22.11.2024

Коэффициент теплового сопротивления материалов таблица: Сопротивление теплопередаче ограждающих конструкций. Расчет, таблица сопротивления теплопередаче :: BusinessMan.ru – Что такое теплопроводность и термическое сопротивление, формула расчета теплового сопротивления — СамСтрой

Содержание

Сопротивление теплопередаче ограждающих конструкций. Расчет, таблица сопротивления теплопередаче :: BusinessMan.ru

При строительстве частных и многоквартирных домов приходится учитывать множество факторов и соблюдать большое количество норм и стандартов. К тому же перед строительством создается план дома, проводятся расчеты по нагрузке на несущие конструкции (фундамент, стены, перекрытия), коммуникациям и теплосопротивлению. Расчет сопротивления теплопередаче не менее важен, чем остальные. От него не только зависит, насколько будет дом теплым, и, как следствие, экономия на энергоносителях, но и прочность, надежность конструкции. Ведь стены и другие элементы ее могут промерзать. Циклы заморозки и разморозки разрушают строительный материал и приводят к обветшалости и аварийности зданий.

Теплопроводность

Любой материал способен проводить тепло. Этот процесс осуществляется за счет движения частиц, которые и передают изменение температуры. Чем они ближе друг к другу, тем процесс теплообмена происходит быстрее. Таким образом, более плотные материалы и вещества гораздо быстрее охлаждаются или нагреваются. Именно от плотности прежде всего зависит интенсивность теплопередачи. Она численно выражается через коэффициент теплопроводности. Он обозначается символом λ и измеряется в Вт/(м*°C). Чем выше этот коэффициент, тем выше теплопроводность материала. Обратной величиной для коэффициента теплопроводности является тепловое сопротивление. Оно измеряется в (м2*°C)/Вт и обозначается буквой R.

Применение понятий в строительстве

Для того чтобы определить теплоизоляционные свойства того или иного строительного материала, используют коэффициент сопротивления теплопередаче. Его значение для различных материалов дается практически во всех строительных справочниках.

Так как большинство современных зданий имеет многослойную структуру стен, состоящую из нескольких слоев различных материалов (внешняя штукатурка, утеплитель, стена, внутренняя штукатурка), то вводится такое понятие, как приведенное сопротивление теплопередаче. Оно рассчитывается так же, но в расчетах берется однородный аналог многослойной стены, пропускающий то же количество тепла за определенное время и при одинаковой разности температур внутри помещения и снаружи.

Приведенное сопротивление теплопередаче

Приведенное сопротивление рассчитывается не на 1 м кв., а на всю конструкцию или какую-то ее часть. Оно обобщает показатель теплопроводности всех материалов стены.

Тепловое сопротивление конструкций

Все внешние стены, двери, окна, крыша являются ограждающей конструкцией. И так как они защищают дом от холода по-разному (имеют различный коэффициент теплопроводности), то для них индивидуально рассчитывается сопротивление теплопередаче ограждающей конструкции. К таким конструкциям можно отнести и внутренние стены, перегородки и перекрытия, если в помещениях имеется разность температур. Здесь имеются в виду помещения, в которых разность температур значительная. К ним можно отнести следующие неотапливаемые части дома:

  • Гараж (если он непосредственно примыкает к дому).
  • Прихожая.
  • Веранда.
  • Кладовая.
  • Чердак.
  • Подвал.

Расчет сопротивления теплопередаче

В случае если эти помещения не отапливаются, то стену между ними и жилыми помещениями необходимо также утеплять, как и наружные стены.

Тепловое сопротивление окон

В воздухе частицы, которые участвуют в теплообмене, находятся на значительном расстоянии друг от друга, а следовательно, изолированный в герметичном пространстве воздух является лучшим утеплителем. Поэтому все деревянные окна раньше делались с двумя рядами створок. Благодаря воздушной прослойке между рамами сопротивление теплопередаче окон повышается. Этот же принцип применяется для входных дверей в частном доме. Для создания подобной воздушной прослойки ставят две двери на некотором расстоянии друг от друга или делают предбанник.

Такой принцип остался и в современных пластиковых окнах. Единственное отличие – высокое сопротивление теплопередачи стеклопакетов достигается не за счет воздушной прослойки, а за счет герметичных стеклянных камер, из которых откачан воздух. В таких камерах воздух разряжен и практически нет частиц, а значит, и передавать температуру нечему. Поэтому теплоизоляционные свойства современных стеклопакетов намного выше, чем у старых деревянных окон. Тепловое сопротивление такого стеклопакета – 0,4 (м2*°C)/Вт.

Сопротивление теплопередаче окон

Современные входные двери для частных домов имеют многослойную структуру с одним или несколькими слоями утеплителей. К тому же дополнительное теплосопротивление дает установка резиновых или силиконовых уплотнителей. Благодаря этому дверь становится практически герметичной и установка второй не требуется.

Расчет теплового сопротивления

Расчет сопротивления теплопередаче позволяет оценить потери тепла в Вт и рассчитать необходимое дополнительное утепление и потери тепла. Благодаря этому можно грамотно подобрать необходимую мощность отопительного оборудования и избежать лишних трат на более мощное оборудование или энергоносители.

Сопротивление теплопередаче ограждающей конструкции

Для наглядности рассчитаем тепловое сопротивление стены дома из красного керамического кирпича. Снаружи стены будут утеплены экструдированным пенополистиролом толщиной 10 см. Толщина стен будет два кирпича – 50 см.

Сопротивление теплопередаче вычисляется по формуле R = d/λ, где d – это толщина материала, а λ – коэффициент теплопроводности материала. Из строительного справочника известно, что для керамического кирпича λ = 0,56 Вт/(м*°C), а для экструдированного пенополистирола λ = 0,036 Вт/(м*°C). Таким образом, R (кирпичной кладки) = 0,5 / 0,56 = 0,89 (м2*°C)/Вт, а R (экструдированного пенополистирола) = 0,1 / 0,036= 2,8 (м2*°C)/Вт. Для того чтобы узнать общее теплосопротивление стены, нужно сложить эти два значения: R = 3,59 (м

2*°C)/Вт.

Таблица теплового сопротивления строительных материалов

Всю необходимую информацию для индивидуальных расчетов конкретных построек дает представленная ниже таблица сопротивления теплопередаче. Образец расчетов, приведенный выше, в совокупности с данными таблицы может также использоваться и для оценки потери тепловой энергии. Для этого используют формулу Q = S * T / R, где S – площадь ограждающей конструкции, а T – разность температур на улице и в помещении. В таблице приведены данные для стены толщиной 1 метр.

МатериалR, (м2 * °C)/Вт
Железобетон0,58
Керамзитобетонные блоки1,5-5,9
Керамический кирпич1,8
Силикатный кирпич1,4
Газобетонные блоки3,4-12,29
Сосна5,6
Минеральная вата14,3-20,8
Пенополистирол20-32,3
Экструдированный пенополистирол27,8
Пенополиуретан24,4-50

Теплые конструкции, методы, материалы

Для того чтобы повысить сопротивление теплопередаче всей конструкции частного дома, как правило, используют строительные материалы с низким показателем коэффициента теплопроводности. Благодаря внедрению новых технологий в строительстве таких материалов становится все больше. Среди них можно выделить наиболее популярные:

  • Дерево.
  • Сэндвич-панели.
  • Керамический блок.
  • Керамзитобетонный блок.
  • Газобетонный блок.
  • Пеноблок.
  • Полистиролбетонный блок и др.

Дерево является весьма теплым, экологически чистым материалом. Поэтому многие при строительстве частного дома останавливают выбор именно на нем. Это может быть как сруб, так и оцилиндрованное бревно или прямоугольный брус. В качестве материала в основном используется сосна, ель или кедр. Тем не менее это довольно капризный материал и требует дополнительных мер защиты от атмосферных воздействий и насекомых.

Сопротивление теплопередачи стены

Сэндвич-панели – это довольно новый продукт на отечественном рынке строительных материалов. Тем не менее его популярность в частном строительстве очень возросла в последнее время. Ведь его основными плюсами является сравнительно невысокая стоимость и хорошее сопротивление теплопередаче. Это достигается за счет его строения. С наружных сторон находится жесткий листовой материал (ОСП-плиты, фанера, металлический профиль), а внутри — вспененный утеплитель или минеральная вата.

Сопротивление теплопередаче

Строительные блоки

Высокое сопротивление теплопередаче всех строительных блоков достигается за счет наличия в их структуре воздушных камер или вспененной структуры. Так, например, некоторые керамические и другие виды блоков имеют специальные отверстия, которые при кладке стены идут параллельно ей. Таким образом, создаются закрытые камеры с воздухом, что является довольно эффективной мерой препятствия теплопередачи.

В других строительных блоках высокое сопротивление теплопередачи заключается в пористой структуре. Это может достигаться различными методами. В пенобетонных газобетонных блоках пористая структура образуется благодаря химической реакции. Другой способ – это добавление в цементную смесь пористого материала. Он применяется при изготовлении полистиролбетонных и керамзитобетонных блоков.

Таблица сопротивления теплопередаче образец

Нюансы применения утеплителей

Если сопротивление теплопередачи стены недостаточно для данного региона, то в качестве дополнительной меры могут применяться утеплители. Утепление стен, как правило, производится снаружи, но при необходимости может применяться и по внутренней части несущих стен.

На сегодняшний день существует множество различных утеплителей, среди которых наибольшей популярностью пользуются:

  • Минеральная вата.
  • Пенополиуретан.
  • Пенополистирол.
  • Экструдированный пенополистирол.
  • Пеностекло и др.

Все они имеют очень низкий коэффициент теплопроводности, поэтому для утепления большинства стен толщины в 5-10 мм, как правило, достаточно. Но при этом следует учесть такой фактор, как паропроницаемость утеплителя и материала стен. По правилам, этот показатель должен возрастать наружу. Поэтому утепление стен из газобетона или пенобетона возможно только с помощью минеральной ваты. Остальные утеплители могут применяться для таких стен, если делается специальный вентиляционный зазор между стеной и утеплителем.

Заключение

Теплосопротивление материалов – это важный фактор, который следует учитывать при строительстве. Но, как правило, чем стеновой материал теплее, тем меньше плотность и прочность на сжатие. Это следует учитывать при планировке дома.

Сопротивление теплопередаче ограждающих конструкций — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 25 марта 2013; проверки требуют 73 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 25 марта 2013; проверки требуют 73 правки.

Сопротивление теплопередаче ограждающих конструкций, коэффициент теплосопротивления, теплосопротивление, термическое сопротивление — один из важнейших теплотехнических показателей строительных материалов.

При общих равных условиях, это отношение разности температур на поверхностях ограждающей конструкции к величине мощности теплового потока (теплопередача за один час через один квадратный метр площади поверхности ограждающей конструкции, Q˙A{\displaystyle {\dot {Q}}_{A}}) проходящего сквозь нее, то есть R=ΔT/Q˙A{\displaystyle R=\Delta T/{\dot {Q}}_{A}}. Сопротивление теплопередаче отражает теплозащитные свойства ограждающей конструкции и складывается из термических сопротивлений отдельных однородных слоев конструкции.

В Международной системе единиц (СИ) сопротивление теплопередаче ограждающей конструкции измеряется разностью температуры в кельвинах (либо в градусах Цельсия) у поверхностей этой конструкции, требуемой для переноса 1 Вт мощности энергии через 1 м2 площади конструкции (м2·K/Вт или м2·°C/Вт).

Термическое сопротивление отдельного слоя ограждающей конструкции или однородного ограждения[1]R=δλ{\displaystyle R={\frac {\delta }{\lambda }}}, где δ — толщина слоя материала (м), λ — коэффициент теплопроводности материала[2] (Вт/[м·°С]). Чем больше полученное значение R, тем выше теплозащитные свойства слоя материала. Сопротивление теплопередаче ограждающей конструкции равно сумме термических сопротивлений слоев из однородных материалов, составляющих эту конструкцию.

Для примера рассчитаем теплопотери помещения верхнего этажа дома через крышу. Примем температуру внутреннего воздуха +20°С , а наружного −10°С. Таким образом, температурный перепад составит 30°С (или 30 К). Если, например, потолок комнаты со стороны крыши изолирован стекловатой с низкой плотностью толщиной 150 мм, то сопротивление теплопередачи крыши составит около R=2,5 кв.м*град/Вт. При таких значениях температурного перепада и сопротивления теплопередаче, теплопотери через один квадратный метр крыши равны: 30 / 2,5 = 12 Вт. При площади потолка комнаты 16 м2 мощность оттока тепла только через потолок составит 12*16=192 Вт.

Согласно «СНиП 1954» R многослойных ограждений = Rв + R1 + R2 + … + Rн, где Rв — сопротивление теплопереходу у внутренней поверхности ограждения, R1 и R2 — термические сопротивления отдельных слоёв ограждения, Rн — сопротивление теплопереходу у наружной поверхности ограждения[1].

Теплопроводность некоторых материалов[править | править код]

МатериалВ сухом состоянии
(нулевая влажность)
λ, Вт/м·°C
При влажности в условиях эксплуатации «Б»
λ, Вт/м·°C
Влажность
%[3]
Кладка из полнотелого керамического кирпича на цементно-песчаном растворе0,560,812
Кладка из полнотелого силикатного кирпича на цементно-песчаном растворе0,70,874
Сосна и ель поперёк волокон0,090,1820
Фанера клееная0,120,1813
Плиты древесно-волокнистые и древесно-стружечные плотностью 200 кг/м30,060,0812
Опилки древесные0,09 Вт/м·°C
(0,08 ккал/м·час·°C[4])
(средняя влажность в наружных ограждениях)
Листы гипсовые обшивочные (сухая штукатурка) плотностью 800 кг/м30,150,216
Плиты минераловатные из каменного волокна плотностью 180 кг/м30,0380,0485
Плиты из пенополистирола плотностью до 10 кг/м30,0490,05910
  • Свод правил СП 50.13330.2012 Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003 / Минрегион России. — М., 2012. — 96 с.
  • Глава 3. Строительная теплотехника : § 3. Нормы сопротивления теплопередаче ограждений // Строительные нормы и правила. Часть II. Нормы строительного проектирования / Гос. ком. Совета Министров СССР по делам строительства. — М.: Гос. изд-во лит. по стр-ву и архитектуре, 1954. — С. 150—154. — 404 с.

Термическое сопротивление и коэффициенты диффузионного сопротивления строительных материалов | Строительная физика | Строительное проектирование

Коэффициент теплопроводности λ ккал/ (м • ч • °С)НумерацияМатериалОбъёмная масса, кг/ м3Термическое сопротивление,м2 • ч • град/ (см •ккал)Ориентировочные значения диффузионного сопротивления μ
1. ЕСТЕСТВЕННЫЕ КАМНИ И ГРУНТ
1.1. Естественные камни, растительный грунт
31.11Плотные естественные камни (мрамор, гранит и т.д.) 0,003пароизоляция
21.12Пористые естественные камни(песчаник, ракушечник, конгломерат и др.) 0,00510
1,21.13Песок и гравийный песок естественной влажности18000,00832
1,81.14Связной грунт естественной влажности17000,00562
1.2. Суглинок
0,81.21Плотный суглинок и блоки из него21000,012510
0,61.22Солома с глиной17000,01664
0,41.23Лёгкий суглинок12000,0254
0,41.24Жердь, обмотанная соломой с глиняной обмазкой16000,0254
1.3. Сухие заполнители перекрытий и других конструкций
0,51.31Песок13000,022
0,71.32Гравий, мелкий щебень15000,0142
0,161.33Пемзовый гравий9000,06252
0,161.34Каменноугольный шлак7000,06252
0,121.35Доменный шлак10000,08352
0,351.36Кирпичный бой 0,02862
2. РАСТВОРЫ И БЕТОНЫ
2.1. Штукатурка (внутренняя и наружная), бесшовные полы, растворные швы
 2.11Известковый раствор, раствор на гидравлической извести1700  
0,75Известково-цементный раствор19000,013310
1,22.12Цементный раствор21000,008415
 2.13Гипсовый раствор, чистый гипс, известково-гипсовый раствор1200  
0,6Ангидритовый раствор17000,01666
2.2. Тяжёлые и лёгкие бетоны (в бесшовных конструкциях и большеразмерных плитах)
Бетон на гравии и мелком щебне с плотной структурой
1,32.21Бетоны марок В ≤ 12022000,007720
1,75Бетоны марок В ≤ 16024000,005735*
0,652.22Бетон на кирпичном щебне с плотной структурой16000,01539
0,818000,012512
0,92.23Железобетон на кирпичном щебне20000,011118
0,552.24Бетон с пористым заполнителем15000,01823
0,7Бетон с непористым заполнителем, например, гравием17000,01434
0,9519000,01056
0,42.25Бетон на кирпичном щебне12000,0253
0,5Бетон на доменном шлаке14000,024
0,65Бетон на пористом шлаке16000,01546
0,252.26Пемзобетон, керамзитобетон и бетон на вспененном или гранулированном доменном шлаке8000,042,5
0,310000,0336
0,412000,02510
0,122.27Газо- и пенобетон с паропрогревом, лёгкий известковый бетон4000,08352,5
0,165000,06253
0,26000,053,5
0,258000,046,5
0,310000,03310
0,352.28Деревобетон800,02863
0,4510000,02223,5
2.3. Бетонные и гипсовые плиты
0,32.31Асбестоцементные плиты прессованные и непресованные18000,03334
0,32.32Стеновые блоки из лёгкого бетона (DIN 18162)22000,03334
0,252.321Сборные плиты из естественной пемзы8000,042,2
0,32.322Панели из керамзито- и пенобетона10000,0335
0,42.323Шлакабетонные блоки12000,02510
0,52.324Панели из бетона на спекшейся пемзе, кирпичном щебне, туфе, легкобетонные панели на смешанном заполнителе14000,0210
2.33. Гипсовые панели (DIN 18163)
0,252.331Пористый гипс6000,042
0,287000,0362
0,352.332Гипс с наполнителем, пустотами или порами9000,0293,5
0,42.333Гипс (гипсовые панели)10000,0256
0,512000,26
0,52.334Гипс со смешанным заполнителем12000,26
0,182.34Гипсовые плиты с двусторонней картонной обшивкой толщиной до 15 мм12000,0566
2.4. Кладка из бетонных камней (включая растворные швы)
 2.41Силикатный кирпич (DIN106, ч.1)
0,92.411Твёрдый силикатный кирпич> 18000,01130
0,92.412Полнотелый силикатный кирпич> 18000,01130
0,8518000,011830
0,62.413Дырчатый силикатный кирпич12000,02095
0,4814400,01677
0,482.414Пустотелые силикатные блоки10000,02323,5
0,4312000,02095
0,62.42Керамзитовые блоки (DIN 398)
0,752.421Керамзитовые блоки марок HS100 и HS15018000,016710
0,352.422Керамзитовые блоки марки HHS18000,013315
0,42.43Легкобетонные полнотелые блоки (DIN 18152)10000,0253,5
0,4512000,02225
0,5514000,01826,5
0,6816000,01479
 2.44Легкобетонные пустотелые блоки (DIN 18151)
0,382.441Двухкамерные блоки1000*0,02632
0,421200*0,02382,5
0,481400*0,02093,5
0,422.442Трёхкамерные блоки1400*0,02383,5
0,481800*0,02094,5
0,32.45Газо- и пенобетонные блоки (DIN 4165) и лёгкие известково-бетонные блоки с паропрогревом6000,03333,5
0,358000,02510
0,410000,02510
0,382.46То же, с твердением на воздухе8000,02636
0,4810000,020910
0,612000,016716
0,382.47Блоки из деревобетона8000,02633
0,4810000,02083,5
3. КИРПИЧ И ПЛИТКА
3.1. Кладка из кирпича (DIN 105), включая растворные швы
0,93.11Клинкер для надземных сооружений≥ 19000,01120
0,683.12Клинкер с вертикальными пустотами0,014720
0,43.13Полнотелый кирпич, облицовочный кирпич10000,0253,5
0,4512000,0224,5
0,5214000,01926
0,6818000,014710
0,43.14Дырчатый кирпич, дырчатый облицовочный кирпич10000,0253,5
0,4512000,0224,5
0,5214000,01926
0,93.2Керамическая плитка20000,011200
4. СТЕКЛО
0,74,1Листовое стекло (оконное, среднее значение) 0,0142
5. МЕТАЛЛЫ
505.1Чугун и сталь 0,0002
3305.2Медь 0,00003
555.3Бронза, медное литьё 0,00018
1755.4Аллюминий 9000000
6. ДРЕВЕСИНА, ВЫСУШЕННАЯ НА ВОЗДУХЕ (DIN 4074)
0,186.1Дуб8000,056100
0,156.2Бук8000,06780
0,126.3Ель, сосна, пихта6000,083110
0,126.4Клееная фанера6000,083100
7. ИСКУССТВЕННЫЕ МАТЕРИАЛЫ И ПОКРЫТИЯ
0,167.1Линолеум12000,062пароизоляция
 7.2Ксилолитовые и аналогичные покрытия (DIN 272)
0,47.21Подготовка и нижний слой двухслойных полов18000,025пароизоляция
0,67.22Промышленные полы и ходовой слой22000,016пароизоляция
8. БИТУМНЫЕ МАТЕРИАЛЫ
0,68.1Асфальт21000,017пароизоляция
0,158.2Битумы10500,067пароизоляция
0,168.3Кровельный картон11000,063пароизоляция
9. ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ
0,035**9.1Минеральные волокнистые теплоизоляционные материалы (стекло-, каменно-, шлаковолокнистые, DIN 18165)30 – 2000,286**1,4
0,04**9.2Растительные волокнистые теплоизоляционные материалы (из морской травы, кокосовые, древесные, торфоволокнистые, DIN 18165)30 – 2000,25**2
0,069.3Строительная шлаковата без наполнителя 0,1671,4
0,129.4Лёгкие плиты из древесной шерсти (DIN 1101) толщиной 15 мм5700,08311
0,08То же, толщиной 25 и 35 мм460/ 4150,1256,5
0,07То же, толщиной 50 мм и более390/ 3600,144
0,049.5Древесно-волокнистые плиты2000,23
0,053000,23
0,0359.6Пробковые плиты1200,28630
0,0381600,6330
0,042000,2530
0,0559.7Паркет из пробковых плит4500,182 
0,049.8Плиты из волокнистого картона с пропиткой битумом550,25пароизоляция
0,0359.9Вспененная синтетическая смола в виде брусков и хлопьев 0,286  
0,035*Стипорол типа 113 и более0,286**25
0,035Стипорол типа 216 и более0,28633
0,035Стипорол типа 320 и более0,28642
Стипорол типа 425 и более0,28650
Коэффициент теплопроводности λ ккал/ (м • ч • °С)НумерацияМатериалОбъёмная масса, кг/ м3Термическое сопротивление,м2 • ч • град/ (см •ккал)Ориентировочные значения диффузионного сопротивления μ

Теплосопротивление стен по регионам

Рассчет теплопроводности стен: таблица теплосопротивления материалов

Во многих случаях при выборе материала для строительства дома мы не вникаем, каково теплосопротивление строительных материалов, а полагаемся на «народные» методики. Самые популярные из них: «как у соседа», «как раньше», «смотри, какой толстый слой», и – венец искусства – «вроде, должно быть нормально». Что ж, ваш дом – вам и решать, какому методу отдать предпочтение. Но чтобы точно ответить на вопрос, достаточно ли тепло будет в вашем доме зимой (и достаточно ли прохладно в летний зной), нужно знать теплосопротивление стены. Откуда его можно узнать, как считать теплопроводность стены и как это поможет при ответе на ваш вопрос? Давайте разберемся по порядку.

Итак, немного теории, чтобы определиться с терминами и понять, как рассчитать теплосопротивление стены.

Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью.
Итак, теплопроводность – это количественная оценка способности конкретного вещества проводить тепло.
Теплосопротивление – величина обратная теплопроводности. (Хорошо проводит тепло – значит, слабо теплу сопротивляется. Следовательно, обладает высокой теплопроводностью и низким теплосопротивлением).
То есть, при строительстве лучше использовать материалы с низкой теплопроводностью (высоким теплосопротивлением) для лучшего сохранения тепла.

Как рассчитать теплопроводность стены?

Чтобы рассчитать теплосопротивление слоя нужно его толщину в метрах разделить на коэффициент теплосопротивления материалов, из которых он выполнен.
Как рассчитать коэффициент теплопроводности? Эти расчеты делаются в лабораторных условиях. Тем не менее, узнать его несложно: нормальный производитель всегда предоставляет эти данные, указан он и в СНиПе в разделе «Строительная теплотехника», правда, там представлены не все современные материалы. Если вы хотите знать теплосопротивление материалов, таблица с некоторыми из них представлена на данной странице.

Как пользоваться коэффициентом теплопроводности? В СНИПе указано два режима эксплуатации А и Б. Режим А подходит для сухих помещений (влажность меньше 50%) и для районов, удаленных от морских берегов. Для московского региона, например, подходит режим А. Таким образом, теплосопротивление стен по регионам может отличаться.

Теплосопротивление слоя =толщина слоя (м)
Коэффициент теплопроводности материала ( )

Теплосопротивление многослойной конструкции считается как сумма теплосопротивлений каждого слоя. (В случае с одним слоем все просто – его теплосопротивление и будет теплосопротивлением всей конструкции.)

Теплосопротивление конструкции = теплососпротивление слоя 1 + теплосоротивление слоя 2 + и т.д.

Единицы измерения теплосопротивления —

Рассмотрим, как рассчитать толщину стены по теплопроводности на конкретных примерах.

Пример 1

Стена толщиной в полтора кирпича, или, если перевести в международную систему измерения, 0,37 метра (37 сантиметров). Как посчитать теплопроводность стены?

Все, кто имел опыт работы с кирпичом, знают, что кирпич может быть разным. И коэффициент теплопроводности кирпичной кладки, соответственно, тоже разный. Кроме того, теплопроводность кирпичной стены на обычном цементно-песчаном растворе будет ниже, чем коэффициент отдельного кирпича. Как посчитать коэффициент теплопроводности стены в таком случае? Для расчетов будет правильно использовать именно значение для кладки.

Вид кирпичаКоэффициент
теплопро-
водности*,
Кирпичная кладка
на цементно-песчаном
растворе, плотность
1800 кг/м³*
Теплосопроти-
вление стены толщи-
ной 0,37 м,
Красный глиняный (плотность 1800 кг/м³)0,560,700,53
Силикатный, белый0,700,850,44
Керамический пустотелый (плотность 1400 кг/м³)0,410,490,76
Керамический пустотелый (плотность 1000 кг/м³)0,310,351,06

(*из межгосударственного стандарта ГОСТ 530-2007)

Итак, мы убедились, что не все кирпичи одинаковы. И теплопроводность кирпичной кладки в зависимости от вида кирпича может отличаться в 2 раза. Ваш дом из какого кирпича? А мы рассмотрим самый лучший результат (плотность кирпичной кладки полтора керамических пустотелых кирпича). В данном случае теплосопротивление кирпича 1,06 . Запомним результат и перейдем к следующему примеру.

Пример 2

Допустим, мы хотим построить дачный домик из бруса сечением 15 см. Снаружи и изнутри отделаем вагонкой. Что получим? Коэффициент теплосопротивления дерева поперек волокон (данные из СНиПов) составляет 0,14 . Теперь делаем расчет теплосопротивления стены: толщину материала разделим на коэффициент теплопроводности.

Для бруса (это 0,15 м дерева) теплосопротивление составит (0,15/0,14) 1,07 .

Для вагонки (толщина 20 мм или 0,02 м) – 0,143 . Да, вагонка с двух сторон, значит 0.143 х 2 = 0,286 . Справедливости ради заметим, что на практике теплосопротивлением вагонки чаще всего пренебрегают, так как на стыках она имеет еще меньшую толщину, следовательно, меньшее теплосопротивление материала.

Запомним общее расчетное теплосопротивление стены из 15-исантиметрового бруса, обшитого изнутри и снаружи вагонкой, –
1,356 .

Чтобы не было необходимости делать расчёт теплосопротивления стены для каждого материала, в приведенной здесь таблице мы собрали данные по теплосопротивлению материалов, часто используемых при строительстве домов.

Таблица теплосопротивления материалов

МатериалТолщина
материала (мм)
Расчетное теплосо-
противлениеа (м² * °С / Вт)
Брус1000,71
Брус1501,07
Кладка из красного кирпича
(плотность 1800 кг/м³)
380
(полтора кирпича)
0,53
Кладка из белого силикатного кирпича380
(полтора кирпича)
0,44
Кладка из керамического пустотелого кирпича (плотность 1400 кг/м³)380
(полтора кирпича)
0,76
Кладка из керамического пустотелого кирпича (плотность 1000 кг/м³)380
(полтора кирпича)
1,06
Кладка из красного кирпича
(плотность 1800 кг/м³)
510
(два кирпича)
0,72
Кладка из белого силикатного кирпича510
(два кирпича)
0,6
Кладка из керамического пустотелого кирпича (плотность 1400 кг/м³)510
(два кирпича)
1,04
Кладка из керамического пустотелого кирпича (плотность 1000 кг/м³)510
(два кирпича)
1,46
Кладка на клей из газо- пенобетонных блоков (плотность 400 кг/м³)2001,11
Кладка на клей из газо- пенобетонных блоков (плотность 600 кг/м³)2000,69
Кладка на клей керамзитобетонных блоков на керамзитовом песке и керамзитобетоне (плотность 800 кг/м³)2000,65
Теплоизоляционные материалы
Плиты из каменной ваты ROCKWOOL ФАСАД БАТТС501,25
Ветрозащитные плиты Изоплат250,45
Теплозащитные плиты Изоплат120,27

Снова обратимся к СНиПам: теплосопротивление наружной стены, например, в Московской области должно быть не меньше 3 . Помните цифры, которые мы получили? В Российской Федерации нет районов, для которых эта величина составляла хотя бы 1,5 (не говоря уже о значениях еще ниже). Для сравнения приведем такие данные: в Германии эта норма определена не менее 3,4 , в Финляндии — не менее 5 (это, разумеется, уже не по нашим СНиПам, а по их регламентирующим документам).

Эти требования — для домов постоянного проживания. Если дом (как написано в СНиПах) предназначен для сезонного проживания, либо отапливается менее 5 дней в неделю, эти требования на него не распространяются.
Итак мы можем сделать вывод, что в домах со стенами в 1,5 кирпича, либо из бруса в 15 см проживать постоянно… нежелательно. Но ведь живем же! Да, только цена отопления 1 м³ из года в год становится все выше. Со временем все домовладельцы перейдут к эффективному утеплению домов — экономические соображения заставят заранее рассчитать теплопроводность стены и выбрать наилучшее техническое решение.

Расчет толщины для наружных стен жилого дома

Часть 1. Сопротивление теплопередаче – первичный критерий определения толщины стены

Чтобы определится с толщиной стены, которая необходима для соответствия нормам энергоэффективности, рассчитывают сопротивление теплопередаче проектируемой конструкции, согласно раздела 9 «Методика проектирования тепловой защиты зданий» СП 23-101-2004.

Сопротивление теплопередаче – это свойство материала, которое показывает, насколько способен удерживать тепло данный материал. Это удельная величина, которая показывает насколько медленно теряется тепло в ваттах при прохождении теплового потока через единичный объем при перепаде температур на стенках в 1°С. Чем выше значение данного коэффициента – тем «теплее» материал.

Все стены (несветопрозрачные ограждающие конструкции) считаются на термоспротивление по формуле:

R=δ/λ (м 2 ·°С/Вт), где:

δ – толщина материала, м;

λ — удельная теплопроводность, Вт/(м ·°С) (можно взять из паспортных данных материала либо из таблиц).

Полученную величину Rобщ сравнивают с табличным значением в СП 23-101-2004.

Чтобы ориентироваться на нормативный документ необходимо выполнить расчет количества тепла, необходимого для обогрева здания. Он выполняется по СП 23-101-2004, получаемая величина «градусо·сутки». Правила рекомендуют следующие соотношения.

Таблица 1. Уровни теплозащиты рекомендуемых ограждающих конструкций наружных стен

Сопротивление теплопередаче (м 2 ·°С/Вт) / область применения (°С·сут)

Двухслойные с наружной теплоизоляцией

Трехслойные с изоляцией в середине

С невентили- руемой атмосферной прослойкой

С вентилируемой атмосферной прослойкой

Керамзитобетон (гибкие связи, шпонки)

Блоки из ячеистого бетона с кирпичной облицовкой

Примечание. В числителе (перед чертой) – ориентировочные значения приведенного сопротивления теплопередаче наружной стены, в знаменателе (за чертой) — предельные значения градусо-суток отопительного периода, при которых может быть применена данная конструкция стены.

Полученные результаты необходимо сверить с нормами п. 5. СНиП 23-02-2003 «Тепловая защита зданий».

Также следует учитывать климатические условия зоны, где возводится здание: для разных регионов разные требования из-за разных температурных и влажностных режимов. Т.е. толщина стены из газоблока не должна быть одинаковой для приморского района, средней полосы России и крайнего севера. В первом случае необходимо будет скорректировать теплопроводность с учетом влажности (в большую сторону: повышенная влажность снижает термосопротивление), во втором – можно оставить «как есть», в третьем – обязательно учитывать, что теплопроводность материала вырастет из-за большего перепада температур.

Часть 2. Коэффициент теплопроводности материалов стен

Коэффициент теплопроводности материалов стен – эта величина, которая показывает удельную теплопроводность материала стены, т.е. сколько теряется тепла при прохождении теплового потока через условный единичный объем с разницей температур на его противоположных поверхностях в 1°С. Чем ниже значение коэффициента теплопроводности стен – тем здание получится теплее, чем выше значение – тем больше придется заложить мощности в систему отопления.

По сути, это величина обратная термическому сопротивлению, рассмотренному в части 1 настоящей статьи. Но это касается только удельных величин для идеальных условий. На реальный коэффициент теплопроводности для конкретного материала влияет ряд условий: перепад температур на стенках материала, внутренняя неоднородная структура, уровень влажности (который увеличивает уровень плотности материала, и, соответственно, повышает его теплопроводность) и многие другие факторы. Как правило, табличную теплопроводность необходимо уменьшать минимум на 24% для получения оптимальной конструкции для умеренных климатических зон.

Часть 3. Минимально допустимое значение сопротивления стен для различных климатических зон.

Минимально допустимое термосопротивление рассчитывается для анализа теплотехнических свойств проектируемой стены для различных климатических зон. Это нормируемая (базовая) величина, которая показывает, каким должно быть термосопротивление стены в зависимости от региона. Сначала вы выбираете материал для конструкции, просчитываете термосопротивление своей стены (часть 1), а потом сравниваете с табличными данными, содержащимися в СНиП 23-02-2003. В случае, если полученное значение окажется меньше установленного правилами, то необходимо либо увеличить толщину стены, либо утеплить стену теплоизоляционным слоем (например, минеральной ватой).

Согласно п. 9.1.2 СП 23-101-2004, минимально допустимое сопротивление теплопередаче Rо (м 2 ·°С/Вт) ограждающей конструкции рассчитывается как

R1=1/αвн, где αвн – коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м 2 × °С), принимаемый по таблице 7 СНиП 23-02-2003;

R2 = 1/αвнеш, где αвнеш — коэффициент теплоотдачи наружной поверхности ограждающей конструкции для условий холодного периода, Вт/(м 2 × °С), принимаемый по таблице 8 СП 23-101-2004;

R3 – общее термосопротивление, расчет которого описан в части 1 настоящей статьи.

При наличии в ограждающей конструкции прослойки, вентилируемой наружным воздухом, слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью, в этом расчете не учитываются. А на поверхности конструкции, обращенной в сторону вентилируемой воздухом снаружи прослойки, следует принимать коэффициент теплоотдачи αвнеш равным 10,8 Вт/(м 2 ·°С).

Таблица 2. Нормируемые значения термосопротивления для стен по СНиП 23-02-2003.

Жилые здания для различных регионов РФ

Градусо-сутки отопительного периода, D, °С·сут

Нормируемые значения сопротивления теплопередаче , R, м 2 ·°С/Вт, ограждающих конструкций для стен

Астраханская обл., Ставропольский край, Краснодарский край

Белгородская обл., Волгоградская обл.

Алтай, Красноярский край, Москва, Санкт Петербург, Владимирская обл.

Нормируемое сопротивление теплопередаче по СНиП – таблица

Чтобы построить теплый дом – требуется утеплитель. Против этого уже никто не возражает. В современных условиях построить дом, отвечающий требованиям СНиП, без применения утеплителя невозможно.

То есть, деревянный или кирпичный дом, конечно, построить возможно. И строят все также. Однако чтобы соответствовать требованиям Строительных Норм и Правил, его коэффициент сопротивления теплопередаче стен R должен быть не менее 3,2. А это 150 см обычной кирпичной стены.

Для чего, спрашивается, строить «крепостную стену» в полтора метра, когда можно для получения такого же показателя R=3,2 использовать всего 15 см высокоэффективного утеплителя – базальтовой ваты или пенопласта?

А если вы проживаете не в Подмосковье, а в Новосибирской области или в ХМАО? Тогда для вас коэффициент сопротивления теплопередаче для стен будет другим. Каким? Смотрите таблицу.

Таблица 4. Нормируемое сопротивление теплопередаче СНиП 23-02-2003 (текст документа):

Внимательно смотрим и комментируем. Если что-то непонятно, задаем вопросы через ФОРМУ СВЯЗИ или пишем в адрес редактора сайта – ответ будет у вас на электронной почте или в разделе НОВОСТИ.

Итак, в данной таблице нас интересует два вида помещений – жилые и бытовые. Жилые помещения, это, понятно, в жилом доме, который должен соответствовать требованиям СНиП. А бытовые помещения — это утепленные и отапливаемые баня, котельная и гараж. Сараи, кладовые и прочие хозяйственные постройки утеплению не подлежат, а значит, и показателей по теплосопротивлению стен и перекрытий для них нет.

Все требования, регламентирующие приведенной сопротивление теплопередаче по СНиП, разделяются по регионам. Регионы отличаются друг от друга продолжительностью отопительного сезона в холодное время года и предельными отрицательными температурами.

Таблицу, в которой указаны градусо-сутки отопительного сезона для всех основных городов России, можно увидеть в конце материала (Приложение 1).

Для примера, Московская область относится к региону с показателем D = 4000 градусо-суток отопительного периода. Для этого региона установлены следующие показатели СНиП сопротивления теплопередаче (R):

  • Стены = 2,8
  • Перекрытия (пол 1 этажа, чердак или потолок мансарды) = 3,7
  • Окна и двери = 0,35

Чтобы сделать расчет толщины утеплителя, используем формулу расчета и таблицу для основных утеплителей, применяемых в строительстве. Все эти материалы есть на нашем сайте – доступны при переходе по ссылкам.

С расчетами по стоимости утепления все предельно просто. Берем сопротивление стены теплопередаче и подбираем такой утеплитель, который при своей минимальной толщине будет устраивать нас по бюджету и вписываться в требования СНиП 23-02-2003.

Смотрим теперь градусо-сутки отопительного сезона для своего города, в котором вы проживаете. Если вы живете не в городе, а рядом, то можете использовать значения на 2-3 градуса выше, так как фактическая зимняя температура в крупных городах на 2-3 градуса выше, чем в области. Этому способствуют большие теплопотери на теплотрассах и выброс тепла в атмосферу тепловыми электростанциями.

Таблица 4.1. Градусо-сутки отопительного сезона для основных городов РФ (Приложение 1):

Чтобы использовать данную таблицу в расчетах, где фигурирует нормируемое сопротивление теплопередаче, можно взять средние значения внутренней температуры помещений в +22С.

Но тут уж, как говорится, на вкус и цвет – кто-то любит, чтобы было тепло и ставит регулятор по воздуху своего газового котла на +24С. А кто-то привык жить в более прохладном доме и держит температуру помещений на уровне в +19С. Как видите, чем прохладнее постоянная температура в помещении, тем меньше у вас уходит газа или дров на отопление своего дома.

Кстати, доктора нам говорят, что жить в доме при температуре +19С гораздо полезнее, чем при +24С.

Расчет теплопроводности стены

Чтобы определить, какой толщины возводить стену при постройке дома, нужно научиться рассчитать теплопроводность стен. Этот показатель зависит от используемых строительных материалов, климатических условий.

Нормы толщины стен в южных и северных регионах будут различаться. Если не сделать расчет до начала строительства, то может оказаться так, что в доме зимой будет холодно и сыро, а летом слишком влажно.

Чтобы этого избежать, нужно высчитать коэффициент сопротивления теплопередачи материала для постройки стен и утеплителя.

Для чего нужен расчет

Чтобы сэкономить на отоплении и способствовать созданию здорового микроклимата в помещении, нужно правильно рассчитать толщину стен и утеплительных материалов, которые будем использовать при строительстве. По закону физики, когда на улице холодно, а в помещении тепло, то через стену и кровлю тепловая энергия выходит наружу.

Если неправильно рассчитать толщину стен, сделать их слишком тонкими и не утеплить, это приведет к негативным последствиям:

  • зимой стены будут промерзать;
  • на обогрев помещения будут затрачиваться значительные средства;
  • сместиться точка росы, что приведет к образованию конденсата и влажности в помещении, заведется плесень;
  • летом в доме будет так же жарко, как и под палящим солнцем.

Чтобы избежать этих неприятностей, нужно перед началом строительства просчитать показатели теплопроводности материала и определиться, какой толщины возводить стену, и каким теплосберегающим материалом ее утеплять.

От чего зависит теплопроводность

Проводимость тепла рассчитывают исходя из количества тепловой энергии, проходящей через материал площадью 1 кв. м. и толщиной 1 м при разнице температур внутри и снаружи в один градус. Испытания проводят в течение 1 часа.

Проводимость тепловой энергии зависит от:

  • физических свойств и состава вещества;
  • химического состава;
  • условий эксплуатации.

Теплосберегающими считаются материалы с показателем менее 17 ВТ/ (м·°С).

Выполняем расчеты

Расчет толщины стен по теплопроводности является важным фактором в строительстве. При проектировании зданий архитектор рассчитывает толщину стен, но это стоит дополнительных денег. Чтобы сэкономить, можно разобраться, как рассчитать нужные показатели самостоятельно.

Скорость передачи тепла материалом зависит от компонентов, входящих в его состав. Сопротивление передачи тепла должно быть больше минимального значения, указанного в нормативном документе «Тепловая изоляция зданий».

Рассмотрим, как рассчитать толщину стены в зависимости от применяемых в строительстве материалов.

δ это толщина материала, используемого для строительства стены;

λ показатель удельной теплопроводности, рассчитывается в (м2·°С/Вт).

Когда приобретаете стройматериалы, в паспорте на них обязательно должен быть указан коэффициент теплопроводности.

Значения параметров для жилых домов указаны в СНиП II-3-79 и СНиП 23-02-2003.

Допустимые значения в зависимости от региона

Минимально допустимое значение проводимости тепла для различных регионов указано в таблице:

Показатель теплопроводностиРегион
12 м2•°С/ВтКрым
22,1 м2•°С/ВтСочи
32,75 м2•°С/ВтРостов—на—Дону
43,14 м2•°С/ВтМосква
53,18 м2•°С/ВтСанкт—Петербург

У каждого материала есть свой показатель проводимости тепла. Чем он выше, тем больше тепла пропускает через себя этот материал.

Показатели теплопередачи для различных материалов

Величины проводимости тепла материалами и их плотность указаны в таблице:

МатериалВеличина теплопроводностиПлотность
Бетонные1,28—1,512300—2400
Древесина дуба0,23—0,1700
Хвойная древесина0,10—0,18500
Железобетонные плиты1,692500
Кирпич с пустотами керамический0,41—0,351200—1600

Теплопроводность строительных материалов зависит от их плотности и влажности. Одни и те же материалы, изготовленные разными производителями, могут отличаться по свойствам, поэтому коэффициент нужно смотреть в инструкции к ним.

Расчет многослойной конструкции

Если стену будем строить из различных материалов, допустим, кирпич, минеральная вата, штукатурка, рассчитывать величины следует для каждого отдельного материала. Зачем полученные числа суммировать.

В этом случае стоит работать по формуле:

Rобщ= R1+ R2+…+ Rn+ Ra, где:

R1-Rn- термическое сопротивление слоев разных материалов;

Ra.l– термосопротивление закрытой воздушной прослойки. Величины можно узнать в таблице 7 п. 9 в СП 23-101-2004. Прослойка воздуха не всегда предусмотрена при постройке стен. Подробнее о расчетах смотрите в этом видео:

На основании этих подсчетов можно сделать вывод о том, можно ли применять выбранные стройматериалы, и какой они должны быть толщины.

Последовательность действий

Первым делом, нужно выбрать строительные материалы, которые будете использовать для постройки дома. После этого рассчитываем термическое сопротивление стены по описанной выше схеме. Полученные величины следует сравнивать с данными таблиц. Если они совпадают или оказываются выше, хорошо.

Если величина ниже, чем в таблице, тогда нужно увеличить толщину утеплителя или стены, и снова выполнить подсчет. Если в конструкции присутствует воздушная прослойка, которая вентилируется наружным воздухом, тогда в учет не следует брать слои, находящиеся между воздушной камерой и улицей.

Как выполнить подсчеты на онлайн калькуляторе

Чтобы получить нужные величины, стоит ввести в онлайн калькулятор регион, в котором будет эксплуатироваться постройка, выбранный материал и предполагаемую толщину стен.

В сервис занесены сведения по каждой отдельной климатической зоне:

  • t воздуха;
  • средняя температура в отопительный сезон;
  • длительность отопительного сезона;
  • влажность воздуха.

Температура и влажность внутри помещения — одинаковы для каждого региона

Сведения, одинаковые для всех регионов:

  • температура и влажность воздуха внутри помещения;
  • коэффициенты теплоотдачи внутренних, наружных поверхностей;
  • перепад температур.

Чтобы дом был теплым, и в нем сохранялся здоровый микроклимат, при выполнении строительных работ нужно обязательно выполнять расчет теплопроводности материалов стены. Это несложно сделать самостоятельно или воспользовавшись онлайн калькулятором в интернете. Подробнее о том, как пользоваться калькулятором, смотрите в этом видео:

Для гарантировано точного определения толщины стен можно обратиться в строительную компанию. Ее специалисты выполнят все необходимые расчеты согласно требованиям нормативных документов.

Расчет толщины для наружных стен жилого дома

Часть 1. Сопротивление теплопередаче – первичный критерий определения толщины стены

Чтобы определится с толщиной стены, которая необходима для соответствия нормам энергоэффективности, рассчитывают сопротивление теплопередаче проектируемой конструкции, согласно раздела 9 «Методика проектирования тепловой защиты зданий» СП 23-101-2004.

Сопротивление теплопередаче – это свойство материала, которое показывает, насколько способен удерживать тепло данный материал. Это удельная величина, которая показывает насколько медленно теряется тепло в ваттах при прохождении теплового потока через единичный объем при перепаде температур на стенках в 1°С. Чем выше значение данного коэффициента – тем «теплее» материал.

Все стены (несветопрозрачные ограждающие конструкции) считаются на термоспротивление по формуле:

R=δ/λ (м 2 ·°С/Вт), где:

δ – толщина материала, м;

λ — удельная теплопроводность, Вт/(м ·°С) (можно взять из паспортных данных материала либо из таблиц).

Полученную величину Rобщ сравнивают с табличным значением в СП 23-101-2004.

Чтобы ориентироваться на нормативный документ необходимо выполнить расчет количества тепла, необходимого для обогрева здания. Он выполняется по СП 23-101-2004, получаемая величина «градусо·сутки». Правила рекомендуют следующие соотношения.

Таблица 1. Уровни теплозащиты рекомендуемых ограждающих конструкций наружных стен

Сопротивление теплопередаче (м 2 ·°С/Вт) / область применения (°С·сут)

Двухслойные с наружной теплоизоляцией

Трехслойные с изоляцией в середине

С невентили- руемой атмосферной прослойкой

С вентилируемой атмосферной прослойкой

Керамзитобетон (гибкие связи, шпонки)

Блоки из ячеистого бетона с кирпичной облицовкой

Примечание. В числителе (перед чертой) – ориентировочные значения приведенного сопротивления теплопередаче наружной стены, в знаменателе (за чертой) — предельные значения градусо-суток отопительного периода, при которых может быть применена данная конструкция стены.

Полученные результаты необходимо сверить с нормами п. 5. СНиП 23-02-2003 «Тепловая защита зданий».

Также следует учитывать климатические условия зоны, где возводится здание: для разных регионов разные требования из-за разных температурных и влажностных режимов. Т.е. толщина стены из газоблока не должна быть одинаковой для приморского района, средней полосы России и крайнего севера. В первом случае необходимо будет скорректировать теплопроводность с учетом влажности (в большую сторону: повышенная влажность снижает термосопротивление), во втором – можно оставить «как есть», в третьем – обязательно учитывать, что теплопроводность материала вырастет из-за большего перепада температур.

Часть 2. Коэффициент теплопроводности материалов стен

Коэффициент теплопроводности материалов стен – эта величина, которая показывает удельную теплопроводность материала стены, т.е. сколько теряется тепла при прохождении теплового потока через условный единичный объем с разницей температур на его противоположных поверхностях в 1°С. Чем ниже значение коэффициента теплопроводности стен – тем здание получится теплее, чем выше значение – тем больше придется заложить мощности в систему отопления.

По сути, это величина обратная термическому сопротивлению, рассмотренному в части 1 настоящей статьи. Но это касается только удельных величин для идеальных условий. На реальный коэффициент теплопроводности для конкретного материала влияет ряд условий: перепад температур на стенках материала, внутренняя неоднородная структура, уровень влажности (который увеличивает уровень плотности материала, и, соответственно, повышает его теплопроводность) и многие другие факторы. Как правило, табличную теплопроводность необходимо уменьшать минимум на 24% для получения оптимальной конструкции для умеренных климатических зон.

Часть 3. Минимально допустимое значение сопротивления стен для различных климатических зон.

Минимально допустимое термосопротивление рассчитывается для анализа теплотехнических свойств проектируемой стены для различных климатических зон. Это нормируемая (базовая) величина, которая показывает, каким должно быть термосопротивление стены в зависимости от региона. Сначала вы выбираете материал для конструкции, просчитываете термосопротивление своей стены (часть 1), а потом сравниваете с табличными данными, содержащимися в СНиП 23-02-2003. В случае, если полученное значение окажется меньше установленного правилами, то необходимо либо увеличить толщину стены, либо утеплить стену теплоизоляционным слоем (например, минеральной ватой).

Согласно п. 9.1.2 СП 23-101-2004, минимально допустимое сопротивление теплопередаче Rо (м 2 ·°С/Вт) ограждающей конструкции рассчитывается как

R1=1/αвн, где αвн – коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м 2 × °С), принимаемый по таблице 7 СНиП 23-02-2003;

R2 = 1/αвнеш, где αвнеш — коэффициент теплоотдачи наружной поверхности ограждающей конструкции для условий холодного периода, Вт/(м 2 × °С), принимаемый по таблице 8 СП 23-101-2004;

R3 – общее термосопротивление, расчет которого описан в части 1 настоящей статьи.

При наличии в ограждающей конструкции прослойки, вентилируемой наружным воздухом, слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью, в этом расчете не учитываются. А на поверхности конструкции, обращенной в сторону вентилируемой воздухом снаружи прослойки, следует принимать коэффициент теплоотдачи αвнеш равным 10,8 Вт/(м 2 ·°С).

Таблица 2. Нормируемые значения термосопротивления для стен по СНиП 23-02-2003.

Жилые здания для различных регионов РФ

Градусо-сутки отопительного периода, D, °С·сут

Нормируемые значения сопротивления теплопередаче , R, м 2 ·°С/Вт, ограждающих конструкций для стен

Астраханская обл., Ставропольский край, Краснодарский край

Белгородская обл., Волгоградская обл.

Алтай, Красноярский край, Москва, Санкт Петербург, Владимирская обл.

Коэффициенты теплопроводности основных строительных материалов в размерности Вт/(м*К)=Вт/(м*С) и плотность.

Коэффициенты теплопроводности основных строительных материалов в размерности Вт/(м*К)=Вт/(м*С) и плотность. 

Коэффициенты теплопроводности основных строительных материалов в размерности Вт/(м*К)=Вт/(м*С) и плотность.

Материал

Плотность (для сыпучих – насыпная плотность), кг/м3

Коэффициент теплопроводности, Вт/ (м*К)

Алюминий 2600-2700 203,5-221 растет с ростом плотности
Асбест 600 0,151
Асфальтобетон 2100 1,05
АЦП асбесто-цементные плиты 1800 0,35
Бетон см.также Железобетон 2300-2400 1,28-1,51 растет с ростом плотности
Битум 1400 0,27
Бронза 8000 64
Винипласт 1380 0,163
Вода при температурах выше 0 градусов С ~1000 ~0,6
Войлок шерстяной 300 0,047
Гипсокартон 800 0,15
Гранит 2800 3,49
Дерево, дуб — вдоль волокон 700 0,23
Дерево, дуб — поперек волокон 700 0,1
Дерево, сосна или ель — вдоль волокон 500 0,18
Дерево, сосна или ель — поперек волокон 500 0,10—0,15 растет с ростом плотности и влажности
ДСП, ОСП; древесно- или ориентированно-стружечная плита 1000 0,15
Железобетон 2500 1,69
Картон облицовочный 1000 0,18
Керамзит 200 0,1
Керамзит 800 0,18
Керамзитобетон 1800 0,66
Керамзитобетон 500 0,14
Кирпич керамический пустотелый (брутто1000) 1200 0,35
Кирпич керамический пустотелый (брутто1400) 1600 0,41
Кирпич красный глиняный 1800 0,56
Кирпич, силикатный 1800 0,7
Кладка из изоляционного кирпича 600 0,116—0,209 растет с ростом плотности
Кладка из обыкновенного кирпича 600–1700 0,384—0,698—0,814 растет с ростом плотности
Кладка из огнеупорного кирпича 1840 1,05 (при 800—1100°С)
Краска масляная 0,233
Латунь 8500 93
Лед при температурах ниже 0 градусов С 920 2,33
Линолеум 1600 0,33
Литье каменное 3000 0,698
Магнезия 85% в порошке 216 0,07
Медь 8500-8800 384-407 растет с ростом плотности
Минвата 100 0,056
Минвата 50 0,048
Минвата 200 0,07
Мрамор 2800 2,91
Накипь, водяной камень 1,163—3,49 растет с ростом плотности
Опилки древесные 230 0,070—0,093 растет с ростом плотности и влажности
Пакля сухая 150 0,05
Пенобетон 1000 0,29
Пенобетон 300 0,08
Пенопласт 30 0,047
Пенопласт ПВХ 125 0,052
Пенополистирол 100 0,041
Пенополистирол 150 0,05
Пенополистирол 40 0,038
Пенополистирол экструдированый 33 0,031
Пенополиуретан 32 0,023
Пенополиуретан 40 0,029
Пенополиуретан 60 0,035
Пенополиуретан 80 0,041
Пеностекло 400 0,11
Пеностекло 200 0,07
Песок сухой 1600 0,35
Песок влажный 1900 0,814
Полимочевина 1100 0,21
Полиуретановая мастика 1400 0,25
Полиэтилен 1500 0,3
Пробковая мелочь 160 0,047
Ржавчина (окалина) 1,16
Рубероид, пергамин 600 0,17
Свинец 11400 34,9
Совелит 450 0,098
Сталь 7850 58
Сталь нержавеющая 7900 17,5
Стекло оконное 2500 0,698—0,814
Стеклянная вата (стекловата) 200 0,035—0,070 растет с ростом плотности
Текстолит 1380 0,244
Торфоплиты 220 0,064
Фанера клееная 600 0,12
Фаолит 1730 0,419
Чугун 7500 46,5—93,0
Шлаковая вата 250 0,076
Эмаль 2350

0,872—1,163

Коэффициенты теплопроводности основных строительных материалов в размерности Вт/(м*К)=Вт/(м*С) и плотность.

Коэффициенты теплопроводности основных строительных материалов в размерности Вт/(м*К)=Вт/(м*С) и плотность. Коэффициент теплопроводности строительных материалов — таблица. Вариант для печати.

Коэффициенты теплопроводности основных строительных материалов в размерности Вт/(м*К)=Вт/(м*С) и плотность.

Материал

Плотность (для сыпучих – насыпная плотность), кг/м3

Коэффициент теплопроводности, Вт/ (м*К)

Алюминий 2600-2700 203,5-221 растет с ростом плотности
Асбест 600 0,151
Асфальтобетон 2100 1,05
АЦП асбесто-цементные плиты 1800 0,35
Бетон см.также Железобетон 2300-2400 1,28-1,51 растет с ростом плотности
Битум 1400 0,27
Бронза 8000 64
Винипласт 1380 0,163
Вода при температурах выше 0 градусов С ~1000 ~0,6
Войлок шерстяной 300 0,047
Гипсокартон 800 0,15
Гранит 2800 3,49
Дерево, дуб — вдоль волокон 700 0,23
Дерево, дуб — поперек волокон 700 0,1
Дерево, сосна или ель — вдоль волокон 500 0,18
Дерево, сосна или ель — поперек волокон 500 0,10—0,15 растет с ростом плотности и влажности
ДСП, ОСП; древесно- или ориентированно-стружечная плита 1000 0,15
Железобетон 2500 1,69

Материал

Плотность (для сыпучих – насыпная плотность), кг/м3

Коэффициент теплопроводности, Вт/ (м*К)

Картон облицовочный 1000 0,18
Керамзит 200 0,1
Керамзит 800 0,18
Керамзитобетон 1800 0,66
Керамзитобетон 500 0,14
Кирпич керамический пустотелый (брутто1000) 1200 0,35
Кирпич керамический пустотелый (брутто1400) 1600 0,

Таблицы теплопроводимости материалов (металлы, бетон, гранит, дерево и др.)

Взято из: «Примеры и задачи по курсу процессов и аппаратов химической технологии» /под ред. Романкова. Приложение.
Н.И. Кошкин, М.Г. Ширкевич. Справочник по элементарной физике // Издание девятое, М.: «Наука», 1982 г.

Коэффициент теплопроводности металлов

МеталлВт/(м•К)
Алюминий209,3
Бронза47-58
Железо74,4
Золото312,8
Латунь85,5
Медь389,6
Платина70
Ртуть29,1
Серебро418,7
Сталь45,4
Свинец35
Серый
чугун
50
Чугун62,8

Коэффициент теплопроводности других материалов

МатериалВлажность
массовая доля %
Вт/(м•К)
Бакелитовый
лак
0,29
Бетон
с каменным щебнем
81,28
Бумага
обыкновенная
Воздушно-сухая0,14
Винипласт0,13
ГравийВоздушно-сухая0,36
Гранит3,14
Глина15-200,7-0,93
Дуб
(вдоль волокон)
6-80,35-0,43
Дуб
(поперек волокон)
6-80,2-0,21
Железобетон81,55
КартонВоздушно-сухая0,14-0,35
Кирпичная
кладка
Воздушно-сухая0,67-0,87
Кожа>>0,14-0,16
Лед2,21
Пробковые
плиты
00,042-0,054
Снег
свежевыпавший
0,105
Снег
уплотненный
0,35
Снег
начавший таять
0,64
Сосна
(вдоль волокон)
80,35-0,41
Сосна
(поперек волокон)
80,14-0,16
Стекло
(обыкновенное)
0,74
Фторопласт-30,058
Фторопласт-40,233
Шлакобетон130,698
Штукатурка6-80,791

Коэффициент теплопроводности асбеста и пенобетона при различных температурах

a=576кг/м3, ρп=400кг/м3,λ, Вт/(м•К))

Материал-18oС0oС50oС100oС150oС
Асбест0,150,180,1950,20
Пенобетон0,10,110,110,130,17

Коэффициент теплопроводности жидкости Вт/(м•К) при различных температурах

Материал0oС50oС100oС
Анилин0,190,1770,167
Ацетон0,170,160,15
Бензол0,1380,126
Вода0,5510,6480,683
Масло
вазелиновое
0,1260,1220,119
Масло
касторовое
0,1840,1770,172
Спирт
метиловый
0,2140,207
Спирт
этиловый
0,1880,177
Толуол0,1420,1290,119
Запись опубликована автором admin в рубрике Полезные материалы. Добавьте в закладки постоянную ссылку.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *