° F (343 ° C)
  • Установка гидроочистки: 750 ° F (399 ° C)
  • Катализатор гидрокрекинга: 950 ° F (510 ° C)
  • Кубовый остаток сырой нефти коксования, сырье для печи, коксовая суспензия, переключение барабанов, продувка и пар из верхнего погона: 970 ° F (521 ° C)
  • Обращение с катализаторами
  • CCR и FCCU, дымовой газ и остатки фракционирующей колонны: до 1400 ° F (760 ° C).

Паровая электростанция на нефтеперерабатывающем заводе может также потребовать множества клапанов для слива конденсата и вентиляционных отверстий с температурами, превышающими 1000˚F (538˚C). ASME TDP-1 требует, чтобы дренажные клапаны имели минимальное проходное сечение, эквивалентное 85% площади соседней трубы, что по существу отдает предпочтение полнопроходным шаровым клапанам для этих применений.

Характеристики трансмиссии

В условиях высоких температур плохо спроектированные клапаны могут быстро выйти из строя по нескольким причинам. Распространенный вид отказа — это заедание компонентов трансмиссии.В зависимости от степени заедания можно ожидать ускоренного износа металлических деталей или полного срыва вращения шара. Крутящий момент привода может превышать возможности трансмиссии, что приводит к срезанию шпонок, скрученному валу и / или деформированному шарику. Также может произойти отказ покрытия шара от седла ( Рис. 2 ).

Рис. 2. На шаре цапфы видно разрушение покрытия возле отверстия и опорной поверхности цапфы.

Трение трансмиссии увеличивается с повышением температуры.Во время нормальной работы крутящий момент может увеличиваться до двух раз по сравнению с тем, что наблюдается при температуре окружающей среды, что делает выбор привода критическим. Факторы, влияющие на это увеличение крутящего момента, включают смещение деталей из-за теплового расширения, теплового роста сложной геометрии и рассеивания сборочных смазок, таких как дисульфид молибдена. Металлические подшипники и графитовые уплотнительные кольца имеют более высокое трение, чем полимерные эквиваленты, а размягчение несущих частей приводит к более высокому трению и возможности истирания или износа.

Проблемы с отделкой

Компоненты трима в клапанном узле должны быть совместимы не только с жидкостью; они также должны выдерживать высокие нагрузки. Штоки клапана поглощают основную нагрузку крутящего момента, необходимого для приведения в действие клапана, поэтому они должны быть изготовлены из коррозионно-стойкого материала, который сохраняет высокий предел текучести и жесткости на кручение при повышенных температурах, например, Inconel 718, нержавеющая сталь 17-4 или Nitronic 50.

Поскольку шар и седла находятся в потоке, единственным вариантом является уплотнение металл-металл.Обеспечение плотной отсечки с металлическими седлами является более сложной задачей, чем с мягкими уплотнениями. Чтобы обеспечить герметичное соединение между шаром и седлами, необходимо контролировать следующие параметры: подгонку деталей, отделку поверхности и контактное напряжение, обеспечивающее требуемую отсечку без повреждения покрытия. Если конструкция не может удовлетворить этим требованиям, произойдет чрезмерная утечка через седло.

На металлические подшипники, особенно из нержавеющей стали, обычно наносят покрытие для уменьшения трения и минимизации износа.Чтобы снизить степень износа, следует уменьшить контактное напряжение между штоком и подшипниками. Некоторые материалы, такие как дуплексная и дисперсионно-упрочненная нержавеющая сталь, могут стать хрупкими при повышенных температурах. В экстремальных условиях можно использовать керамический трим и футеровку благодаря их превосходной стойкости к эрозии / коррозии и высокотемпературной стойкости.

Внутренние покрытия

Упрочнение внешних поверхностей различных компонентов отделки может продлить срок службы. Некоторые из наиболее распространенных методов закалки:

  • Карбид хрома и карбид вольфрама, наносимые высокоскоростным термическим напылением кислородного топлива, могут использоваться при температуре до 1 500 ° F (816 ° C).Карбид вольфрама является предпочтительным покрытием при температурах ниже 900 ° F (482 ° C) из-за его превосходной стойкости к истиранию и эрозии при более низких температурах. Значение твердости должно быть не менее 65 твердости по шкале Роквелла C (HRC).
  • Покрытия
  • могут быть наплавлены с помощью вторичной печи или ручной горелки, чтобы обеспечить надлежащее металлургическое соединение с подложкой, что исключает отслаивание покрытия. Эти покрытия особенно твердые, примерно 65 HRC, и сохраняют свою твердость в широком диапазоне температур.
  • Наплавленные швы из сплава
  • из сплава 6 могут использоваться при температуре до 1800 ° F (982 ° C), но обычно ограничиваются до 1000 ° F (538 ° C) из-за размягчения. Этот материал обладает многими желательными качествами, такими как хорошая устойчивость к коррозии, истиранию, окислению (независимо от температуры) и термическому удару. Типичная твердость сплава 6 составляет от 36 до 40 HRC.
  • Твердое хромирование рекомендуется для температур до 800 ° F (427 ° C). Его можно использовать при более высоких температурах, но его твердость уменьшается, когда температура превышает 800 ° F (427 ° C).Результаты лабораторных испытаний показывают, что хромирование теряет половину своей твердости при приближении температуры к 1200 ° F (649 ° C). Ожидаемая твердость хромирования составляет примерно 65 HRC.
  • Азотирование — это термохимический процесс твердения. В отличие от других процессов закалки, материал не наносится на основной металл. При азотировании внешняя поверхность детали упрочняется, и твердость уменьшается по мере продвижения внутрь детали. Азотированные детали можно использовать при температуре до 1500 ° F (816 ° C).

Общее качество покрытия зависит от состояния основного материала и его применения. Следовательно, покрытие следует оценивать путем тестирования, чтобы проверить его возможности. Один из способов добиться этого — провести испытания на износ при температуре (, рис. 3, ).

Рис. 3. Образцы износостойких покрытий колец и колодок, испытанные при повышенной температуре. Покрытие хорошо выдержало это испытание. Он имеет относительно гладкую, однородную полосу износа с минимальными признаками истирания.

Осевые линии и зазоры

Коэффициент теплового расширения материала — это среднее отношение изменения длины на градус температуры к длине при заданной минимальной температуре, выраженное в дюймах / дюймах / ° F или мм / мм / ° C. Например, когда сфера из нержавеющей стали 316 диаметром 10 дюймов и средним коэффициентом теплового расширения 9,7 × 10 –6 дюймов / дюйм / F нагревается от 70 ° F (21 ° C). до 500 ° F (260 ° C) он расширится до диаметра 10.042 дюйма. Поскольку этот коэффициент изменяется в зависимости от температуры, та же сфера расширится до 10,096 дюйма при 1000 ° F (538 ° C). Таблица 1 показывает некоторые коэффициенты теплового расширения для различных материалов и температур.

Поскольку разные материалы имеют разную степень расширения, выбор материала влияет на работу. К сожалению, распространенным и наихудшим примером клапана является трим из нержавеющей стали серии 300 в корпусе из углеродистой стали (A105). Хотя эта комбинация может обеспечить экономичное решение при температуре окружающей среды, гораздо более высокая скорость расширения нержавеющей стали может привести к расширению трима в корпус при высоких температурах, что приведет к заеданию трансмиссии.Лучшей альтернативой является использование трима F6a или Inconel 625 в корпусе из углеродистой стали.

Обеспокоенность, связанная с разными коэффициентами расширения, усугубляется тем фактом, что не все компоненты клапана имеют одинаковую температуру, поскольку температурные градиенты внутри клапана являются обычными. В условиях высоких температур это часто приводит к тому, что обвязка расширяется больше, чем корпус, что приводит к заеданию трансмиссии.

Дроссельные клапаны обычно открываются медленнее, что позволяет деталям в клапанном узле больше времени для выравнивания.Двухпозиционные клапаны имеют более высокую нагрузку, поскольку при переходе из закрытого в полностью открытое состояние возникает внезапный выброс горячей жидкости, но для устранения этой проблемы можно использовать перепускные клапаны меньшего размера.

Рекомендации по уплотнению штока

Невозможность использования большинства полимеров и эластомеров при температуре выше 400 ° F (204 ° C) представляет собой проблему при проектировании уплотнения. Графит стал обычным явлением для большинства высокотемпературных уплотнений, несмотря на его ограничения. Графитовая набивка штока может окисляться, уплотняться и / или выдавливаться, что приводит к преждевременной утечке через уплотнение.

Чтобы свести к минимуму окисление, температура набора сальников должна быть ограничена до 850 ° F (454 ° C) в окислительной среде и до 1200 ° F (649 ° C) в неокисляющих средах, таких как пар. Удержание уплотнительных колец ниже этого предела может быть достигнуто за счет использования удлинителей крышки и штока и / или фонарных колец, которые служат в качестве изоляторов. Как правило, любые операции по рафинированию при температуре выше 800 ° F (426 ° C) должны включать согласование с производителем уплотнительного кольца.

Консолидация — это заполнение внутренних пустот внутри кольца сальника и камеры сальниковой коробки, которые возникают во время первоначальной сборки колец сальника.Дополнительное уплотнение может происходить со временем, поскольку графитовые кольца продолжают уплотняться под нагрузкой и температурой.

Консолидацию можно минимизировать за счет использования графитовых колец высокой плотности, проектирования с учетом соответствующего напряжения уплотнения и использования процедуры сборки, направленной на сжатие каждого графитового кольца до его заданного напряжения, в отличие от одновременного сжатия стопки колец.

Экструзия происходит, когда части графитовых колец выталкиваются из коробки сальника из-за нагрузок, создаваемых шпильками сальника и / или давления технологической жидкости.Необходимо минимизировать зазор между штоком и корпусом / крышкой, чтобы ограничить степень выдавливания — трудная задача, учитывая, что эти материалы термически расширяются с разной скоростью. Если зазор слишком велик, кольца будут выдавливаться. Если зазор слишком мал, шток трется или заедает о корпус / крышку. Углеродные кольца или металлические шайбы могут быть установлены над и под набивкой для минимизации экструзии.

Проблемы с упаковкой

Рис.4. В графитовой набивке шарового крана с динамической нагрузкой используются пружины на штоке клапана для обеспечения постоянной нагрузки.

В набивке

с динамической нагрузкой используются пружины для создания постоянного напряжения в шпильках и кольцах набивки, чтобы компенсировать небольшие количества окисления, уплотнения и выдавливания. Пружины можно разместить над шпильками уплотнения и под гайками, хотя более крупные пружины, окружающие шток ( Рис. 4 ), обеспечивают более постоянную нагрузку с течением времени. Эти комплекты сальникового уплотнения с динамической нагрузкой выигрывают от периодической регулировки, а наилучшая производительность достигается при регулярном обслуживании.

Определение соответствующего крутящего момента для шпилек сальника имеет решающее значение для рабочих характеристик клапана. Шаровые краны в высокотемпературных приложениях испытывают вызванную потоком вибрацию и термические циклы, когда шар вращается из закрытого положения в открытое. Если момент затяжки болта слишком мал во время эксплуатации клапана, гайки сальника могут ослабнуть и вызвать утечку сальника. Чрезмерный крутящий момент болта приводит к чрезмерному крутящему моменту клапана, что может привести к тому, что клапан не будет работать, или вызвать поведение «залипания / проскальзывания» в регулирующем клапане, что приведет к плохому управлению потоком.

API 622 использует два теста для аттестации сальника клапана до 1000 ° F (538 ° C). При испытании на высокотемпературную коррозию используется приспособление для приложения сжимающего напряжения к набивке, погруженной в воду с температурой 300 ° F (149 ° C) при давлении 650 фунтов на квадратный дюйм (45 бар) в течение 35 дней в поисках точечной коррозии штока. Тест упаковочного материала измеряет потерю веса из-за окисления при температуре выдержки до 1000 ° F.

Комплекты сальников, прошедшие эти испытания, могут использоваться в шаровом клапане, испытанном по API 641 на неорганизованные выбросы, хотя это испытание ограничено до 500 ° F (260 ° C) из-за использования метана.Альтернативный международный тест на неорганизованные выбросы, ISO 15848, может соответствовать стандартному температурному классу 752 ° F (400 ° C) с гелием, хотя более высокие температуры могут быть проверены по соглашению между производителем и покупателем. Другие минералы, такие как слюда или вермикулит, могут использоваться в качестве набивки при температурах до 1800 ° F (982 ° C) и, в отличие от графита, не заедают в штоках клапанов из нержавеющей стали. Для этих специальных применений необходимо согласование с поставщиком упаковки.

Рекомендации по прокладке корпуса

Статические уплотнения имеют немного больше свободы в дизайне.Прокладки могут быть изготовлены из графита или металла, а графитовые прокладки могут быть плоскими или спирально намотанными. Прокладки из плоского листа сжаты и заключены между двумя металлическими поверхностями. Спирально-навитая прокладка является полуметаллической и состоит из спирально намотанной V-образной металлической полосы и графитового наполнителя (, рис. 5, ).

Рис. 5. Поперечное сечение спирально-навитой прокладки с чередующимися полосами обмоток из нержавеющей стали и графитового наполнителя.

Спиральные прокладки, используемые между фланцами труб, обычно имеют внутреннее и внешнее кольцо.Эти кольца обеспечивают центрирование, контроль сжатия и повышенную жесткость прокладки. Спирально-навитые прокладки, используемые внутри клапана в сборе, не имеют внутреннего и внешнего колец, поэтому эти прокладки считаются «специальными», потому что металлические обмотки должны обеспечивать жесткость, которую раньше обеспечивали эти кольца.

Проектирование прокладки с надлежащей жесткостью без потери ее герметизирующей способности становится все труднее по мере увеличения класса давления и размера прокладки. Спирально-навитые прокладки ограничены классом 2500 и могут быть собраны только один раз.После этого прокладка была слишком деформирована для повторного использования. Для получения надлежащего сжатия спирально-навитых прокладок требуются болты большего диаметра по сравнению с болтовым соединением, в котором используется уплотнительное кольцо или металлические кольца с отверстиями. Для прокладок графитового типа утечка в атмосферу может произойти при ослаблении нагрузки на болты.

Кольца с металлическими отверстиями ( Рис. 6 ) представляют собой уплотнения с автономным питанием и питанием от давления, которые представляют собой альтернативу прокладкам на основе графита. Уплотнительное кольцо зажимается между двумя сопрягаемыми частями, и когда половинки корпуса стягиваются вместе, в конечном итоге происходит контакт с кольцом.

Рис. 6. Металлическое уплотнительное кольцо с отверстием, зажатое между двумя половинами корпуса клапана.

К кольцу прилагается контролируемая сжимающая нагрузка, предотвращающая остаточную деформацию. Этот тип уплотнения обеспечивает несколько функциональных преимуществ. Он многоразовый, предотвращает утечку во время тепловых переходных процессов независимо от температуры и успешно используется в клапанах с номинальным давлением до CL4500.

Лабораторные испытания

Рис.7. Клапан, завернутый в тепловую ленту и изоляцию и снабженный несколькими термопарами.

Производственные испытания на целостность корпуса и герметичность седла в соответствии со стандартами ASME B16.34 и API 598 проводятся при температуре окружающей среды и не дают достаточного представления о работе клапана при повышенных температурах. Этот тип проверки требует тестирования производителем в лаборатории.

Испытание может включать нагрев клапана снаружи, либо в печи, либо завернутый в тепловую ленту ( Рис.7 ), а также испытания для проверки на утечку, крутящий момент и износ деталей. Термопары используются в нескольких местах клапана в сборе, чтобы обеспечить выравнивание температуры во всем.

Испытания обычно используют горячий воздух, гелий или метан в качестве технологической жидкости. Испытание паром, когда жидкость нагревает клапан изнутри, также может использоваться для измерения работы клапана при тепловом ударе, как это было бы при эксплуатации. Хотя это может лучше отражать температурные градиенты во время работы, пар может действовать как смазочная жидкость, что может снизить измеряемые крутящие моменты.

Промышленные испытания также могут использоваться для измерения высокотемпературной работы. API 641, ISO 15848-1 и Shell 77/300 измеряют неорганизованные выбросы при повышенных температурах, причем последний также учитывает утечки через седло во всем диапазоне температур. Испытания на огнестойкость API 607 ​​и API 6FA оценивают герметичность седла и внешней утечки, работоспособность и давление в полости после того, как сборка подвергается воздействию пламени в течение 30 минут.

Независимо от испытания, лабораторные условия отличаются от реальных приложений, потому что испытательные жидкости менее агрессивны и не содержат твердых частиц, которые могут вызвать износ.Температурные градиенты отсутствуют или меньше тех, которые будут наблюдаться при эксплуатации. В результате рекомендуется провести полевые испытания, чтобы подтвердить решение перед его применением в больших масштабах.

Прочие соображения

Номинальные значения «давление-температура» приведены для обычных материалов в стандарте ASME B16.34, при этом температура оболочки принимается за температуру жидкости. Хотя на бирке клапана может быть указана максимальная температура, это может относиться только к целостности корпуса и не гарантирует правильную работу при этой температуре.Важно, чтобы конечный пользователь сообщил поставщику диапазон температур, при котором клапан должен работать, а не только указать класс давления и материал.

Необходимость в наружных покрытиях сомнительна для высокотемпературных применений, при этом наибольшая выгода достигается за счет использования стальных клапанов во время транспортировки и простоя оборудования. Стальные клапаны ржавеют при температуре окружающей среды, но не при высоких температурах. Во время транспортировки, установки и запуска эти клапаны имеют низкую температуру и могут подвергаться воздействию влаги, вызывая ржавчину.Мокрая спрей и порошковые покрытия ограничены приблизительно 300 ° F (149 ° C). Неорганические цинковые покрытия с силиконовыми верхними покрытиями или без них обеспечивают защиту стали от гальванической коррозии при температурах до 1000 ° F (538 ° C) и являются популярным выбором. Принимая во внимание сложную взаимосвязь между основным материалом, базовыми покрытиями и верхними слоями, советуем вам посоветоваться с производителем покрытия.

Конструкции кронштейнов, предназначенные для высоких температур, должны иметь более высокий коэффициент безопасности, чтобы учитывать более крупные приводы, а также учитывать прочность нижнего кронштейна, болтов и муфты при повышенных температурах.Расстояние от клапана до привода или ручного оператора должно быть достаточным для защиты эластомеров и персонала. В этих приложениях часто используется изоляция вокруг трубы и корпуса клапана для минимизации потерь тепла.

В то время как стандартный привод с нитрильными уплотнениями и полимерными подшипниками может быть рассчитан только на 200 ° F (93 ° C), высокотемпературные конструкции с фторуглеродными эластомерами и металлическими подшипниками могут расширять диапазон до 350 ° F (177 ° C). Даже если привод может выдерживать более высокие температуры, может потребоваться удаленная установка таких аксессуаров, как воздушные узлы, усилители, позиционеры и соленоиды, в более прохладной зоне.

Рекомендации

Многие процессы нефтепереработки требуют специальных шаровых кранов для работы при высоких температурах, в которых нельзя использовать эластомеры и полимеры. Эти клапаны могут успешно работать, если при проектировании используется целостный подход, включая выбор материалов, срабатывания и аксессуаров. Даже с учетом этих деталей серьезность этих приложений требует, чтобы программа тестировала и проверяла производительность.

Конечные пользователи, которые выбирают и покупают эти типы клапанов, могут использовать информацию, представленную в этой статье, для улучшения своего шарового крана и процесса выбора поставщика. л.с.

Джейсон Яблонски является директором подразделения Rotary Engineering в Emerson Automation Solutions и имеет 20-летний опыт проектирования, тестирования и производства оборудования для управления технологическими процессами. Он получил степень бакалавра машиностроения в Университете штата Айова и степень магистра делового администрирования в Техасском университете в Далласе. Джейсон — специалист по управлению проектами, сертифицированный специалист по Agile и член подкомитета API по трубопроводам и клапанам.

Уэйд Хелфер имеет 22-летний опыт проектирования и оценки регулирующих и запорных клапанов для различных отраслей промышленности, а также является экспертом в области уплотнений поворотных клапанов, динамики потока дроссельных заслонок и конструкции высокотемпературных клапанов. Он получил степень бакалавра и магистра машиностроения в Университете штата Айова и является технологом по вращению в Emerson Automation Solutions, ответственным за разработку и оценку новых технологий.

Авторы

Яблонски, Я. — Emerson Automation Solutions, Маршаллтаун, Айова

Джейсон Яблонски является директором подразделения Rotary Engineering в Emerson Automation Solutions и имеет 20-летний опыт проектирования, тестирования и производства оборудования для управления технологическими процессами. Он получил степень бакалавра машиностроения в Университете штата Айова и степень магистра делового администрирования в Техасском университете в Далласе. Джейсон — специалист по управлению проектами, сертифицированный специалист по Agile и член подкомитета API по трубопроводам и клапанам.

Helfer, W. — Emerson Automation Solutions, Маршаллтаун, Айова

Уэйд Хелфер имеет 22-летний опыт работы в отрасли в проектировании и оценке регулирующих и запорных клапанов для различных отраслей промышленности и является экспертом в области уплотнений поворотных клапанов, динамики потока дроссельных заслонок и конструкции высокотемпературных клапанов.Он получил степень бакалавра и магистра машиностроения в Университете штата Айова и является технологом по вращению в Emerson Automation Solutions, ответственным за разработку и оценку новых технологий.

Статьи по теме

Из архива

Рекомендации для шаровых кранов в условиях высоких температур

Джейсон Яблонски

Уэйд Хелфер

Нефтеперерабатывающие заводы и несколько других перерабатывающих производств имеют высокотемпературные потоки.Клапаны, используемые для дросселирования и двухпозиционного управления, должны быть изготовлены из материалов, способных выдерживать высокие температуры.

В статье по переработке углеводородов «Использование шаровых клапанов в высокотемпературных условиях» Джейсон Яблонски и Уэйд Хелфер из Emerson делятся рекомендациями для производителей и производителей, которые следует использовать при выборе и покупке подходящих клапанов.

Для их статьи, высокая температура — это любая технологическая жидкость выше 400 ° F / 204 ° C.

Они открываются, указывая на некоторые из высокотемпературных применений шаровых кранов:

  • Сырье для гидрокрекинга: 650 ° F (343 ° C)
  • Нижний продукт дебутанизатора газовой установки: 650 ° F (343 ° C)
  • Установка гидроочистки: 750 ° F (399 ° C)
  • Катализатор гидрокрекинга: 950 ° F (510 ° C)
  • Кубовый остаток сырой нефти коксования, сырье для печи, коксовая суспензия, переключение барабанов, продувка и пар из верхнего погона: 970 ° F (521 ° C)
  • Обращение с катализаторами CCR и FCCU, дымовыми газами и остатками фракционирующей колонны: до 1400 ° F (760 ° C)

Электростанция паровая:

… может также потребоваться несколько десятков клапанов для слива конденсата и вентиляционных отверстий с температурами, превышающими 1000 ° F (538 ° C).

Трансмиссии клапанов являются одним из источников потенциальной неисправности, так как:

… крутящий момент может увеличиваться до двух раз по сравнению с тем, что наблюдается при температуре окружающей среды, что делает выбор привода критическим.

Джейсон и Уэйд отмечают, что трим клапана требует особого внимания. Совместимость с жидкостями:

… они также должны выдерживать высокие нагрузки… они должны быть изготовлены из коррозионно-стойкого материала, который сохраняет высокий предел текучести и жесткости на кручение при повышенных температурах, например, Inconel 718, нержавеющая сталь 17-4 или Nitronic 50.

Плотная отсечка — еще одно важное соображение, поскольку для этих высокотемпературных применений требуются уплотнения металл-металл. У них также есть несколько общих способов упрочнения поверхностей деталей отделки.

Пригодность для применения требует понимания коэффициентов теплового расширения материалов клапана. Кроме того, используется при дросселировании или включении / выключении из-за изменения теплового профиля.

Прочтите эту статью, чтобы узнать больше о уплотнениях штока, проблемах с набивкой, рекомендациях относительно прокладок корпуса и соответствующих отраслевых стандартах.Работа с надежным поставщиком для тестирования и проверки производительности важна для выбора правильных клапанов с правильными материалами, приводом и аксессуарами для их предполагаемого использования.

Посетите страницу шарового клапана Fisher Z500 для тяжелых условий эксплуатации на сайте Emerson.com, чтобы получить дополнительные сведения о технических характеристиках потенциального решения для ваших высокотемпературных применений. Вы также можете общаться и взаимодействовать с другими экспертами по клапанам из группы Valves, Actuators & Regulators в сообществе Emerson Exchange 365.

Руководство по выбору шаровых кранов


ВА Серия

Материалы

Корпус: Никелированная латунь
Уплотнения: Viton, EPDM или Buna

Подключения

NPT: от 3/8 дюйма до 2 дюймов

VIP серии

Материалы

Корпус: Никелированная латунь
Уплотнения: Viton, EPDM или Buna

Подключения

G (BSPP): от 3/8 дюйма до 2 дюймов

VIP-EVO серии

Материалы

Корпус: Алюминий (несмачиваемый)
Торцевое соединение: Латунь с никелевым покрытием (смачивание)
Поршень: Хим.Латунь с никелевым покрытием (контактирующая со средой)
Седло: ПТФЭ, 15% стекловолокно Уплотнения: Viton, EPDM или Buna

Подключения

NPT: от 3/8 дюйма до 2 дюймов
G (BSPP): от 3/8 дюйма до 2 дюймов

Угловые клапаны

Материалы

Корпус: SS или бронза
Уплотнения: PTFE

Подключения

NPT: от 3/8 дюйма до 2 дюймов
Tri-Clamp: от 1/2 дюйма до 2 дюймов

J Серия

Материалы

Корпус: Латунь
Уплотнения: BUNA или Viton

Подключения

NPT: от 3/8 дюйма до 1 дюйма

VAX серии

Материалы

Корпус: SS или латунь
Уплотнения: FPM
Седла: PTFE

Подключения

NPT: от 3/8 дюйма до 1 дюйма

Серия SM

Материалы

Корпус: Латунь или бессвинцовая латунь
Уплотнения: ПТФЭ
Седла: ПТФЭ

Подключения

NPT: 1/2 дюйма до 2 дюймов

P2 серии

Материалы

Корпус: ПВХ
Уплотнения: EPDM или витон
Седла: ПТФЭ

Подключения

NPT: от 1/2 «до 4»
Клейкое гнездо: от 1/2 «до 4»

101 серии

Материалы

Корпус: Никелированная латунь
Уплотнения: ПТФЭ
Седла: ПТФЭ

Подключения

NPT: от 3/8 дюйма до 3 дюймов

26 серии

Материалы

Корпус: Нержавеющая сталь
Уплотнения: ПТФЭ и витон
Седла: RPTFE

Подключения

NPT: от 1/4 дюйма до 3 дюймов

36 серии

Материалы

Корпус: Нержавеющая сталь
Уплотнения: ПТФЭ
Седла: RPTFE

Подключения

NPT: от 1/4 «до 3»
Сварка с муфтой: от 1/4 «до 3»
Tri-Clamp: от 1/2 «до 4»

150F / 300F серии

Материалы

Корпус: Углерод или нержавеющая сталь
Уплотнения: TFM или графит
Седла: TFM или 50/50

Подключения

150 #: от 1/2 до 8 дюймов
300 #: от 1/2 до 8 дюймов

HPF серии

Материалы

Корпус: Углерод или нержавеющая сталь
Уплотнения: TFM или графит
Седла: TFM или 50/50

Подключения

NPT: от 1/2 «до 4»
Сварка с муфтой: от 1/2 «до 4»

XLB серии

Материалы

Корпус: Ковкий чугун с футеровкой PFA
Уплотнения: ПТФЭ
Седла: ПТФЭ

Подключения

150 #: 1/2 дюйма до 6 дюймов

V Серия

Материалы

Корпус: Углерод или нержавеющая сталь
Седла: ПТФЭ, TFM или 50/50
Седла: ПТФЭ, TFM или 50/50

Подключения

NPT: 1/2 дюйма до 4 дюймов
150 # / 300 #: 1/2 дюйма до 8 дюймов
Tri-Clamp: 1/2 дюйма до 4 дюймов

Серия SM

Материалы

Корпус: Латунь или бессвинцовая латунь
Уплотнения: ПТФЭ
Седла: ПТФЭ

Подключения

NPT: 1/2 дюйма до 2 дюймов

30D серии

Материалы

Корпус: Нержавеющая сталь
Седла: ПТФЭ
Уплотнения: ПТФЭ

Подключения

Tri-Clamp: от 1/2 до 4 дюймов

31D серии

Материалы

Корпус: Нержавеющая сталь
Седла: ПТФЭ
Уплотнения: ПТФЭ / витон или RPTFE

Подключения

NPT: от 1/4 дюйма до 3 дюймов

33D серии

Материалы

Корпус: Латунь
Седла: RPTFE
Уплотнения: RPTFE / витон

Подключения

NPT: от 1/4 дюйма до 2 дюймов

MPF серии

Материалы

Корпус: Углерод или нержавеющая сталь
Седла: TFM
Уплотнения: TFM

Подключения

150 #: от 3/4 дюйма до 6 дюймов
300 #: от 1 1/2 дюйма до 6 дюймов

PTP серии

Материалы

Корпус: PVC
Седла: PTFE
Седла: EPDM или витон

Подключения

NPT: 1/2 дюйма на 2 дюйма
Клейкое гнездо: 1/2 дюйма на 2 дюйма

BFY серии

Материалы

Корпус: Нержавеющая сталь 316L
Седла: EPDM, SIlicon или Viton

Подключения

Tri-Clamp: от от 1/2 до 6 дюймов
Стыковая сварка: от 1/2 до 6 дюймов

FE серии

Материалы

Кузов: PVC
Седла: EPDM

Подключения

Вафля: от 1 1/2 до 12 дюймов

FK серии

Материалы

Кузов: GRPP
Седла: Полипропилен

Подключения

Межфланцевый: от 1 1/2 дюйма до 12 дюймов
С выступом: От 2 1/2 дюйма до 12 дюймов

HP серии

Материалы

Корпус: Углерод или нержавеющая сталь
Седла: RPTFE

Подключения

Межфланцевый: от 2 до 12 дюймов
С выступом: от 2 до 12 дюймов

HPX серии

Материалы

Корпус: Углерод или нержавеющая сталь
Седла: Графит

Подключения

Межфланцевый: от 3 до 48 дюймов
С проушинами: от 3 до 48 дюймов
ANSI класс 150, 300, 600

ST серии

Материалы

Корпус: Ковкий чугун с эпоксидным покрытием
Седла: BUNA или EPDM

Подключения

Межфланцевое соединение: От 2 дюймов до 12 дюймов
С выступом: От 2 дюймов до 24 дюймов

XLD серии

Материалы

Корпус: Ковкий чугун с покрытием PFA
Седла: Витон

Подключения

Межфланцевый: от 2 до 24 дюймов
С выступом: от 2 до 24 дюймов

061 серии

Материалы

Корпус: Ковкий чугун с футеровкой PFA
Заглушка: Ковкий чугун с футеровкой PFA

Подключения

150 #: 1/2 дюйма до 4 дюймов

067 серии

Материалы

Корпус: Нержавеющая сталь
Уплотнения: ПТФЭ

Подключения

150 #: 1/2 дюйма до 4 дюймов

GVI серии

Материалы

Корпус: Углерод или нержавеющая сталь
Накладка: SS, TFE или PEEK

Подключения

150 #: 1/2 дюйма до 4 дюймов
300 #: 1/2 дюйма до 4 дюймов
NPT: 1/2 дюйма до 2 дюймов
SW: 1/2 дюйма до 2 дюймов

GV серии

Материалы

Корпус: Бронза или нержавеющая сталь
Отделка: Бронза, SS или PEEK

Подключения

NPT: 1/2 дюйма до 2 дюймов
Стыковая сварка: 1/2 дюйма до 2 дюймов

GH серии

Материалы

Корпус: Чугун
Отделка: Бронза или нержавеющая сталь

Подключения

150 # Фланец: от 2 1/2 до 8 дюймов
300 # Фланец: от 2 1/2 до 8 дюймов

EWG серии

Материалы

Корпус: Углеродистая сталь (A216 WCB)
Трим: Трим 8 API (доступны другие)

Подключения

150 #: от 2 до 30 дюймов
300 #, 600 #, 900 #, 1500 #: Позвоните по телефону

DSI-WG серии

Материалы

Корпус: Углеродистая сталь (A216 WCB)
Трим: Трим 8 API (доступны другие)

Подключения

150 #: от 2 до 30 дюймов
300 #, 600 #, 900 #, 1500 #: Позвоните по телефону

21 серии

Материалы

Корпус: Нержавеющая сталь
Седла: ПТФЭ
Уплотнения: ПТФЭ

Подключения

NPT: от 1/4 дюйма до 2 дюймов

282 серии

Материалы

Корпус: Латунь
Седла: ПТФЭ
Уплотнения: ПТФЭ

Подключения

NPT: от 1/4 дюйма до 4 дюймов
NPT (наружная x внутренняя): 1/4 дюйма до 1 дюйма
Припой: 1/2 дюйма до 4 дюймов

282LF серии

Материалы

Корпус: Бессвинцовая латунь
Седла: ПТФЭ
Уплотнения: ПТФЭ

Подключения

NPT: 1/2 дюйма до 2 дюймов

Ручные клапаны

2-ходовые шаровые краны

NPT: от 1/4 дюйма до 3 дюймов
Сварка с муфтой: от 1/4 дюйма до 3 дюймов
Tri-Clamp: от 1/2 дюйма до 3 дюймов

3-ходовые шаровые краны

NPT: от 1/4 дюйма до 2 дюймов

Дисковые затворы

с проушинами: от 2 до 8 дюймов

112LF серии

Материалы

Корпус: Нержавеющая сталь
Седла: ПТФЭ
Уплотнения: ПТФЭ

Подключения

NPT: 1/2 дюйма до 2 дюймов

282LF серии

Материалы

Корпус: Латунь
Седла: ПТФЭ
Уплотнения: ПТФЭ

Подключения

NPT: от 1/4 дюйма до 4 дюймов
NPT (наружная резьба c внутренняя): 1/4 дюйма до 1 дюйма
Припой: 1/2 дюйма до 4 дюймов

250LF серии

Материалы

Корпус: Бессвинцовая латунь
Седла: ПТФЭ
Уплотнения: ПТФЭ

Подключения

NPT: 1/2 дюйма до 2 дюймов

Ручные клапаны

2-ходовые шаровые краны

NPT: от 1/4 дюйма до 3 дюймов
Сварка с муфтой: от 1/4 дюйма до 3 дюймов
Tri-Clamp: от 1/2 дюйма до 3 дюймов

3-ходовые шаровые краны

NPT: от 1/4 дюйма до 2 дюймов

Дисковые затворы

с проушинами: от 2 до 8 дюймов

FireChek® серии

Материалы

Корпус: Нержавеющая сталь
Уплотнения: Delrin®

Подключения

NPT: 1/4 «
ISO: 1/4″

Клапаны пожаробезопасные FM

Материалы

Корпус: Углеродистая или нержавеющая сталь
Уплотнения: Graphoil
Седла: Xtreme RPTFE

Подключения

NPT: 1/2 дюйма до 2 дюймов
150 # / 300 #: 1/2 дюйма до 4 дюймов
Проушина / пластина: 3 дюйма и 4 дюйма

Серия ESD

Материалы

Корпус: Углерод или нержавеющая сталь
Уплотнения: TFM или графит
Седла: TFM или 50/50

Подключения

150 #: 1/2 дюйма до 8 дюймов
300 #: 1/2 дюйма до 8 дюймов
NPT: 1/2 дюйма до 4 дюймов
Сварка с втулкой: 1/2 дюйма до 4 дюймов

ESOV серии

Материалы

Корпус: Углерод или нержавеющая сталь
Седло: Трим API 8 или 12
Уплотнение крышки: Графит

Подключения

150 #: от 2 дюймов до 16 дюймов
300 #: от 2 дюймов до 16 дюймов

150F / 300F серии

Материалы

Корпус: Углерод или нержавеющая сталь
Уплотнения: TFM или графит
Седла: TFM или 50/50

Подключения

150 #: от 1/2 до 8 дюймов
300 #: от 1/2 до 8 дюймов

Клапаны пожаробезопасные FM

Материалы

Корпус: Углерод или нержавеющая сталь
Уплотнения: Graphoil
Седла: Xtreme RPTFE

Подключения

NPT: 1/2 дюйма до 2 дюймов
150 # / 300 #: 1/2 дюйма до 4 дюймов
Проушина / пластина: 3 дюйма и 4 дюйма

HPF серии

Материалы

Корпус: Углерод или нержавеющая сталь
Уплотнения: TFM или графит
Седла: TFM или 50/50

Подключения

NPT: от 1/2 «до 4»
Сварка с муфтой: от 1/2 «до 4»

HP серии

Материалы

Корпус: Углерод или нержавеющая сталь
Уплотнения: TFM или графит
Седла: TFM или 50/50

Подключения

Межфланцевый: от 2 до 12 дюймов
С выступом: от 2 до 12 дюймов

Серия ESD

Материалы

Корпус: Углерод или нержавеющая сталь
Уплотнения: TFM или графит
Седла: TFM или 50/50

Подключения

150 #: 1/2 дюйма до 8 дюймов
300 #: 1/2 дюйма до 8 дюймов
NPT: 1/2 дюйма до 4 дюймов
Сварка внахлест: 1/2 дюйма до 4 дюймов

F Серия

Материалы

Корпус: Алюминий с полиуретановым покрытием

Момент

Пружинный возврат: до 56 500 дюймов / фунт.
двойного действия: до 59000 дюймов / фунт.

O Серия

Материалы

Корпус: Алюминий с антикоррозийным покрытием

Момент

с пружинным возвратом: до 25 600 дюймов / фунт.
двойного действия: до 25600 дюймов / фунт.

P Серия

Материалы

Корпус: Алюминий с антикоррозийным покрытием

Момент

с пружинным возвратом: до 25 600 дюймов / фунт.
двойного действия: до 25600 дюймов / фунт.

CE серии

Материалы

Корпус: Поликарбонатный пластик (ABSPC)

Момент

100 дюймов / фунт.

V4 серии

Материалы

Корпус: Алюминий с эпоксидным покрытием

Момент

125 или 300 дюймов / фунт.

R4 серии

Материалы

Корпус: Поликарбонат

Момент

300 или 600 дюймов / фунт.

S4 серии

Материалы

Корпус: Антикоррозийный полиамид

Момент

до 2600 дюймов / фунт.

O Серия

Материалы

Корпус: Литой под давлением алюминиевый сплав

Момент

до 8680 дюймов / фунт.

B7 серии

Материалы

Корпус: Алюминий с эпоксидным порошковым покрытием

Момент

до 20 000 дюймов / фунт.

FEX серии

Легко модернизируется на

Шаровые краны HPF, 150F и 300F

Сепаратор серии

Воздушный поток

От 20 до 150 стандартных кубических футов в минуту

Подключения

NPT (внутренняя): от 1/4 дюйма до 1 дюйма

Фильтрация

Твердые вещества: 1 микрон
Вода: Удаление 100%

Комбинированный фильтр-элиминатор серии

Воздушный поток

От 20 до 150 стандартных кубических футов в минуту

Подключения

NPT (внутренняя): от 1/4 дюйма до 1 дюйма

Фильтрация

твердых тел: .01 микрон
Вода: Удаление 100%

01N Серия

Материалы

Корпус: Нейлон

Подключения

NPT: 1 »

01A Серия

Материалы

Корпус: Алюминий

Подключения

NPT: 1 «

Серия DM-P

Материалы

Корпус: Пластик

Подключения

NPT (наружная резьба): от 1/4 дюйма до 1 дюйма

A1 серии

Материалы

Корпус: Алюминий или нейлон

Подключения

NPT: 1 дюйм или 2 дюйма

MAG серии

Материалы

Корпус: Нержавеющая сталь

Подключения

NPT: от 1/4 дюйма до 2 дюймов
BSPP: от 1/4 дюйма до 2 дюймов
Т-образный зажим: от 1/2 дюйма до 2 дюймов

G2 серии

Материалы

Корпус: нержавеющая сталь , алюминий или латунь

Подключения

NPT: 1/2 дюйма до 2 дюймов
Т-образный зажим: 3/4 дюйма до 2 1/2 дюйма
Фланец: 1 дюйм до 2 дюймов

TM серии

Материалы

Кузов: ПВХ, график 80

Подключения

NPT: от 1 дюйма до 4 дюймов
Клейкое гнездо (внутренняя): от 1 дюйма до 4 дюймов
Фланец: от 3 дюймов до 4 дюймов

WM-PT серии

Материалы

Кузов: ПВХ лист.60 или 80

Подключения

Клейкое гнездо (наружная): от 1/2 до 4 дюймов
Вставка: от 1 1/2 до 8 дюймов

WWM серии

Материалы

Кузов: ПВХ лист. 60 или 80

Подключения

Клейкое гнездо (наружная): от 1/2 до 4 дюймов
Вставка: от 1 1/2 до 8 дюймов

LM серии

Материалы

Корпус: Алюминий

Подключения

NPT: 1/2 «

WM серии

Материалы

Корпус: Бронза с эпоксидным покрытием

Подключения

NPT: 1/2 дюйма до 2 дюймов

WM-NLC серии

Материалы

Корпус: Бессвинцовая латунь

Подключения

NPT: 1/2 дюйма до 2 дюймов

WM-NLCH серии

Материалы

Корпус: Бессвинцовая латунь

Подключения

NPT: 1/2 дюйма до 2 дюймов

D10 серии

Материалы

Корпус: Бессвинцовая латунь

Подключения

NPT: 1/2 дюйма до 1 дюйма
Фланец: 1 1/2 дюйма до 2 дюймов

WM-PC серии

Материалы

Корпус: Полимер, армированный волокном

Подключения

NPT: от 1/2 «до 1 1/2»

WM-PD серии

Материалы

Корпус: Полиамид, армированный стеклом

Подключения

NPT: 1/2 — 3/4 дюйма

Импульсный выход

для счетчиков воды

Узнайте, что такое импульсный выход, и сравните счетчики воды, доступные с этой функцией.

Принадлежности

для счетчиков воды

Ознакомьтесь со всеми аксессуарами, предлагаемыми для наших счетчиков воды.

Шаровой кран

— обзор

Конструкция отверстия

Шаровые краны могут быть полнопроходными (FB) или RBbore (RB). С клапаном FB (иногда называемым полнопроходным) внутренний проход для потока равен полной площади входного отверстия.В клапане RB проходное сечение порта (запорного элемента) меньше площади внутреннего диаметра трубы и входа клапана. Запорный элемент относится к шару в шаровом клапане, который также упоминается в некоторых международных стандартах клапана как запорный элемент . Клапан FB позволяет использовать в трубопроводе устройство с впрыском в трубопровод (PIG). Скребок спроектирован и запускается в трубопровод для проверки или очистки, например, от отложений воска или накипи.

Оба шаровых клапана на рис. 1.12 должны быть FB для облегчения быстрого и полного выпуска жидкости в факельную линию. FB также требуется для шаровых кранов до и после предохранительных клапанов (PSV), как показано на рис. 1.12.

Рис. 1.12. Полнопроходной шаровой кран до и после PSV.

API 6D, стандарт для трубопроводной арматуры, дает минимальный диаметр отверстия для номинальных значений 150–600 и до 60 дюймов и отдельные колонны с минимальным отверстием для классов 900, 1500 и 2500, как показано в таблице 1.1. Но стандарт не предусматривает минимальный диаметр отверстия для больших размеров и классов высокого давления (максимальное отверстие 20 дюймов в классе 2500 и отверстие 36 дюймов в классе 1500). Отверстия API 6D считаются полнопроходными, но на самом деле они не являются полнопроходными — это означает, что внутренний диаметр шаровых кранов в соответствии со стандартом API 6D меньше диаметра трубопровода (трубопровода). Следовательно, отверстие клапана должно быть равно диаметру трубы при проведении спуска скребка для трубопроводной арматуры API 6D. Минимальное отверстие в API 6D обычно больше, чем в ASME B16.34 стандарт для клапанов. Шаровой кран API 6D FB больших размеров, например, 24 дюйма, и класса давления 150–600 имеет отверстие гораздо ближе к трубе. Например, шаровой кран диаметром 24 дюйма из дуплексного материала класса 300 имеет диаметр примерно на 2 мм меньше, чем труба. Однако шаровой кран 20 ″ класса 150 по стандарту API 6D может иметь отверстие примерно на 8 мм меньше трубы.

Таблица 1.1. Минимальный диаметр отверстия согласно API 6D.

19571956 1956 1956 1956 1956 617 19571956 1956 1956 1956 1957 1956 1956 1956 1956 19571956 1956 1956 1956 1956 1956 1956 1956 1956 9501956 9501956 9501957 9501957 1956 1956 1956
DN (мм) NPS (дюймы) Класс давления
PN 20–100 (класс 150–600) PN 150 (класс 900) PN 250 (класс 1500) PN 420 (класс 2500)
15 ½ 13 13 13 13
20 ¾ 1957 1956 1957 1956 1956
25 1 25 25 25 25
32 32 32 32 38 38 38 38
50 2 49 49 49 42
65 2½ 621957 2½ 621957 62 52
80 3 74 74 74 62
100 4 100 1001956 6 150 150 144 131
200 8 201 201 192 179
179
179
250 239 223
300 12 303 303 287 265
350 14 334 16 385 373 360
450 18 436 423
500 20 487 471
550
550 22
600 24 589 570
650 26 633 1956 1956 1956 1956 1956 1956 1956 665
750 30 735 712
800 32
850 34 830 808
900 36 874 855
950 38 925
1000 40
1050 42 1020
1200 48 1166 1956 9351956 1956 1956 9501957
1400 56 1360
1500 60
1500 60 —19571956 9561956 9561956

Согласно стандарту API 6D шаровой кран RB имеет уменьшение на один размер до 12 дюймов включительно (например.g., 12 ″ × 10 ″) и два уменьшения размера для размеров более 12 ″ –24 ″ (например, 24 ″ × 20 ″), а также соглашение потребителя и производителя для размеров более 24 ″. Это может привести к трехкратному уменьшению размера, превышающему 24 дюйма (например, 36 дюймов × 30 дюймов). Болты корпуса для клапанов FB обычно имеют больше фланцевых болтов по сравнению с клапанами RB. Шаровой кран RB имеет полнопроходное отверстие на концевом фланце (параметр B на рис. 1.13, правый клапан), которое постепенно уменьшается (параметр B1 на рис. 1.14, правый клапан). Поэтому оба диаметра отверстия показаны на чертеже общего вида шаровых кранов RB.Однако диаметр полнопроходного клапана постоянен (параметр B на рис. 1.14, левый клапан).

Рис. 1.13. Чертежи полнопроходного / уменьшенного шарового крана.

Рис. 1.14. Полнопроходные шаровые краны.

Некоторым приборам, например, расходомерам, может потребоваться прямая труба некоторой длины перед или за потоком, чтобы избежать турбулентности потока и обеспечить точность измерений. На рис. 1.14 показан 18-дюймовый шаровой клапан класса 150 перед проточным элементом (FE), который должен иметь то же отверстие, что и труба, чтобы избежать турбулентности потока в проточном элементе.

Полнопроходной шаровой кран API 6D обычно имеет меньший диаметр отверстия, чем труба. Например, полнопроходные шаровые краны 18 ″ API 6D класса 150 из дуплексного материала 22Cr могут иметь диаметр отверстия на 10–12 мм меньше диаметра трубы. Труба из дуплекса 22Cr не имеет допусков на коррозию и имеет меньшую толщину, что делает ее более проточной по сравнению с клапаном, а также по сравнению с трубой из углеродистой стали. Минимальный диаметр отверстия (проточного канала) составляет 90% внутреннего диаметра конца клапана согласно ASME B16.34, что является стандартом для конструкции клапана.

Внутренний диаметр трубы и клапана разные; Итак, между фланцем корпуса клапана и присоединенным фланцем есть уступ. Однако нет необходимости сужать какой-либо из фланцев соединителя клапана, в отличие от фланца, подсоединенного к оборудованию. Следовательно, шаровой кран должен иметь специальное отверстие, обеспечивающее открытое сечение потока, равное диаметру отверстия трубы. Внутренняя поверхность шара, седла и контакта корпуса с седлом может создавать очень низкую турбулентность.Однако может потребоваться специальная прокладка с тем же внутренним диаметром, что и отверстие трубы в клапане и фланцевом соединении, чтобы избежать турбулентности жидкости.

В другом примере описывается шаровой клапан FB, который соединен фланцем с фланцем с обратным клапаном с двумя пластинами без каких-либо расстояний. Для обратных клапанов с двумя пластинами обычно требуется минимум 2D (в 2 раза больше диаметра трубы) перед по потоку и 5D (в 5 раз больше диаметра трубы) после прямой линии, чтобы избежать турбулентности потока и эрозии внутри обратного клапана с двумя пластинами.Поэтому не рекомендуется соединять шаровой клапан RB с обратным клапаном с двумя пластинами. При установке обратного клапана перед шаровым клапаном необходимо учитывать зазор диска двойного пластинчатого обратного клапана, как показано на рис. 1.15. Однако установка обратного клапана, соединенного с шаром FB со стороны выхода потока, не создает риска столкновения двухдискового диска, поскольку диск открывается на противоположной стороне шарового клапана.

Рис. 1.15. Полнопроходной шаровой кран в сочетании с двухдисковым обратным клапаном.

Шаровые краны могут потребоваться перед насосами для увеличения чистой положительной высоты всасывания насосов. Рекомендуется также иметь запорные шаровые краны перед регулирующими клапанами. Хотя перед регулирующим клапаном спроектирован редуктор, который вызывает падение давления, шаровой клапан FB вместо клапана RB мог бы быть лучшим выбором перед регулирующим клапаном, как показано на рис. 1.16. Как показано на рисунке, стопорный шаровой клапан после регулирующего клапана также должен быть FB.Выбор шарового клапана FB позволяет избежать пробоя и наличия двухфазного потока, который может увеличить износ, эрозию и кавитацию в регулирующем шаровом клапане. Однако для экономии средств вместо FB можно выбрать шаровой кран RB.

Рис. 1.16. Полнопроходные запорные шаровые краны до и после регулирующего клапана.

В одном из проектов шаровой кран RB был выбран вместо шарового клапана FB на линии подфакельного факела. Технологический отдел запросил два параметра Θ и B = d1 / d2, чтобы определить, достаточна ли пропускная способность (значение CV) RB.Эти два параметра показаны на рис. 1.17.

Рис. 1.17. Параметры шарового клапана Θ и B.

Два последовательно закрытых шаровых клапана FB могут быть выбраны для ручного сброса давления в факельную систему. Например, шаровые краны 2 ″ класса 1500 для ручного сброса давления должны иметь внутренний диаметр не менее 49 мм в соответствии с таблицей 1.1 стандарта API 6D. Если кто-то задается вопросом, можно ли выбрать клиновую задвижку в качестве альтернативы, ответ — нет. Клиновая задвижка 2 ″ класса 1500 не может обеспечить полнопроходную задвижку в соответствии со стандартом API 602, который распространяется на задвижки, проходные и обратные клапаны для размеров 4 ″ и меньше в нефтяной и газовой промышленности.Минимальное отверстие клиновой задвижки указанного выше размера и класса давления составляет 38 мм, что меньше диаметра отверстия шарового клапана согласно API 6D.

За исключением примера шарового крана рядом с расходомером (расходомером), упомянутого ранее, трубопроводные клапаны должны иметь специальное отверстие, равное или близкое к внутреннему диаметру трубы, из-за работы скребка. Хотя трубопроводная арматура спроектирована на основе API 6D, минимальные диаметры отверстий, указанные в API 6D, не обязательно подлежат скупке. Диаметр отверстия клапана обычно меньше толщины трубы, особенно когда труба изготовлена ​​из дуплексного материала 22Cr.Дуплексная труба из 22Cr не имеет допуска на коррозию при относительно высокой прочности, что снижает толщину трубы по сравнению с трубой из углеродистой стали и соединенным клапаном из дуплексного материала 22Cr. На рис. 1.18 показано испытание на смещение после изготовления и сборки шарового крана для трубопровода путем прохождения инструмента, сделанного из стержня длиной 1 м с тремя пластинами круглой формы на обоих концах и в середине, чтобы убедиться, что внутренний диаметр клапана клапан подходит для работы со скребком.

Рис.1.18. Испытание на смещение шарового крана стояка.

% PDF-1.4 % 88 0 объект > эндобдж xref 88 70 0000000016 00000 н. 0000002228 00000 н. 0000002309 00000 н. 0000002916 00000 н. 0000003134 00000 п. 0000003401 00000 п. 0000003610 00000 н. 0000003969 00000 н. 0000004184 00000 п. 0000004382 00000 п. 0000004454 00000 п. 0000004536 00000 н. 0000004610 00000 н. 0000004682 00000 н. 0000004869 00000 н. 0000005083 00000 н. 0000005446 00000 н. 0000005882 00000 н. 0000006064 00000 н. 0000006401 00000 п. 0000009082 00000 н. 0000011950 00000 п. 0000014483 00000 п. 0000014698 00000 п. 0000017823 00000 п. 0000018031 00000 п. 0000019219 00000 п. 0000019384 00000 п. 0000019598 00000 п. 0000021711 00000 п. 0000021936 00000 п. 0000022447 00000 п. 0000022528 00000 п. 0000022859 00000 п. 0000023232 00000 п. 0000023518 00000 п. 0000025362 00000 п. 0000029231 00000 п. 0000029445 00000 п. 0000029643 00000 п. 0000029749 00000 п. 0000031910 00000 п. 0000033846 00000 п. 0000036188 00000 п. 0000039900 00000 н. 0000044239 00000 п. 0000047516 00000 п. 0000047684 00000 п. 0000047736 00000 п. 0000047860 00000 п. 0000048813 00000 н. 0000049027 00000 н. 0000049143 00000 п. 0000050566 00000 п. 0000050786 00000 п. 0000050886 00000 п. 0000051578 00000 п. 0000051805 00000 п. 0000051913 00000 п. 0000052689 00000 п. 0000052914 00000 п. 0000053064 00000 п. 0000054107 00000 п. 0000054321 00000 п. 0000054475 00000 п. 0000055687 00000 п. 0000055905 00000 п. 0000076003 00000 п. 0000078687 00000 п. 0000001696 00000 н. трейлер ] / Назад 225585 >> startxref 0 %% EOF 157 0 объект > поток hb«c`PqAb, WwvGhh20NfX 䉼 LzO m ** fs2 $ rnidwkU2N4% ãȰeUZ h @ sHZZrhhXZZFPd4ʶ @! 01`yA-A ‘ C4E «f $ 380

Sanetadкư! Uf» [email protected] B’qOF.! 6 ж s0 ܘ {@ a} -; f @F 1 нед Р@ yP?

Шаровой кран

— База знаний LGAM

Шаровой кран — это клапан, в котором для запуска и остановки потока используется диск в форме шара. Шаровые краны — это один из самых простых типов клапанов, который изготавливается в конфигурации из 1, 2 и 3 частей. Как правило, это самый дешевый тип клапана и один из самых простых в обслуживании.

Шаровой кран — это разновидность поворотного клапана. Диск шарового крана представляет собой шар, который может вращаться на 90 градусов вокруг штока клапана, чтобы выполнять функцию открытия и закрытия шарового крана.Шаровой кран имеет функции не только отсечения жидкости, но и регулирования жидкости. Шаровой кран может изготавливаться различного диаметра. Шаровые краны, изготовленные из различных уплотнительных материалов и с различной конструкцией корпуса клапана, могут использоваться в различных условиях высокого, среднего, низкого давления, высоких и низких температур. Шаровой кран имеет самое широкое применение среди всех видов клапанов.

Типы шаровых кранов
По конструкции шарового крана шаровой кран можно разделить на три типа: двухходовой шаровой кран, трехходовой шаровой кран и четырехходовой шаровой кран.Различные типы шаровых кранов используются для разных условий, чтобы отсекать жидкость, регулировать поток жидкости, отводить жидкость, изменять направление потока жидкости и т. Д. Ниже представлены различные шаровые клапаны.

Двухходовой шаровой кран
Двухходовой шаровой кран можно разделить на два типа: плавающий шаровой кран Q41F и шаровой кран с шаровой опорой Q47H в соответствии с конструкцией. Для адаптации к различным средам производятся шаровой кран с высокой коррозионной стойкостью для фтора Q41F46, высокотемпературный шаровой кран Q41M, шаровой кран с изоляцией рубашки QB41F для легко кристаллизующихся сред и износостойкий специальный клапан для распыления пылевидного угля. на базе двухходового шарового крана.Эти шаровые краны, оснащенные различными регулируемыми приводами, могут быть преобразованы в шаровой кран с пневматическим управлением и шаровой кран с электрическим управлением для регулировки параметров среды трубопровода. Пользователи могут выбрать подходящий режим вождения в соответствии с условиями работы. Пользователи также могут использовать электрические или пневматические приводы для автоматического контроля рабочего состояния.

Трехходовой шаровой кран
Трехходовой шаровой кран состоит из двух золотников, L-образного и T-образного золотников, которые изготавливаются специально для трехходовых труб.Трехходовые шаровые краны в основном используются для отвода жидкости, перемешивания жидкости или изменения направления потока жидкости. Трехходовой шаровой кран L-типа может соединять основную трубу и две другие вертикальные трубы соответственно, играя роль отвода. Трехходовой шаровой кран T-типа может соединять три трубопровода друг с другом, чтобы он мог выполнять роль отвода и слияния. Если трехходовой шаровой кран T-типа оборудован электрическим или пневматическим приводом, условия работы можно регулировать автоматически.

Четырехходовой шаровой кран
Четырехходовой шаровой кран также называют четырехходовым реверсивным клапаном, который разработан специально для четырехходового трубопровода. При повороте мяча на 90 градусов происходит переключение способа подачи воды. Направления потока двух сред можно переключать одновременно с помощью четырехходового шарового клапана, а для одновременного переключения направлений потока двух сред обычно требуется четыре набора клапанов. Теперь достаточно одного клапана. Таким образом, четырехходовой шаровой кран удобен и экономичен.Электрический или пневматический привод можно использовать в соответствии с потребностями пользователя, чтобы пользователь мог автоматически контролировать условия работы.

Одним из основных преимуществ шаровых кранов является то, что они обеспечивают очень быстрое отключение, обычно поворотом штока на 90º. Это в отличие от, например, задвижек и запорных клапанов, для отключения которых требуется несколько оборотов. По той же причине шаровые краны не подходят для регулирования потока или дросселирования, и пользователь предпочел бы выбрать для этих целей шаровые краны.Шаровые краны часто подразделяются на категории, которые различают материал седла, например шаровые краны с седлом из ПТФЭ, которые являются наиболее распространенной версией, или шаровые краны с металлическим седлом для высокотемпературных применений.


Фото любезно предоставлено: The Alloy Valve Stockist

связанные страницы

Внешние ссылки и справочные материалы

  1. Что такое шаровые краны
  2. Википедия
  3. Откройте для себя мир трубопроводов

% PDF-1.3 % 803 0 объект > эндобдж xref 803 60 0000000016 00000 н. 0000001551 00000 н. 0000001906 00000 н. 0000002067 00000 н. 0000002128 00000 н. 0000002230 00000 н. 0000002302 00000 н. 0000002374 00000 н. 0000002442 00000 н. 0000002574 00000 н. 0000002640 00000 н. 0000002764 00000 н. 0000002827 00000 н. 0000002916 00000 н. 0000003058 00000 н. 0000003124 00000 н. 0000003189 00000 п. 0000003269 00000 н. 0000003430 00000 н. 0000003496 00000 н. 0000003583 00000 н. 0000004267 00000 н. 0000004753 00000 н. 0000004784 00000 н. 0000004943 00000 н. 0000005039 00000 н. 0000005136 00000 н. 0000005233 00000 п. 0000005330 00000 н. 0000005426 00000 п. 0000005467 00000 н. 0000005697 00000 п. 0000005933 00000 н. 0000006585 00000 н. 0000007243 00000 н. 0000007273 00000 н. 0000007296 00000 н. 0000012098 00000 п. 0000012121 00000 п. 0000016453 00000 п. 0000016476 00000 п. 0000021221 00000 п. 0000021244 00000 п. 0000025646 00000 п. 0000025669 00000 п. 0000030176 00000 п. 0000030199 00000 п. 0000034976 00000 п. 0000034999 00000 н. 0000039226 00000 п. 0000039249 00000 п. 0000039456 00000 п. 0000070495 00000 п. 0000104531 00000 н. 0000107209 00000 н. 0000107288 00000 п. 0000111805 00000 н. 0000113602 00000 н. 0000003798 00000 н. 0000004245 00000 н. трейлер ] >> startxref 0 %% EOF 804 0 объект > >> / LastModified (D: 20070108152334) / MarkInfo> >> эндобдж 805 0 объект [ 806 0 R 807 0 R 808 0 R 809 0 R 810 0 R 811 0 R 812 0 R 813 0 R 814 0 R 815 0 справа 816 0 справа 817 0 справа 818 0 справа 819 0 справа 820 0 справа 821 0 справа 822 0 справа ] эндобдж 806 0 объект > / F 2 0 R >> эндобдж 807 0 объект > / F 3 0 R >> эндобдж 808 0 объект > / F 4 0 R >> эндобдж 809 0 объект > / F 5 0 R >> эндобдж 810 0 объект > / Ж 6 0 Р >> эндобдж 811 0 объект > / F 827 0 R >> эндобдж 812 0 объект > / F 828 0 R >> эндобдж 813 0 объект > / Ф 829 0 Р >> эндобдж 814 0 объект > / Ф 830 0 Р >> эндобдж 815 0 объект > / F 831 0 R >> эндобдж 816 0 объект > / Ж 10 0 Р >> эндобдж 817 0 объект > / Ж 14 0 Р >> эндобдж 818 0 объект > / Ж 15 0 Р >> эндобдж 819 0 объект > / Ж 22 0 Р >> эндобдж 820 0 объект > / Ж 27 0 Р >> эндобдж 821 0 объект > / Ж 28 0 Р >> эндобдж 822 0 объект > / Ж 23 0 Р >> эндобдж 823 0 объект > эндобдж 861 0 объект > поток Hb«f« Ȁ

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *