09.09.2024

Гидравлическая балансировка: Гидравлическая балансировка системы отопления в частном доме. Зачем это нужно и как это происходит? – Гидравлическая балансировка системы отопления

Содержание

Гидравлическая балансировка системы отопления

Как делается гидравлическая балансировка системы отопления 1

Существуют цели и особенности балансировки отопительной системы. Гидравлическая балансировка системы отопления сама по себе является гидравлической увязкой, направленной на осуществление перераспределения тепла по всей замкнутой системе отопления.

Плохая эффективность функционирования работы отопительной системы часто обусловлена неправильным распределением в системе самого теплоносителя. Гидравлическая балансировка системы отопления преследует цель проверить установку балансировочных клапанов и правильность их установки, найти и устранить самые основные неполадки отопительной системы.

Когда расход теплоносителя недостаточный, температура помещения прогревается недостаточно, а когда происходит перерасход теплоносителя, то воздух прогревается избирательно. Современное устройство отопительных систем позволяет удовлетворять требования самых притязательных домовладельцев.

Практика показывает, что системы не всегда работают эффективно и безупречно, по этой причине в помещениях создаются некомфортные климатические условия.

Задачи балансировки

Главной целью балансировки является перераспределение расхода теплоносителя по замкнутым участкам, направляя тепло в места, где ощущается его дефицит. Данная процедура актуальна и уместна в помещениях любой площади, в том числе и частных домах, загородных дачах. Выполнить реконструкцию старой системы отопления сложно и дорого, поэтому в такой ситуации клиенты часто задаются вопросом как отбалансировать систему отопления.

Данная процедура осуществляется согласно государственной программе энергосбережения, в результате проведения отбалансировки значительно снижается потребление теплоносителей, уменьшаются денежные расходы за отопление.

Как делается гидравлическая балансировка системы отопления 2

Проблемы с работой системы отопления

Существует множество неполадок, возникающих в процессе эксплуатации отопительной системы:

  • Присутствие воздуха, которое мешает или блокирует циркуляцию теплоносителя по системе. Иногда заказчики производят замену циркуляционных насосов на образцы, имеющие большую мощность.
  • Поломки составляющих оборудования.
  • Засорение фильтров.

Современные здания и сооружения требуют реконструкции отопительных систем, поскольку гидравлическая балансировка систем отопления обычно нарушена, что влечет увеличение расходов за отопление.

Чем раньше будет проведена балансировка отопительной системы, тем быстрей нормализуется отопительный процесс здания или помещения.

Проблемы работы системы обогрева устранимы только с привлечением специалистов, поскольку именно профессионалы смогут создать правильное распределение теплоотдачи теплового носителя.

Как делается гидравлическая балансировка системы отопления 3

Как выполняется гидравлическая балансировка системы отопления

Если система состоит из одной трубы, то данная процедура проходит просто и оперативно. В таком случае используется специальное приспособление, именно балансировочный кран в системе отопления позволяет равномерно и максимально рационально распределить тепло.

Балансировка двухтрубной системы отопления предусматривает дополнительный монтаж балансировочных клапанов, которые нужно установить в месте, где с двух сторон от них будет по 5 метров трубы. Когда клапан устанавливается после циркуляционного насоса, то расстояние до и после клапана должно составлять > 10 м.

Если данное условие будет нарушено, то выполнить точную регулировку будет невозможно по причине интенсивности вихревых потоков.

Диаметр трубопровода также должен соответствовать размеру балансировочного клапана.

Как делается гидравлическая балансировка системы отопления 4

Чтобы эффективность балансировки была максимальной, рекомендуется сделать ее разделение на отдельные составляющие, которыми могут быть автономные приборы или их группа. На входе отдельных модулей устанавливают балансировочный клапан, позволяющий настраивать работу каждого модуля. Такой подход будет уместен при необходимости получить разный уровень теплоотдачи приборов обогрева в различных помещениях.

Осуществление процедуры балансировки позволяет потреблять минимум энергии и достигать при этом максимум полезности. Данные работы должны осуществляться только силами высококвалифицированных специалистов.

Гидравлическая система, которая подлежала балансировке, экономит энергию до 6 %, защищает окружающую среду от больших объемов выбросов в атмосферу углекислого газа, защищает помещение от шумов и перегревов.

В условиях тотальной экономии коммунальных услуг гидравлическая балансировка актуальна, востребована и необходима.

Как делается гидравлическая балансировка системы отопления 5

Гидравлическая балансировка отопительных систем

Гидравлическая балансировка системы отопления решает две основные задачи: 1 – обеспечение комфортного обогрева во всех отапливаемых помещениях; 2 – снижение энергозатрат, благодаря эффективному использованию энергоресурсов. Кроме того, правильно выполненная балансировка системы отопления способствует работе котла в оптимальном режиме, продлевая его безаварийную эксплуатацию, и предупреждает возникновение шумов в отопительных приборах.

Суть гидравлической балансировки заключается в перераспределении рабочей среды по всем замкнутым участкам системы отопления так, чтобы через каждый отопительный прибор проходил расчетный объем теплоносителя. В результате правильно выполненной балансировки насосное оборудование, обеспечивающее циркуляцию теплоносителя в контурах отопления, начинает потреблять минимум электричества, а тепловая энергия расходуется рационально.

Гидравлическая балансировка необходима для отладки работы как централизованных систем отопления многоквартирных многоэтажных домов, так и автономных систем отопления загородных домов – везде, где применяются системы водяного отопления. То же самое касается и использованных при организации систем отопления схем – однотрубная, двухтрубная или коллекторная (двухтрубная с лучевой разводкой) – все они нуждаются в гидравлической балансировке, которая гарантирует долговечную работу труб, арматуры, отопительного котла и всего комплекса приборов в системе.

Для эффективной регулировки работы отопительных систем, должны быть выполнены следующие условия: расчетный расход теплоносителя должен соблюдаться для всех отопительных приборов, в том числе и для расположенных на самом отдаленном участке (ветви) системы; перепад давления – иметь минимальный разброс по значениям; вся система должна быть гидравлически согласована как единое целое, а не только ее отдельные зоны.

Гидравлическая балансировка системы отопления или холодоснабжения производится с помощью применения запорно-регулирующей арматуры, а также измерительной аппаратуры – электронных расходомеров.

Запорно-регулирующая арматура

Разновидностью запорной арматуры, используемой для гидравлической балансировки в системах отопления, является балансировочный клапан (рис. 1, 2), который регулирует гидравлическое сопротивление изменением диаметра сечения трубы. Конструкция клапана предусматривает два ниппеля для измерения давления, температуры, перепада расхода теплоносителя.

Рис. 1. Балансировочный клапан

В системах отопления обычно используются балансировочные клапаны с ручным управлением (механические, статические) и автоматические (динамические) балансировочные клапаны. А также дифференциальные клапаны контроля давления (DPCV). Статические балансировочные клапаны имеют конструкцию, позволяющую регулировать (изменять) и поддерживать расход в заданных расчетных значениях при запуске системы. Динамические балансировочные клапаны предназначены для поддержания постоянного расхода независимо от перепада давления, поскольку условия системы могут меняться. Клапаны дифференциального давления поддерживают перепад давлений подающей и обратной магистралей динамически постоянным между конкретными точками циркуляционного контура.

Рис. 2 Балансировочный клапан — схема

Механические балансировочные клапаны предназначены для плавного и точного регулирования расхода. Значение расхода устанавливают маховиком управления в соответствии с настроечной шкалой на клапане. Все клапаны оснащены механизмом фиксации предварительной настройки. Это означает, что после предварительной настройки позиционирование маховика может быть ограничено таким образом, что можно отключить клапан, для технического обслуживания, но открытие можно осуществить до положения предварительной настройки. Такие краны предназначены для работы в системе с постоянным давлением теплоносителя. При помощи механического клапана можно не только менять сечение трубопровода до требуемого, но и отсоединить отдельный отопительный прибор из сети, слить с него теплоноситель через кран. Механический балансировочный клапан может быть снабжен ниппелями для измерения давления в системе с обеих сторон от регулятора и фактического расхода транспортируемой среды, но выпускаются статические балансиры и без ниппелей (рис. 3).

Рис. 3 Механический балансировочный клапан

Автоматический балансировочный клапан (рис 4) позволяет оперативно изменять рабочие параметры автономной отопительной сети в соответствии с перепадами давления и потреблением нагретого теплоносителя. На каждый трубопровод автоматические балансировочные клапаны устанавливаются парой.  Автоматический балансир и запорный клапан на подающем трубопроводе ставит ограничение на расход теплоносителя в соответствии с расчетными требованиями. На обратную трубу устанавливается клапан, препятствующий резким перепадам давления. Это дает возможность разделить отопительную систему на отдельные участки, которые могут функционировать независимо друг от друга. Выравнивание давления и регулировка подачи теплоносителя осуществляются в автоматическом режиме.

Рис. 4. Автоматический балансировочный клапан

Автоматические клапаны ограничивают расход до заданного значения при изменении скорости насоса или закрытии другой регулирующей арматуры в системе. Эти клапаны часто называют PICV (Pressure Independent Control Valves) – независимые от давления клапаны. Расход можно регулировать двумя способами: вручную, посредством предварительной настройки картриджа и автоматически через пропорциональный привод в соответствие с изменяющимися условиями в системе.

Дифференциальные клапаны контроля давления (DPCV) предназначены для регулирования дифференциального давления и поддержания его на постоянном заданном уровне, независимо от граничных условий, в диапазоне между минимальным и максимальным расходами (рис. 5). Например, дифференциальное давление балансировочных клапанов Giacomini R206C можно плавно регулировать в диапазонах настройки от 5 до 30 кПа в режиме «L» (низкий) или от 25 до 60 кПа в режиме «H» (высокий) переключением селектора. Эта особенность гарантирует большую гибкость во время запуска и во время последующих изменений в гидравлической системе.

Рис. 5. Дифференциальный клапан контроля давления

В типовом гидравлическом циркуляционном контуре управление осуществляют двумя клапанами: механическим балансировочным клапаном и регулятором перепада давления. Статический балансировочный клапан устанавливают на контуре подачи, настраивают на проектный расход и подключают к регулятору дифференциального давления, который устанавливают на обратном контуре (рис. 6). Подключение между этими клапанами осуществляют медной трубкой, входящей в состав дифференциального клапана. Такая конфигурация позволяет регулятору дифференциального давления поддерживать перепад давления в заданном диапазоне расчетных значений в пределах балансируемого контура.

Рис. 6. Механический балансировочный клапан и регулятор перепада давления на прямой и обратной линии системы отопления

Области применения динамического управление дифференциальным давлением можно обозначить следующим образом:

– регулирование перепада давления в контурах с пропорциональными приводами (как правило, радиаторными клапанами с термостатическими головками) – это конфигурация, в которой регулирование предназначен для защиты каждого контура от избыточного давления, поступающего из смежных контуров

– регулирование перепада давления в контурах с отключаемыми приводами (как правило, в системах панельного отопления или с фанкойлами), где индивидуальный поток в каждом контуре контролируется косвенным образом. После ввода в эксплуатацию и предварительной настройки клапана дифференциального давления со всеми открытыми контурами, клапан будет поддерживать дифференциальное давление коллектора, когда некоторые контуры будут закрыты. Поскольку дифференциальное давление и гидравлическое сопротивление для открытого контура не изменяется, его расход останется неизменным

Варианты балансировки

Метод предварительной настройки клапанов основан на балансировке в соответствии с гидравлическим расчетом при проектировании системы до монтажа. Циркуляционные кольца увязываются настройкой регулирующих клапанов и терморегулятора. Настройку определяют по пропускной способности Kv. Однако в этом случае невозможен учет отклонений от проекта при монтаже, к тому же принимается, что коэффициенты местных сопротивлений постоянны во всем диапазоне регулирования и не оказывают взаимовлияния.

При пропорциональном методе, основанном на закономерностях отклонения потоков в параллельных участках системы при регулировании одного из них, принимается, что в разветвленных системах регулирование одного из клапанов внутри модуля не влечет пропорционального изменения параметров в остальных его клапанах. Модулем системы может быть совокупность стояков либо ветвей, регулируемых общим клапаном. На каждом стояке либо ветви должен также быть регулирующий элемент. Вся система делится на иерархические модули с общими регулирующими клапанами. Совокупность модулей низших уровней составляет модуль высшего уровня. Балансировку начинают внутри первых, переходя по иерархии модулей, увязывая их между собой и приближаясь к главному регулирующему клапану всей системы.

Критериями оптимизации служат: достижение наиболее низкого допустимого давления в системе и наиболее высоких внешних авторитетов (авторитет – отношение потерь давления в регулирующем сечении полностью открытого клапана к потерям давления на регулируемом участке системы, безразмерный параметр, характеризующий отклонение от идеальной расходной характеристики) клапанов.

В обоих случаях наилучшим вариантом являются минимальные потери давления в основном циркуляционном кольце системы. Для этого потери давления в регулирующем клапане также должны быть минимальными. Их принимают, исходя из точности приборов измерения перепада давления, как правило, выше 3 кПа. В регулирующих клапанах с расходомерной шайбой – не ниже 1 кПа.

Наличие большого количества регулирующих клапанов (на каждом иерархическом уровне) приводит к уменьшению авторитетов терморегуляторов и, следовательно, отдаляет проектировщика от создания системы с идеальным регулированием. Кроме того, приходится выбирать насос с увеличенным напором, что приводит к нерациональным потерям энергии.

Пропорциональный метод балансировки применяют для разветвленных систем, имеющих сложную конфигурацию модулей, а также предусматривающих дальнейшее расширение и поэтапный ввод в эксплуатацию. Основной недостаток метода, который требует наличия измерительного прибора и затрат времени для проведения наладки каждого клапана, – многократные измерения при итерационном приближении к заданному результату.

Компенсационный метод балансировки проводится в один этап, но требует двух измерительных приборов и трех наладчиков. Основное его преимущество – отсутствие многократных измерений. Время экономится также за счет балансировки отдельных ответвлений системы при монтаже остальной ее части, при функционировании контура насоса. При этом методе регулирующий (эталонный) клапан основного циркуляционного кольца устанавливают на определенный перепад давления (обычно 3 кПа). Первый наладчик следит за тем, чтобы он поддерживался. Второй – компенсирует возникающие отклонения за счет регулировки клапана-партнера до достижения на эталонном клапане изначально заданного перепада. Третий наладчик регулирует клапаны последовательно, приближаясь к клапану-партнеру. Компенсационный метод используется в системах с ручными регулирующими клапанами.

Автоматическая балансировка

Ускорить и облегчить процесс балансировки систем отопления поможет использование интеллектуальных приборы (рис. 7) для настройки балансировочных клапанов, например, Smart Balancing (Швеция).  В электронной памяти прибора помимо обновляемого программного обеспечения содержатся данные о необходимой для проведения регулировки характеристике Kv (коэффициент пропускной способности) продукции различных компаний. Управление прибором осуществляется при помощи ручного терминала или мобильного телефона с функцией bluetooth (операционная система Windows Mobile). Устройство само выполняет подключение и информирует об этом индикатором. Соединение с входом/выходом регулируемого балансировочного клапана осуществляется при помощи стандартных разъемов и гибких шлангов.

Рис. 7.  Настройка балансировочного клапана с применением компьютерной технологии

Упомянутый прибор рассчитан на работу в системах отопления с максимальным давлением до 25 бар, перепадом давления до 10 бар и температурой теплоносителя до 120 ˚С.

Ещё одно простое решение предлагает компания Grundfos – циркуляционный насос с функцией балансировки, например, ALPHA2 или ALPHA3 (рис. 8) со встроенной технологией Go Balance. С ним монтажник выполнит гидравлическую балансировку системы отопления в доме площадью 200 м2 всего за 2 часа. Для этого нужно установить на смартфон бесплатное приложение Grundfos GO Balance, соединиться с насосом по Bluetooth и следовать инструкциям программы.

Рис. 8 Циркуляционный насос ALPHA3 со встроенной технологией Go Balance смонтированный в системе отопления

Коллекторная балансировка

Для распределения теплоносителя к конечным потребителям (радиаторы, контуры теплого пола) применяют коллекторные узлы, состоящие из двух коллекторов (рис. 9) – подающего и обратного, на которых предусмотрены регулирующие клапаны (рис 10 а, б).

Рис. 9.  Коллектор для подключения теплого пола

Рис. 10. Настройка расходов (балансировка) контуров коллектора: а – с отсечными клапанами; б –   с отсечными клапанами с расходомерами (б)

Предварительная установка требуемых расходов (балансировка) на распределительных коллекторах необходима для обеспечения подачи расчетного количества теплоносителя для каждого контура. Ее выполняют с помощью отсечных (настроечных) клапанов или клапанов с расходомерами.

Для коллекторов со статическими отсечными клапанами настройка занимает много времени, если расчет предварительной настройки не был сделан заранее. Однако, чтобы определить предварительную настройку отсечных клапанов необходимо получить всю информацию о системе. Использование расходомеров на коллекторе также требует значительного времени, так как изменение положения отсечного клапана одного контура изменяет расходы в других. В любом случае балансировка является статической, то есть когда отдельные контуры будут отключены, количество воды в соседних изменится, что приведет к избытку в этих контурах.

Автоматическая гидравлическая балансировка с динамическим управлением расхода позволяет избежать этого переполнения и обеспечить оптимальное распределение температуры, сэкономит энергию и повысит комфорт.

Коллекторы с динамическим управлением расходом теплоносителя поддерживают и ограничивают индивидуальный расход в подключенных контурах посредством картриджа, установленного на каждом выходе обратного коллектора. Достаточно выполнить предварительную настройку требуемого расхода, и картридж обеспечивает его в диапазоне дифференциального давления, когда другие контуры на коллекторе открываются или закрываются. Кроме того, расход отдельного контура можно проконтролировать на расходомерах, которые установлены в подающем коллекторе. Гидравлическая балансировка достигается за одну операцию.

Рис. 11 Комбинированная система отопления на базе наносмесительного узла

         Комбинирование высокотемпературного (радиаторного) контура отопления и низкотемпературного, например, теплый пол требует дополнительной гидравлической увязки, так как у каждого из контуров (рис. 11) предусмотрен собственный циркуляционный насос и значительно различаются значения гидравлических потерь. Например, для насосносмесительного узла с коллектором серии R557R-2 (Giacomini) для гидравлической балансировки (рис. 12) предусмотрены два клапана (поз. 5 – 6 на рисунке). Один клапан регулирует подачу высокотемпературного теплоносителя в контур подмеса, второй, установленный на перепускном байпасе, регулирует расход возвращаемого теплоносителя из низкотемпературного контура теплого пола. Регулирование контуров теплого пола и радиаторов производят отсечными клапанами коллекторов.

Рис. 12 Наносмесительный узел: 1 — металлический шкаф, 2 -подача высокотемпературного контура, 3 — обратка высокотемпературного контура, 4 — трехходовой клапан подмеса с термостатической головкой, 5 — первичный балансировочный клапан, 6 — вторичный балансировочный клапан, 7 — корпус датчика предохранительного термостата, 8 — запорный клапан насоса, 9 — ручной воздухоотводчик, 10 – насос, 11 — сливной кран, 12 – термометры, 13 — подающий коллектор низкотемпературного контура, 14 — обратный коллектор низкотемпературного контура, 15, 16 — направляющие для крепления, 17 — предохранительный термостат, 18 — корпус датчика термостатической головки.

Статья из журнала «Аква-Терм»  № 6/2019, рубрика «Отопление и ГВС»

Опубликовано: 11 декабря 2019 г.

вернуться назад

Читайте так же:

Гидравлическая балансировка системы отопления полов

Гидравлическая балансировка напольного отопления гарантирует, что вода для отопления будет оптимально снабжать все помещения теплом. Эта мера создает более высокий уровень комфорта и даже может способствовать снижению затрат на отопление. О том, когда пол с подогревом требует гидравлической балансировки и как это работает, мы объясним в данной статье.

В то время, как вода для отопления циркулирует через систему труб в доме, она, естественно, выбирает путь наименьшего сопротивления. Он протекает через сравнительно небольшие контуры отопления с меньшими потерями давления. Добавление привязанных комнат, где присутствуют большие контуры отопления, может привести к тому, что воды станет слишком мало.

Поскольку вода для нагрева передает тепло от котла, некоторые помещения зимой не достигают желаемой температуры. Это нарушает комфорт, а также увеличивает расходы на отопление. Потому что часто насосы должны делать больше, чем необходимо. Средство защиты обеспечивается гидравлической регулировкой подогрева пола. Во время данного мероприятия специалисты тщательно осматривают всю сеть трубопроводов в доме и устанавливают ее так, чтобы в каждый отопительный контур поступало правильное количество воды и тепла.

Чтобы понять, необходима ли гидравлическая балансировка для обогреваемых полов, потребители могут обратить внимание, среди прочего, на следующие симптомы:

  • Напольное отопление не очень теплое (в некоторых участках)
  • Комнаты не достигают желаемой температуры
  • Нагрев поверхности вряд ли можно регулировать
  • Потребляемая мощность теплового насоса очень высока
  • Необходима высокая температура потока нагрева

Если указанные пункты встречаются по отдельности или в комбинации, потребители должны нанять специалиста для гидравлической регулировки подогрева пола. Как это работает, объясняется в следующем разделе.

Гидравлическая регулировка напольного отопления включает в себя согласование всех путей нагрева воды. Таким образом, поток равномерно течет через дом и снабжает все помещения необходимым количеством тепла. Работа проводится в 3 этапа.

Шаг 1: Запустите систему и рассчитайте тепловую нагрузку

На первом этапе гидравлической балансировки напольного отопления инженер по отоплению осматривает все здание. Он документирует количество распределителей отопительного контура, а также связанных с ним отопительных контуров. Затем эксперт выполняет расчет тепловой нагрузки. Он анализирует потери тепла через ограждающие конструкции здания и определяет, сколько энергии система отопления должна направлять в каждую отдельную комнату. Результат зависит, среди прочего, от энергетического состояния здания, количества внешних поверхностей и размеров помещений. Желаемые температуры также играют здесь важную роль. Данные значения также можно приблизительно рассчитать и без подробного расчета. В следующем списке приведены рекомендации по удельной тепловой нагрузке здания. Соответственно, для дома, в зависимости от года постройки, необходимо:

  • до 1970 года: от 150 до 170 Вт на квадратный метр
  • 1970–1980: от 100 до 150 Вт на квадратный метр
  • С 1980 по 1990 год: от 75 до 100 Вт на квадратный метр
  • С 1990 по 2000 год: от 50 до 75 Вт на квадратный метр
  • после 2000 года: от 15 до 50 Вт на квадратный метр

Важно: после ремонта значения могут быть ниже. Таким образом, тепловая нагрузка падает через утепление здания или новые окна.

Шаг 2: Расчет количества воды для каждого отопительного контура

Если тепловая нагрузка известна для каждой комнаты, планировщик определяет оптимальную температуру подачи в систему теплых полов. Это единственный способ снизить затраты на отопление, не жертвуя комфортом благодаря гидравлической балансировке полов. Как только это будет сделано, вы можете рассчитать необходимое количество воды для каждого отопительного контура. Эти документы эксперт должен подготовить в письменном виде. Кроме того, он добавляет количество воды для каждого распределителя отопительного контура, а также документирует эти значения.

Шаг 3: Гидравлическая балансировка полов

На последнем этапе специалист определяет потери давления во всей сети трубопроводов. Он регулирует оптимальный расход в каждом отопительном контуре и адаптирует значения настройки регуляторов перепада давления . Если компоненты еще не доступны, монтажник произведет их модернизацию, если он выполнит гидравлическую балансировку в системе теплых полов.

Помимо гидравлической регулировки напольного отопления, существует ряд других мер, которые помогают снизить затраты на отопление. Выгодно заменить старый отопительный насос новым высокоэффективным насосом. Он потребляет значительно меньше электроэнергии и заметно снижает расходы на отопление. Установка системы управления одним помещением также может помочь сократить расходы на электроэнергию, особенно в старых зданиях.

Заключение

Гидравлическая регулировка подогрева пола обеспечивает равномерное распределение тепла от отопления по всему дому. Это обеспечивает высокий комфорт отопления и низкие затраты. Если потребителям необходимо выполнить гидравлическую регулировку подогрева пола, это необходимо делать в три этапа. В первом специалисты берут систему и рассчитывают тепловую нагрузку. Затем они определяют температуру потока, объемы воды и потери давления. На последнем этапе установщик модернизирует недостающие компоненты и корректирует их. Также целесообразно, чтобы потребители также заменяли отопительный насос или модифицировали индивидуальную систему управления помещением.

ГИДРАВЛИЧЕСКАЯ БАЛАНСИРОВКА СИСТЕМ

Гидравлика систем отопления и охлаждения

10.1. Обшие сведения

Основной целью проектирования систем обеспечения микроклима­та является создание теплового комфорта в помещении при минимуме потребления энергоресурсов. Теоретически данная задача является до­стижимой. Практически сегодня делается все возможное для ее реали­зации. Современное оборудование приближается к идеальным характе­ристикам, позволяющим добиться эффективного результата. Однако в действительности даже самые современные системы не всегда справля­ются с этой задачей. У 80 % систем причиной является несоответствие распределения потоков воды [42].

Несоответствию способствуют многие факторы, содержащиеся в допущениях методик расчета, погрешностях монтажа систем, несоблю­дении эксплуатационных требований. В результате происходит пере­распределение потоков по реальным гидравлическим сопротивлениям циркуляционных колец, что приводит к необеспеченности теплового комфорта в помещениях из-за недостатка потока в одних циркуляцион­ных контурах и его избытка в других, возникновению шума, перерасхо­ду энергоресурсов, поэтому перед сдачей объекта в эксплуатацию необ­ходимо вывести систему в рабочий режим с помощью балансировки клапанов.

Одним из допущений методик гидравлического расчета является то, что системы с переменным гидравлическим режимом рассматрива­ют аналогично системам с постоянным гидравлическим режимом. При этом гидравлическое сопротивление элементов системы принимают постоянным, в то время как оно изменяется в широких пределах. В си­стемах с переменным гидравлическим режимом дополнительным тре­бованием, которое должно войти в практику проектирования, является создание условий для эффективной работы всех элементов системы. Для клапанов — распределение потоков, для системы обеспечения ми­кроклимата в целом — линейность регулирования тепловым потоком теплообменных приборов.

До осуществления наладки системы необходимо провести подго­товительные работы: ознакомиться с проектной документацией, тех­ническими инструкциями на клапаны, приборы и пр. Далее проверя­ют исправность элементов системы, их работоспособность и функци­онирование, правильность монтажа. Затем производят балансировку системы.

Гораздо сложнее производить подготовительные работы в модерни­зируемых системах. В этом случае, как правило, заново определяют теплопотери помещений и осуществляют гидравлический расчет на ос — новании собранных исходных данных. Их точность и старательность выполнения расчетов значительно облегчают последующую баланси­ровку системы.

Перед балансировкой системы производят испытание на герметич­ность, промывают, прочищают фильтры, деаэрируют, выводят в рабо­чий гидростатический режим. Все термостатические клапаны устанав­ливают в максимально открытое положение (только так можно опреде­лить перегревы и недогревы помещений). Для этого колпачок термоста­тического клапана не должен упираться в шток. Колпачками защищают шток от царапин, попадания пыли, деформации. Замену колпачков на термостатические регуляторы осуществляют по окончании балансиров­ки системы.

Перед балансировкой системы следует проанализировать ее работо­способность и определить частные признаки и общие закономерности несоответствия требуемым температурным условиям в помещениях. К частным признакам относят перегрев или недогрев отдельных помеще­ний. К общим закономерностям — перегрев или недогрев этажей, поме­щений, расположенных по различным фасадам здания, стояков и т. д.

Если рассматривать систему отопления, то при недогреве отдель­ных помещений вначале следует определить, не является ли это след­ствием засорения или некачественного монтажа, например, образова­ния внутреннего грата (наплыв, уменьшающий проходное сечение тру­бопровода) при термическом соединении труб с фитингами. Как прави­ло, закупорка образовывается в местных сопротивлениях: фитингах, клапанах и т. д. Выявляют ее на ощупь или термометром прибора PFM 3000 до и после местного сопротивления по изменению темпера­туры трубопровода. Если температура не изменяется, значит необходи­мо производить балансировку.

Перегрев отдельных помещений может быть вызван только гидрав­лической разбалансировкой, причем в перегретых помещениях она зна­чительно больше, чем в недогретых (см. рис. 6.7).

Общие закономерности несоответствия температурным условиям в помещении разделяют на эксплуатационные и предэксплуатационные.

Эксплуатационная разбалансировка вызвана качественным регули­рованием системы отопления на протяжении отопительного периода. Если недостаточен авторитет теплоты помещения, то изменение грави­тационного давления теплоносителя приводит к недогреву нижних эта­жей во время морозов. Во время оттепелей происходит недогрев верх­них этажей. Перегревы соответственно верхних и нижних этажей устра­няются терморегуляторами. Не следует допускать эксплуатационную разбалансировку при выборе и обосновании проектных решений систе­мы обеспечения микроклимата. Для этого уменьшают расчетный пере­пад температур теплоносителя с увеличением этажности здания; рас­сматривают работоспособность системы при минимальном и макси­мальном перепадах температур теплоносителя; устанавливают регуля­торы перепада давления в горизонтальных системах на поэтажных (по­квартирных) приборных ветках; устанавливают на каждом теплообмен­ном приборе стабилизаторы расхода или регуляторы перепада давления в вертикальных системах.

Предэксплуатационные общие закономерности следует, прежде всего, попытаться устранить регулированием производительности на­соса и температуры теплоносителя. Общие рекомендации приведены в табл. 10.1 [43]. ‘

Таблица 10.1. Устранение поэтажной разбалансировки системы

Температурные условия на этаже по сравнению с расчетными

Способ устранения

нижнем

верхнем

1. Пониженные

Нормальные

Увеличить производительность насоса

2. Повышенные

Нормальные

Уменьшить производительность насоса

3. Нормальные

Повышенные

Уменьшить температуру теплоносителя

4. Слишком низкие

Чрезмерно

высокие

Уменьшить значительно температуру теплоносителя

5. Нормальные

Чрезмерно

низкие

Увеличить температуру теплоносителя до нормальной на верхнем этаже и уменьшить производительность насоса для достижения нормальных условий в нижнем этаже

6. Чрезмерно высокие

Слишком

низкие

Увеличить температуру теплоносителя до нормальной на верхнем этаже и уменьшить производительность насоса для достижения нормальных условий на нижнем этаже

7. Чрезмерно высокие

Чрезмерно

высокие

Уменьшить температуру теплоносителя

В горизонтальных системах устраняют поэтажную разбаланси­ровку также настройкой регулирующих клапанов на приборных ветках.

Если во всех помещениях нет общей закономерности несоответ­ствия тепловым условиям, то следует производить балансировку систе­мы. Для ее реализации выбирают способ, который зависит от типа при­меняемых регуляторов: прямого или непрямого действия. При этом процесс балансировки должен быть дешевым, быстрым и отвечать техническим требованиям.

В основе методов балансировки систем с терморегуляторами пря­мого действия применяют два подхода. Первый осуществляют в не­сколько этапов. Он заключается в последовательном устранении дисба­ланса по отдельным циркуляционным кольцам, начиная с основного (наиболее удаленного и нагруженного) кольца. Пройдя первый этап, его повторяют до достижения проектного потокораспределения во всех циркуляционных кольцах. Второй осуществляют в один этап. Его реа­лизуют при компенсационном методе балансировки [20]. В системах с терморегуляторами прямого действия широкое распространение полу­чили методы:

• температурного перепада;

• предварительной настройки клапанов;

• пропорциональный;

• компенсационный;

• компьютерный.

Настройку автоматических терморегуляторов непрямого действия (электронных) осуществляют:

• статически;

• динамически.

Указанные способы и методы настройки клапанов достаточно по­дробно рассмотрены в литературе [20; 44; 45; 55]. Остановимся лишь на особенностях и возможностях, которые возникли в последнее время благодаря применению современного оборудования и новых подходов в подборе клапанов и теплообменных приборов.

Наладка системы обеспечения микроклимата ручными балансиро­вочными клапанами является длительной и дорогостоящей проце­дурой. Этот процесс значительно упрощается и удешевляется при применении в системе автоматических балансировочных клапанов (регуляторов перепада давления, регуляторов расхода, стабилиза­торов расхода и т. п.) вместо ручных балансировочных клапанов.

10.2. Метод температурного перепада

Метод основан на уравнении (2.2), смысл которого заключается в том, что в сбалансированной системе разность температур теплоноси­теля At на входе и выходе всех теплообменных приборов должна быть одинаковой. При несоответствующих потоках теплоносителя она
изменяется. Принято считать, что отопительные приборы достигают проектного режима лишь при номинальном потоке. Недостаточный поток теплоносителя уменьшает теплоотдачу прибора, а чрезмерный поток не приводит к ее существенному увеличению (см. рис. 6.7), при этом разницу температур теплоносителя принимают по расчетному значению (уравнение (2.2)). В то же время не учитывают, что тепловой прибор выбирают по завышенным в 1,15(1,1) раза теплопотерям поме­щения (см. п. р. 6.3). Разница температур At’ теплоносителя при этом будет выше At, т. к. расход теплоносителя уменьшится, поэтому разни­цу температур следует определять с учетом завышенного типоразмера теплообменного прибора.

Рис. 10.1. Определение требуемого перепада температур теп­лоносителя в отопитель­ном приборе

Находят разницу температур геометрическим построением, показанным на рис. 10.1. Сплош­ная линия характеризует изме­нение температуры подаваемого в отопительный прибор теплоно­сителя. Пунктирная — расчет­ную температуру теплоносителя на выходе прибора. Штрих — пунктирная — требуемую темпе­ратуру теплоносителя на выходе прибора с завышенной поверх­ностью теплообмена. На оси аб­сцисс дан диапазон изменения температуры наружного воздуха С

iext. Он начинается с расчетной наружной температуры воздуха для системы отопления (например, минус 20 °С) и заканчивается тем­пературой, совпадающей с нормативной температурой воздуха в поме­щении (например, 20 °С). На оси ординат дан диапазон изменения тем­пературы теплоносителя на входе в отопительный прибор и выходе из него. Температуру теплоносителя на входе в отопительный прибор при­нимают, как правило, равной температуре на выходе из источника теп­лоты, например, 90 °С (из котла). Для более точного расчета следует учитывать остывание теплоносителя в трубопроводах. Температуру в обратном трубопроводе, например, 68 °С, определяют из среднего пере­пада температур между прибором (с учетом завышенного типоразмера) и воздухом в уравнении (6.1).

При расчетной температуре наружного воздуха перепад температур теплоносителя примерно равен At’ = 22 °С. Когда совпадает температура
воздуха снаружи и внутри помещения, т. е. равна 20 °С, перепад темпе­ратур At’ = 0. Промежуточные значения At’ определяют по пропорции. Например, при text= 0 °С, соответствующей 50 % рассматриваемого диа­пазона изменения внешних температур, At’ = 11 °С и также составляет 50 % от максимального перепада температур теплоносителя.

Балансировку осуществляют до требуемого перепада температур теплоносителя настройкой дросселя терморегулятора либо регулирую­щего клапана в узле обвязки теплообменного прибора. Термостатичес­кий клапан в это время должен быть полностью открыт (со свободно на­крученным колпачком). Следовательно, влияние завышенного тепло­вого потока теплообменного прибора устраняется уменьшением расхо­да теплоносителя посредством увеличения сопротивления дросселя терморегулятора либо регулирующего клапана. В том и в другом случае ухудшается потокораспределение терморегулятора и, следовательно, авторитет теплоты помещения. Процедура достижения равенства тем­ператур на всех теплообменных приборах может повторяться несколь­ко раз до достижения сбалансированности системы, т. к. настройка каждого прибора отражается на характеристиках всех остальных, даже отрегулированных приборов.

Данный метод балансировки очень не точен, особенно в системах с низкими перепадами температур, каковыми являются системы охлажде­ния с фенкойлами либо потолочными панелями, системы отопления в полу… Из-за тепловой инерции системы и здания процедура балансиров­ки требует значительного времени. Кроме того, необходимо обеспечить стационарные температурные условия как внутри помещения, так и сна­ружи, поэтому метод температурного перепада применяют для баланси­ровки небольших систем отопления при безветренной и несолнечной по­годе. Чем ниже температура наружного воздуха, тем точнее результат.

Несмотря на все недостатки, данный метод является единственно возможным для балансировки теплообменных приборов в пределах стояка либо приборной ветки, если в узлах обвязки этих приборов от­сутствуют регулирующие клапаны со штуцерами для отбора импульсов давления теплоносителя. Задача значительно упрощается при наличии таких клапанов. Тогда применяют пропорциональный либо компенса­ционный метод балансировки. С автоматическим регулятором перепа­да давления на стояке либо приборной ветке настройку теплообменных приборов осуществляют также упрощенным методом предварительной настройки клапанов. В этом случае предполагают, что все автоматичес­ки поддерживаемое давление теряется в терморегуляторе, т. е. прене­брегают потерями давления в трубопроводах и теплообменном приборе. Положение настройки дросселя подбирают по пропускной способности терморегулятора, определяемой уравнением в табл. 3.1, где перепад давления принимают равным автоматически поддерживаемому регуля­тором перепаду.

B методе температурного перепада следует учитывать влияние завышенного типоразмера теплообменного прибора на изменение температуры в обратном трубопроводе.

При монтаже отопительной системы и систем водоснабжения всегда приходится учитывать тот факт, что вода при нагревании расширяется. Для компенсации этого расширения требуется обязат

Гидравлическая балансировка систем отопления и кондиционирования воздуха на базе арматуры фирмы Frese

При проектировании современных систем обеспечения микроклимата ставятся две основные задачи:

  1. Cоздание комфортных параметров внутреннего микроклимата помещений и обеспечение гидравлической устойчивости системы. С этой задачей успешно справляются традиционные системы с постоянным расходом. Постоянный гидравлический режим работы такой системы обеспечивает ее гидравлическую устойчивость и позволяет рассматривать работу системы лишь при ее номинальных параметрах.
     
  2. Cокращение потребления энергоресурсов за счет снижения расходов и сопротивления трубопроводной сети, увеличения ∆Т. Для решения второй задачи, необходимо перейти от систем с постоянным расходом к системам с переменным расходом. Однако переменный расход тепло-/холодоносителя неизбежно вызывает колебания дифференциального давления в трубопроводной сети, что значительно усложняет ее регулирование и обеспечение гидравлической устойчивости. Именно автоматическая (в частности, динамическая) балансировка позволяет одновременно решить обе поставленные задачи.

Динамические балансировочные клапаны позволяют:

  • обеспечить гидравлическую устойчивость системы в условиях колебания дифференциального давления в трубопроводной сети;
  • создать необходимые условия для корректной регулировки тепловым потоком теплообменных аппаратов;
  • оптимизировать процесс проектирования системы и повысить точность расчетов;
  • существенно упростить процесс монтажа и пуско-наладочных работ и дальнейшей оптимизации системы;

1. Гидравлическая устойчивость системы

В условиях изменяющихся гидравлических параметров системы ручные (статические) балансировочные клапаны не способны обеспечить требуемое распределение потоков, что приводит к разбалансировке системы. Ручной балансировочный клапан представляет собой дроссель с изменяемой пропускной способностью, гидравлическое сопротивление которого настроено на номинальный режим работы системы.

Как видно из рис.1 (красная кривая), рост перепада давления на клапане приводит к увеличению расхода через него. В тоже время динамический балансировочный клапан (синяя кривая) ограничивает максимальный расход до номинальной расчетной величины в пределах рабочего перепада давления (от ∆Pmin до ∆Pmax). Тем самым устраняются перерасходы и обеспечивается гидравлическая устойчивость системы даже в условиях колебания дифференциального давления.

2.Корректная регулировка теплового потока теплообменных аппаратов

Необходимым условием для оптимального управления теплообменными аппаратами является стабилизация перепада давления на регулирующих клапанах с целью сохранения расходной характеристики близкой к идеальной. Наилучшее решение – установка регуляторов перепада давления на каждом клапане, но его сложно реализовать как технически, так и экономически.

Регулирующие клапаны с равнопроцентной (логарифмической) расходной характеристикой (зависимость изменения относительного расхода через клапан от изменения относительного хода штока клапана при постоянном перепаде давления на нем) применяются для регулировки теплоотдачи скоростных теплообменных аппаратов с низким перепадом температур теплоносителя. Регуляторы с линейной расходной характеристикой используются при работе с теплообменными аппаратами с высокими перепадами температур (рис.2).

В целях обеспечения оптимального управления теплообменными аппаратами регулятор с логарифмической расходной характеристикой должен быть подобран таким образом, чтобы падение давления на полностью открытом затворе клапана составляло значительную часть от перепада давления на полностью закрытом клапане. Чем выше это соотношение, тем меньше искажение реальной расходной характеристики клапана по сравнению с идеальной. Отношение потерь давления на полностью открытом затворе клапана (p1) к потерям давления на регулируемом участке (p1 + p2) на рис.4 обозначено как авторитет регулирующего клапана (а). Принимается, что его минимальная величина должна быть больше 0.3.
При снижении авторитета регулирующего клапана его расходная характеристика отклоняется от идеальной, приближаясь к линейной, что снижает возможность плавного регулирования. На рис.3 показано, как падение авторитета регулирующего клапана искажает его расходную характеристику. На практике существуют две основные проблемы, возникающие при подборе регуляторов для систем с раздельной установкой балансировочных клапанов, регуляторов перепада давления и регулирующих клапанов.

Проблема №1. Подбор регулятора при малых расходах и больших потерях давления

Как показано на рис. 4, величина p2 включает в себя потери давления на всем циркуляционном кольце: в трубопроводе, в теплообменном аппарате, на местных сопротивлениях и на балансировочном клапане. Если рассматриваемый контур расположен в начале протяженной ветви, то для обеспечения расчетного значения расхода в ее наиболее удаленных частях, на балансировочном клапане должен гаситься значительный перепад давления. Как следствие, становиться весьма сложно при малых расходах подобрать регулирующий клапан с нужным сопротивлением, чтобы обеспечить рекомендуемый авторитет 0,3.

Проблема №2. Искажение расходной характеристики регулирующих клапанов при колебаниях дифференциального давления в трубопроводной сети

Даже если клапаны подобраны с достаточно хорошим авторитетом, в условиях изменяющихся гидравлических параметров системы расходная характеристика регулирующих клапанов отклоняется от идеальной. Закрытие регуляторов вызывает рост дифференциального давления до величины, поддерживаемой на ближайшем регуляторе перепада давления (величина pc на рис.4). Рост давления вызовет увеличение расхода в каждом из циркуляционных колец в противодействие закрытию регуляторов. Даже если теоретически клапаны были подобраны корректно, с высоким значением авторитета, зачастую при частичных нагрузках они будут работать в on/off режиме.

Динамические балансировочные клапаны, в частности комбинированные балансировочные клапаны (за рубежом они известны как PICV – регулирующие клапаны, независимые от давления») устраняют обе эти проблемы, объединяя в одном клапане функции балансировочного клапана, регулятора перепада давления и регулирующего клапана плавного действия. На рис.5 представлены все три клапана по отдельности на примере регулятора Frese OPTIMA.

 

Решение проблемы №1

На рис.5 видно, что регулятор перепада давления клапана OPTIMA поддерживает на встроенном регулирующем и балансировочном клапанах постоянный минимальный перепад давлений. Таким образом, величина p2 минимальна, так как больше не включает в себя потери давления в теплообменном аппарате, трубопроводе, фитингах и на местных сопротивлениях. Более того, так как встроенный регулятор перепада давления гасит любое избыточное давление в контуре, нет надобности дросселировать поток балансировочным клапаном для обеспечения требуемого расхода в остальных частях системы. Поскольку величина p2 почти равна 0, авторитет клапана всегда равен 1.

Решение проблемы №2

На рис.5 видно, что перепад, поддерживаемый встроенным регулятором перепада давления, фактически равен падению давления на регулируемом участке, т.е. pс = p1. Таким образом, перепад давления на штоке встроенного регулирующего клапана не меняется, благодаря чему расходная характеристика клапана остается постоянной.

Конструкция клапана OPTIMA

На рис.6 изображен клапан Frese OPTIMA в разрезе в полностью закрытом и полностью открытом положениях. Клапан состоит из двух основных частей. В верхней части корпуса расположены компоненты регулирующего и балансировочного клапанов. В нижней части – регулятор перепада давления.

Ограничитель расхода

Поток, попадая в клапан, проходит через специальные отверстия прямоугольного сечения. Количество и величина этих отверстий (и как следствие сопротивление клапана) может изменяться, за счет чего осуществляется функция балансировочного клапана. Настроечная шкала в верхней части клапана обеспечивает настройку расчетного расхода. Вращением рукоятки мы меняем площадь входного сечения. На рис.6 показано, как будет выглядеть входное сечение клапана при максимальной и минимальной настройке. Маркировка шкалы начинается с величины 0,2 (минимальный расход) и заканчивается величиной 4,0 (максимальный расход). Для каждого типоразмера клапана, настройка соответствует определенной величине расхода. Выставленный расчетный расход будет поддерживаться постоянным до тех пор, пока встроенный регулирующий клапан будет находится в полностью открытом положении. Это возможно благодаря регулятору перепада давления, работа которого будет описана позже.

Двухходовой регулирующий клапан

Те же отверстия используются и для обеспечения плавного регулирования. При движении штока регулятора вверх/ вниз их площадь также изменяется, для достижения качественного температурного контроля.
Для оптимального управления теплообменными аппаратами, шток клапана управляется приводом, который может смоделировать равнопроцентную расходную характеристику.
Важно также отметить, что бесступенчатая предварительная настройка расхода, не влияет на длину хода штока (5мм при любых условиях) регулирующего клапана.
Клапаны, в которых шток используется в целях ограничения расхода, редко обладают высоким качеством регулирования. Настраивая расход на клапане, они сокращают ход штока до величины, при которой регулировка может осуществляться только в on/off режиме.

Регулятор перепада давления

После комбинированного балансировочного и регулирующего клапана поток проходит через регулятор перепада давления, так называемый ∆Р картридж. Он автоматически настраивает свое положение в зависимости от величины дифференциального давления на комбинированном регулирующем и балансировочном клапане, т.е. между точками «А» и «В» на рис.6.
Небольшая встроенная капиллярная трубка передает импульс входящего в клапан давления (повышенное давление) в полость, формирующую одну из сторон диафрагмы регулятора перепада давления. Вода же, прошедшая через комбинированный балансировочный и регулирующий клапан (пониженное давление), взаимодействует с другой ее стороной. Таким образом, диафрагма будет реагировать на изменение дифференциального давления между этими двумя точками, регулируя тем самым величину выходного отверстия регулятора перепада давления. Проще говоря, если общий перепад давления между точками «А» и «С» на рис.6 должен измениться, например, из-за закрытия других клапанов или изменения скорости насоса, регулятор перепада давления среагирует на эти изменения и займет такое положение, при котором перепад давления между точками «А» и «В» не изменится. Поддерживая постоянный перепад давления между точками «А» и «В» при полностью открытом регулирующем клапане, мы получаем фиксированный перепад давления на фиксированном проходном сечении, что в результате дает нам постоянный расход. Это объясняет, за счет чего возможно ограничить расход до определенной величины, используя шкалу настройки, и почему этот расход остается постоянным вплоть до того момента, когда регулирующий клапан начнет закрываться.

Рис.6. Клапан Frese OPTIMA в разрезе

Принцип действия клапана OPTIMA

Все описанные ранее элементы клапана OPTIMA функционируют так, как если бы все эти три функции выполнялись тремя различными клапанами. Когда привод прикрывает регулирующий клапан, возрастающее давление на входе в клапан передается импульсной трубкой в нижнюю часть ∆Р картриджа. Рост давления выгибает диафрагму, тем самым заставляя регулятор перепада давления также прикрыть выходное сечение. Когда привод открывает регулирующий клапан, снижение давления на входе в клапан заставляет регулятор перепада давления приоткрывать выходное сечение. Таким образом, при любых положениях штока дифференциальное давление на комбинированном балансировочном и регулирующем клапане остается постоянной величиной.

 

3.Проектирование систем с динамическими балансировочными клапанами OPTIMA

Рис.7. Принципиальная схема с комбинированными балансировочными клапанами Frese OPTIMA

На рис.7 изображен пример схемы с использованием регуляторов серии OPTIMA, на схеме также отображены основные компоненты сети. Клапаны OPTIMA устанавливаются в узлах обвязки каждого теплообменного аппарата как прямая замена регулирующего и балансировочного клапана. На стадии проектирования необходимо учитывать следующие особенности:

Подбор клапана

Благодаря встроенному регулятору перепада давления, клапаны OPTIMA подбираются лишь по значению расхода. Поскольку величина p2 (рис.6) включает в себя потери давления исключительно на элементах, интегрированных в тело самого клапана, при подборе характеристики теплообменного аппарата и длина трубопровода не учитываются.

Минимальный перепад давления

Для оптимальной работы встроенного регулятора перепада давления на нем должен быть обеспечен определенный перепад, достаточный для сжатия пружины. В зависимости от типоразмера клапана и его настройки для клапанов DN15-32 эта минимальная величина лежит в диапазоне от 16 до 22кПа. Более точные значения указаны в техническом каталоге. Для определения минимального перепада давления клапаны OPTIMA снабжены измерительными ниппелями.

Балансировочная арматура

Поскольку встроенный регулятор перепада давления изменяет свое положение в зависимости от давления в системе, установка балансировочной арматуры в трубопроводной сети не требуется. Т.е. регуляторы перепада давления в клапанах OPTIMA, расположенных ближе всего к насосу, закроются сильнее, чем в клапанах наиболее удаленных частей системы. Благодаря работе встроенных регуляторов перепада давления в системе будет поддерживаться корректное распределение потока вне зависимости от колебаний дифференциального давления в системе.

Максимальный перепад давления

Регуляторы перепада давления работают в оптимальном режиме при максимальном перепаде давления на клапане до 400 кПа. Поэтому они не предназначены для систем, в которых максимальный перепад давления может превышает эту величину.

Регулирование скорости насоса

Работа насоса должна регулироваться таким образом, чтобы одновременно поддерживать минимальный перепад давления в нескольких контрольных точках системы. Одним из вариантов является поддержание постоянного дифференциального давления на самом насосе. Однако, снижение расхода в системе, при постоянном перепаде давления на насосе, характеризуется не самыми высокими показателями энергоэффективности. Наиболее эффективным решением является, установка датчиков дифференциального давления как можно дальше от насоса. Как показано на рис.7, самой удобной точкой является верхняя часть главного стояка. В системах с большим количеством стояков и множеством веток и абсолютно разными нагрузками необходима установка нескольких датчиков. Работа насоса будет регулироваться таким образом, чтобы обеспечить необходимое минимальное дифференциальное давление во всех контрольных точках.

Минимальный расход

В тот момент, когда все клапаны OPTIMA закрыты, необходимо обеспечить минимальный расход в сети для предотвращения работы насоса на “закрытую задвижку”. Рекомендуется предусматривать байпасные участки на концах стояков и ответвлений. Расположение этих участков должно исключать возможные застойные участки в трубопроводной сети. Циркуляция важна в стальных трубопроводах и для ускорения тепло-/холодоотдачи при открытии клапанов. Наилучший способ поддержания минимального расхода в сети – установка ограничителей расхода, которые будут обеспечивать постоянный расход, вне зависимости от колебаний дифференциального давления в системе.

4.Наладка и эксплуатация систем с регуляторами OPTIMA

На рис.7 изображены все основные элементы системы, рекомендованные в руководстве по проектированию BSRIA Application Guide AG 1/2001.1 Pre-commission cleaning of pipework systems. (BSRIA — Ассоциация маркетинговых исследований и информации в области строительства, Великобритания). Основные этапы промывки системы, точно такие же как и для традиционных систем. В соответствии с этим руководством, заключительный этап прочистки системы – обратная промывка сети через каждый терминал и регулирующий клапан для удаления из них любых посторонних частиц. Эта процедура абсолютно аналогична и для систем с клапанами OPTIMA. В тот момент, когда на клапане OPTIMA возникнет реверсивный перепад давления, встроенный регулятор перепада давления переходит в полностью открытое положение. В этом положении, а также при полностью открытом балансировочном и регулирующем клапане общее сопротивление регулятора OPTIMA будет достаточно мало для обеспечения требуемых скоростей в прилегающем трубопроводе и теплообменном аппарате.

После промывки можно приступать к балансировке системы. Настройка клапанов OPTIMA производится независимо друг от друга, при условии достаточного перепада на встроенных регуляторах перепада давления. Чаще всего наиболее близко расположенные к насосу участки сети обладают необходимым давлением – следовательно, с этих участков и необходимо начинать процедуру балансировки.

Последовательность пуско-наладочных работ:

  1. Убедитесь, что шток регулятора OPTIMA находится в полностью открытом положении. Определите перепад давления на измерительных ниппелях и убедитесь, что величина дифференциального давления на клапане выше минимально необходимого значения.
    В случае недостаточного перепада, выясните причину и, если это необходимо, свяжитесь с проектировщиком.
  2. Установите на шкале клапана необходимую величину. Зафиксируйте это положение и запишите это значение.
  3. Повторите данную процедуру для всех клапанов OPTIMA на ветке.
  4. Измерьте общий расход в ветке. Убедитесь, что полученное значение равно сумме расходов, установленных ранее на клапанах OPTIMA. Если они не равны, выясните причину и, если это необходимо, свяжитесь с проектировщиком.
  5. Повторите данную процедуру, пока все клапаны OPTIMA не будут настроены, а их суммарный расход не будет равен расходу в соответствующих ветках.
  6. Измерьте величину дифференциального давления на индексном клапане (как правило, наиболее удаленный от насоса терминал). Отрегулируйте скорость насоса так, чтобы перепад давления на индексном клапане был равен минимально необходимому дифференциальному давлению.
  7. Определите значение перепада давления в точке установки датчика дифференциального давления. Настройте работу насоса таким образом, чтобы это величина сохранялась постоянной при любых условиях.
  8. Определите суммарный расход, перепад давления и расход электроэнергии на работу насоса.
  9. Переведите все регулирующие клапаны в закрытое положение. Определите и запишите суммарный расход, перепад давления и расход электроэнергии. Рассчитайте суммарное энергосбережение, т.е. разница между энергопотреблением при максимальной и при минимальной нагрузке.

Постепенно на смену регуляторов Frese OPTIMA приходит новое поколение комбинированных балансировочных клапанов – Frese OPTIMA Compact. Запатентованная конструкция регуляторов сохраняет все достижения предыдущего поколения клапанов, но при значительно меньших габаритных размерах, при этом обладая пониженным гидравлическим сопротивлением и повышенной пропускной способностью, на сегодняшний день регуляторы доступны в диапазоне размеров (от DN10 до DN150).

Список литературы:

  1. CIBSE knowledge Series Guide KS7 Variable flow pipework systems
  2. CIBSE Knowledge series Guide KS9 Commissioning variable flow pipework systems
  3. BSRIA Application Guide AG 1/2001.1 Pre-commission cleaning of pipework systems.

Балансировка гидравлических контуров для систем тепло- и холодоснабжения

Теоретически, современные системы отопления, вентиляции и кондиционирования воздуха способны удовлетворять наиболее взыскательным требованиям к микроклимату и экономичности. Однако на практике даже наиболее сложные системы не всегда работают так, как было задумано. В результате, с фактически созданными климатическими условиями приходится мириться, а эксплуатационные расходы оказываются выше, чем ожидалось.

 

Часто это происходит потому, что такая система не удовлетворяет некоторым необходимым условиям. Вот три важнейших условия:

  1. Расчетный расход должен быть действительно обеспечен во всех частях системы;
  2. Перепад давления на регулирующих (в том числе термостатических) клапанах не должен слишком сильно изменяться;
  3. Расходы должны быть согласованы в узловых точках системы.

 

Нарушение первого условия приводит к возникновению следующих проблем:

  • энергетические затраты выше, чем ожидалось;
  • мощность источника тепла не передается на радиаторы при промежуточных и/или высоких нагрузках;
  • слишком жарко в одних частях здания, слишком холодно в других его частях;
  • слишком долгое время требуется для достижения требуемой температуры после запуска системы или смены режимов.

Энергия, передаваемая воздуху радиатором, калорифером или фэнкойлом зависит от температуры и расхода подаваемой воды. Для получения требуемой комнатной температуры управляют именно этими параметрами. Такое управление возможно, только если требуемые расходы воды достижимы.

 

Некоторые специалисты считают, что достаточно указать проектные расходы на чертеже, чтобы получить их в трубах. В действительности же, чтобы получить требуемые расходы, нужно их измерить и откорректировать, поскольку невозможно учесть монтажные факторы. Да и сам проект делается с большими допущениями. Именно поэтому настоящие специалисты убеждены, что гидравлическая балансировка безусловно необходима. Дискуссия ограничивается следующим вопросом: как провести эту балансировку? Например, возможно ли достичь корректного распределения расходов путем тщательного выбора размеров оборудования и трубопроводов?

 

Теоретически, ответом будет «да». Но на практике, это всего лишь мечта. Источники энергии, насосы, трубопроводы и нагрузки проектируются, исходя из необходимости покрытия максимальных потребностей в тепле или холоде. Если размер одного звена в цепи выбран неправильно, остальные оптимально работать не будут. В результате, требуемый климат в помещении достигнут не будет.

 

Некоторого завышения характеристик не удастся избежать, поскольку компоненты установки приходится выбирать из диапазона существующих на рынке. Как правило, их характеристики не подходят под расчетные. Более того, на стадии проектирования характеристики некоторых компонентов вообще не известны, так как они будут выбираться подрядчиком на более поздних этапах. Следовательно, потом приходится модифицировать проект системы для учета фактически установленных элементов, которые часто отличаются от предусмотренных изначально.

 

Гидравлическая балансировка позволяет получить требуемые расходы в уже установленной системе, компенсируя завышение характеристик и оправдывая сделанные инвестиции.

 

Системы распределения с постоянным расходом

 

В системе распределения с постоянным расходом (рис. 1а) рассчитывается трехходовой клапан для создания падения давления, как минимум равного проектному падению давления на нагрузке С. Это означает, что подходящий регулирующий клапан имеет коэффициент управления как минимум 0,5. Если падение давления на нагрузке плюс падение давления на клапане составляет 20 кПа и возможный перепад давления (?H) 80 кПа, то разница в 60 кПа может гаситься балансировочным клапаном STAD1 производства Tour&Andersson (рис. 2). 

 

Рис. 1. Примеры схем для систем с распределением постоянных расходов. 

 

Рис. 2. Балансировочный клапан

 

Если клапана не поставить, то в контуре будет создаваться перерасход в 200%, затрудняя управление и создавая помехи в остальных частях системы.

 

В схеме, изображенной на рис. 1б, необходим балансировочный клапан. Без него обходная перемычка АВ будет коротким замыканием с избыточным перерасходом, приводящим к недостаточному расходу в остальной части установки. С помощью балансировочного клапана STAD2 первичный расход qp корректируется до значения, несколько большего, чем вторичный проектный расход qs, измеряемый и подстраиваемый посредством балансировочного клапана STAD3.

 

Балансировка обеспечивает корректное распределение расходов, предотвращая эксплуатационные проблемы и позволяя органам управления выполнять свои функции. 

 

Системы распределения с переменным расходом

 

В системе распределения с переменным расходом (рис. 3) проблемы недостаточного расхода случаются чаще всего при высоких нагрузках. 

 

Рис. 3. Пример системы с распределением переменных расходов. 

 

На первый взгляд, нет причины балансировать систему с двухходовыми регулирующими клапанами на нагрузках, так как эти клапаны специально устанавливаются для изменения расхода до требуемого уровня. Поэтому, вроде бы, гидравлическая балансировка достигается автоматически. Однако после тщательных расчетов вы обнаружите, что регулирующие клапаны с точным значением Kvs в продаже отсутствуют, поэтому характеристики большинства клапанов придется завышать. Во многих ситуациях не удастся избежать общего открытия регулирующих клапанов. Например, при запуске системы, когда происходят крупные неполадки, когда некоторые термостаты выставлены на минимальные, а некоторые на максимальные величины, или когда занижены размеры некоторых радиаторов. Это будет создавать недостаточный расход в других контурах.

 

Использование насоса с переменной скоростью не решит данной проблемы, так как все расходы будут изменяться пропорционально при изменении напора насоса. Попытка избежать перерасхода таким способом просто сделает недорасход более значимым.

 

Установка в целом разрабатывается для обеспечения ее максимальной мощности при максимальной нагрузке. Поэтому очень важно, чтобы при необходимости эта максимальная мощность была доступна. Гидравлическая балансировка, проведенная при условиях проектирования, гарантирует, что все терминалы смогут получать требуемый расход. При частичной загрузке, когда некоторые регулирующие клапаны закрыты, доступные перепады давления на участках системы могут только увеличиваться. Если избежать недостаточного расхода при максимальной нагрузке, то оно не произойдет и при других условиях. 

 

Утренний запуск системы, смена режимов

 

В системе распределения с переменным расходом утренний запуск (после ночного экономного режима) или резкая смена режимов является важной ситуацией, поскольку полностью открываются большинство регулирующих или термостатических клапанов. Это создает перерасходы, которые приводят к непредсказуемым падениям давления в некоторых трубопроводных сетях и, соответственно, недостаточному расходу. Удаленные контуры не будут получать достаточного расхода до тех пор, пока клапаны на более близких к насосу контурах не начнут закрываться. Следовательно, запуск системы и выход на новый режим затруднен и занимает много времени.

 

В системах распределения с постоянным расходом перерасход/недорасход остается как во время запуска, так и после него, делая проблему еще более сложной. 

 

Требования к средствам балансировки

 

Для балансировки установки требуемые средства должны удовлетворять следующим условиям:

  • должна существовать возможность измерения расхода с точностью около ВВВ±5%;
  • должна существовать возможность несложной регулировки расхода, что сделает установку гибкой;
  • устройства, применяемые для балансировки, должны гарантировать долгосрочную надежность, они должны быть стойкими к агрессивному воздействию воды;
  • устройства, применяемые для балансировки, должны без демонтажа выдерживать промывку системы, и не должны требовать применения специальных фильтров;
  • положение регулировочных устройств должно легко считываться и храниться в защищенной скрытой памяти;
  • для обеспечения хорошей разрешающей способности при считывании позиции устройства его полный диапазон регулировки (например, положение ручки клапана) должен иметь не менее четырех полных оборотов маховика;
  • балансировочный конус должен иметь достаточно большие размеры с целью уменьшения вращающего момента, требуемого для настройки клапана при больших перепадах давления;
  • функция отсечки должна также выполняться балансировочным клапаном;
  • прибор должен включать простую балансировочную процедуру и возможность печати отчета о балансировке. Для диагностических целей прибор также должен обеспечивать регистрацию изменений во времени расходов, перепадов давления и температур. 

Простота балансировки

 

Гидравлическая балансировка обеспечивает возможность проверки правильности установки и монтажа системы. Она позволяет обнаруживать и исправлять большинство неисправностей: наличие воздуха в системе, засоры, неисправности фильтров, отказы оборудования.

 

Использование метода ВВВ«ТА БалансВВВ», разработанного компанией Tour&Andersson (Швеция) является одним из самых легких способов балансировки. «ТА Баланс» является компьютерной программой, основанной на компенсационном методе. Она рассчитывает точные установки для балансировочных клапанов. Главным преимуществом данного метода является то, что один специалист может сбалансировать установку в целом с использованием только одного балансировочного прибора CBI.

 

Система должна быть разделена на модули. Один модуль формируется несколькими контурами, подсоединенными к одному подающему и возвратному трубопроводу. Каждый контур имеет свой собственный балансировочный клапан. Каждый модуль имеет общий балансировочный клапан, называемый партнерским клапаном (рис. 4). При использовании на радиаторах термостатических клапанов V-Exakt с настройкой, выпускаемых фирмой Heimeier (Германия) (рис. 5), нужно найти положения настроек по диаграмме, исходя из проектного расхода и перепада давления, как правило, равного 10 кПа.

 

Рис. 4. Балансировочный модуль.

 

Рис. 5. Термостатический клапан Heimeier

 

Прибор CBI обнаруживает сравнительный контур (то есть контур, обладающий наибольшим гидравлическим сопротивлением) и выставляет падение давления в 3 кПа для балансировочного клапана данного контура. Настройки для других балансировочных клапанов определяются, исходя из необходимости достижения относительной балансировки элементов внутри модуля. Эти настройки не зависят от фактически установленного напора на насосе или от настроек других балансировочных клапанов в системе. Определенные таким образом величины настроек выставляются и фиксируются.

 

Когда все модули по отдельности сбалансированы, далее производится балансировка модулей относительно друг друга с использованием аналогичной процедуры. На этом этапе определяются настройки партнерских клапанов.

 

Окончательно общий проектный расход выставляется с помощью главного балансировочного клапана. Весь избыток давления гасится и измеряется на этом клапане. Этот избыток иногда столь значителен, что можно устанавливать насос меньшей мощности или понизить скорость насоса с целью снижения расходов.

 

По завершении описанной операции проектные расходы будут обеспечены на всех нагрузках. Также выдается компьютерная распечатка со списком установленных величин, падений давления и расходов воды для каждого балансировочного клапана.

 

Заключение

 

Целью любой установки отопления, вентиляции и кондиционирования является создание комфортного климата в помещении при условии минимизации финансовых затрат и эксплуатационных проблем.

 

Одним из этих условий является обеспечение расчетного расхода на всех нагрузках. Для гарантированного выполнения этого условия необходимо проводить гидравлическую балансировку. Такая балансировка предотвращает избыточные расходы в одних контурах, приводящие к недостаточным расходам в других, выявляет степень избыточности в работе насоса и, в целом, проверяет, что установка работает именно так, как планировал ее разработчик.

Балансировка системы отопления с помощью насоса

К. Семаков

За редким исключением, все системы отопления требуют настройки и регулирования (балансировки). В чем суть балансировки отопительной гидросистемы и как это делается по-современному?

Изображение балансировка двухтрубной системы отопления Назначение системы отопления – распределение и доставка теплоносителя от источника (например, котла или точки ввода от теплосети) к каждому отопительному прибору (высоко- или низкотемпературному), который передает тепло потребителю. Теплоотдача каждого отдельного прибора в итоге определяется расходом (подачей) горячей жидкости, который пропускается через него. В свою очередь, расход теплоносителя через прибор определяется перепадом давления на каждом приборе и гидравлическим сопротивлением прибора.

Помимо этого, сама система, будет обладать определенными потерями давления по длине и на местных сопротивлениях. Местными сопротивлениями будут выступать любые фиттинги, сочленения, изгибы, повороты труб, их расширения, сужения и т. п. Чтобы обеспечить нужную теплоотдачу на отопительном приборе, помимо поддержания определенной входной температуры, система должна подать теплоноситель к прибору, имеющему собственную пропускную способность, под определенным давлением, и, после выделения на нем тепла, отвести рабочую жидкость в обратную линию.

Если отопительных приборов (например, радиаторов) в системе несколько, то к каждому из них теплоноситель будет поступать со своими показателями давления. Интенсивность выделения тепла определяется параметрами и конструкцией прибора, а также скоростью протока через него, которая может отличаться от прибора к прибору. Но благодаря неразрывности потока жидкости общий расход через систему определяется суммарными гидравлическими потерями и общим перепадом давления.

Каждая конкретная система отопления, по сути, уникальна, и требует отдельного расчета и настройки, что и называется балансировкой системы.

Итак, сложность балансировки в том, что нужно настраивать тепловые параметры каждого отопительного прибора в системе, по большому счету, имея возможность оперировать лишь гидравлическими величинами: давлением на входе в систему, общим расходом (подачей) теплоносителя и изменением гидравлического сопротивления на участке сети. Задача балансировки – доставить теплоноситель с заданной температурой к каждому отопительному прибору
и обеспечить через него пропускание рабочей жидкости с нужным расходом, обусловливающим необходимое время контакта для передачи тепла.

Результат балансировки – нагревание каждого отопительного прибора в контуре по всей сети до нужной температуры и малое взаимовлияние при его перенастройке на остальные элементы в этой сети. Отбалансированная система повышает комфорт и экономит энергоносители, не допуская перегрева на отдельных участках.

Варианты систем отопления и особенности балансировки

В однотрубной системе задача балансировки состоит в том, чтобы к наиболее удаленному отопительному прибору по ходу тока теплоносителя он поступал с достаточной температурой. Входы и выходы отопительного прибора «обвязаны» перемычкой (байпасом), роль которого может играть сама линия подачи. Суммарная пропускная способность каждого такого узла определяется пропускной способностью через сам тепловой прибор с арматурой и через параллельную перемычку.

Эта схема напоминает последовательное соединение электроприборов в цепь постоянного тока – к последнему в цепи прибору ток поступает «ослабленным» из-за прохождения через все предыдущие сопротивления. То есть, нужно сделать так, чтобы все сопротивления, которые расположены «вверх» по потоку, были незначительны, и энергия потока теплоносителя ослаблялась бы до поступления на последний прибор минимальным образом.

Двухтрубная схема напоминает электроцепь с параллельным подключением элементов, с той особенностью, что сами элементы имеют собственное сопротивление намного ниже, чем собственно подводящие/отводящие «провода». Имея малое сопротивление, такие элементы в данном случае играют роль широкой перемычки с очень малым сопротивлением, «шунта». Т. е. первый же прибор, установленный вниз по потоку, условно, вызывает тепловое «короткое замыкание» – максимум тепловой энергии будет стремиться выделиться на первом же элементе. И дальше по цепи «ток» теплоносителя (разогрев приборов) практически не пойдет, потому что сопротивление линий (прямой и обратной) дальше по схеме будет больше, чем собственно сопротивление прибора на первом участке. Чтобы этого избежать, на элементы (отопительные приборы) навешивают по дополнительному сопротивлению («дросселю»), которым задают величину потока через каждый прибор. Обычно такие сопротивления устанавливают на выходе отопительного прибора, т. е. «после себя», тем самым регулируя пропускную способность на каждом тепловыделяющем устройстве отдельно.

Разновидность двухтрубной системы – «попутная схема» или «схема Тихельмана» – основана на том, что каждый участок «цепи», включающий отдельный прибор, имеет примерно одинаковое эквивалентное сопротивление. Каждый элемент цепи оказывается с точки зрения пропускной способности в равноценных условиях (суммарные потери давления по длине плюс местные сопротивления), и такая система обычно в балансировке не нуждается.

По этой схеме первый по ходу потока прибор имеет наименьшее сопротивление подающего участка и самую длинную обратную линию, а последний – наоборот, самую короткую обратную линию, но самый длинный участок подачи. В среднем же каждый элемент имеет примерно одинаковое эквивалентное гидросопротивление, и соответственный перепад давления на нем. Этим обеспечивается одинаковый расход через приборы, а значит – примерно равная теплоотдача от них.

Электрогидродинамической аналогией можно пояснить только общий принцип балансировки, поскольку имеются специфические гидравлические и теплофизические нюансы, отличающие отопительную систему от электроцепи. Помимо массовых (расходных) характеристик подачи теплоносителя, нужно учитывать и тепловой баланс системы.

Моделирование системы

Как понятно из текста выше, балансировка (отладка) системы отопления состоит в настройке нужных параметров потока на каждом тепловыделяющем приборе системы.

Ручной расчет системы, включающий подробный гидравлический и тепловой расчет, очень трудоемок и неточен. Он носит оценочный характер. А поскольку каждая система по-своему в чем-то уникальна, то всякий раз расчеты нужно выполнять заново. Кроме того, расчеты проводятся при ряде допущений и принятых значений, и при изменении текущих параметров системы (конкретного давления, температуры, расхода и т. д.) на них нельзя полагаться.

Специализированные программные средства позволяют выполнить все расчеты с заданной точностью и даже провести многовариантный анализ, подобрать наиболее оптимальные параметры системы и учесть индивидуальные особенности проекта.

Безусловно, применение компьютерных расчетов, опирающихся на специальное программное обеспечение и широкую базу данных математических моделей для каждого элемента системы, существенно облегчает задачу расчета при проектировании, однако монтажники на объекте этим не занимаются.

Ручная балансировка дросселированием требует опыта и квалификации, применение же автоматических балансирующих устройств существенно удорожают реализацию системы.

Насос в качестве балансировочного устройства

Изображение балансировка системы отопления своими руками Если регулируемый циркуляционный насос оснащен устройствами измерения расхода и давления, то его можно использовать в качестве балансировочного устройства. Представим себе, что все дроссели (вентили, регуляторы давления), установленные на отопительном приборе (или отдельном контуре) перекрыты. Тогда, осуществив пуск насоса, можно измерить давление на циркуляционном насосе в режиме нулевой подачи. Последовательно открывая проток через каждый прибор (контур) по одному, можно измерить по показаниям на насосе перепад давление на нем, или, что то же самое, косвенно определить пропускную способность каждого прибора (контура). Зная размеры и тип прибора (например, радиатора) и его характеристики, можно вывести расход теплоносителя через него на оптимальные (рекомендованные) параметры с помощью дросселя (регулятора).

Собрав данные по пропускной способности каждого участка (контура) и отопительного прибора с учетом длины и диаметра подающих/отводящих труб, реальной площади помещения, с помощью специализированного программного обеспечения можно построить максимально точную модель системы отопления с учетом не расчетных, а фактических значений. Программа рассчитает рекомендованное поджатие дросселей для каждого участка схемы и оптимальную общую подачу теплоносителя от циркуляционного насоса и наилучшее настроечное давление для него.

Но как эту процедуру балансировки, включая моделирование системы, расчет и оптимизацию параметров, быстро и безошибочно осуществить на практике?

«Умный» циркуляционный насос

На рынке теперь имеются бытовые регулируемые циркуляционные насосы, оснащенные всем необходимым для гидравлической балансировки системы отопления в частном доме или квартире с помощью смартфона. В качестве примера рассмотрим насос Grundfos ALPHA2 с широкими возможностями по регулированию и настройке параметров.

Система ALPHA2 включает в себя насос ALPHA2 со встроенными средствами измерения, устройство связи ALPHA Reader для передачи измеренных данных на смартфон и мобильное приложение Grundfos GO Balance, представляющее собой программу по расчету и моделированию параметров схемы отопления с интерактивным интерфейсом для взаимодействия с пользователем.

Устройство связи ALPHA Reader – это маленькое устройство, которое во время процедуры настройки (балансировки системы отопления) нужно прикрепить к лицевой панели насоса. Оно считает данные о производительности насоса и по каналу Bluetooth передаст их на смартфон с мобильным приложением Grundfos GO Balance.

Простая инструкция на экране пошагово проведет пользователя по всем этапам гидравлической балансировки всех радиаторов и зон подогрева теплого пола в доме.

Коммуникатор ALPHA Reader используется только во время выполнения балансировки, поэтому после завершения процедуры его можно снять с насоса ALPHA2 и использовать для настройки на другом «умном» насосе Grundfos в этом доме или на другом объекте.

Мобильное приложение Grundfos GO Balance (программа моделирования, расчета и интерактивного диалога с оператором, проводящим балансировку) можно загрузить в смартфон с помощью сервисов iTunes или Google Play. Сам смартфон выполняет роль компьютерного устройства, выполняющего вычисления для гидравлического балансирования одно- или двухтрубной радиаторной системы отопления, системы теплого пола, системы бытовой рециркуляции горячей воды, системы кондиционирования воздуха с температурой охлаждающей жидкости ≥ 2°C. Всю балансировку можно провести за несколько простых шагов, о которых подскажет программа GO Balance. Кроме того, это мобильное программное приложение сформирует отчет и другую документацию о проведении балансировки.

Помимо балансировки, циркуляционная система, состоящая из «умного» насоса Grundfos ALPHA2 (гарантия производителя – 5 лет), коммуникатора ALPHA Reader и смартфона с ПО GO Balance (дополнительные аксессуары, не входящие непосредственно в комплект насоса ALPHA2), обеспечивает функции защиты насоса от сухого хода во время пуска и эксплуатации. Встроенная автоматика выполнит надежный перезапуск системы с минимальным вращающим моментом, оптимизацию параметров работы насоса за счет функции AUTOADAPT, благодаря которой наилучшим образом выбирается рабочая точка насоса и обеспечивается энергоэффективность, долговечность и экономичность его работы.

Видео. Циркуляционный насос Grundfos ALPHA2

Корпус насоса изготавливается в разных исполнениях –из чугуна или нержавеющей стали, имеет особые покрытия, повышающие износостойкость подвижных и неподвижных частей, специальный электродвигатель с повышенным ресурсом.

Основные технические характеристики насоса Grundfos ALPHA2:

Максимальная подача Qmax = 3,8 м³/ч.
Температура перекачиваемой жидкости: от +2°C до +110°C.
Уровень звукового давления: ≤ 43 dB(A).
Температура окружающей среды: от 0°C до +40°C.
Индекс энергоэффективности: EEI ≤ 0.15 (при напоре 4 м).

Балансировка системы отопления шаг за шагом

Чтобы выполнить балансировку помощью насосной системы Grundfos ALPHA2 нужно просто выполнять пошаговые инструкции.

На любой смартфон нужно загрузить бесплатное программное приложение GO Balance. Затем насос монтируется в систему отопления и подключается к электропитанию.

На лицевую панель насоса навешивается съемный компактный коммуникатор ALPHA Reader, который связывается со смартфоном по каналу Bluetooth, обнаруживается, идентифицируется и подключается к программе GO Balance.

Сначала нужно закрыть все термостаты радиаторов, ветвей теплого пола и/или других нагревательных элементов во всей настраиваемой системе, затем включить насос и таким образом измерить приложением «нулевую» подачу циркуляционного насоса.

Изображение балансировка системы отопления в частном доме

Затем производится процесс измерений по каждому из ответвлений системы (по каждой комнате дома или отопительному контуру отдельно). Введите запрашиваемые ПО данные – размер помещения, размер и тип отопительного прибора (например, радиатора) и т. д. После этого приложение измерит подачу и напор для выбранного радиатора с помощью расходомера, встроенного в насос. Теперь можно переходить к следующему помещению (контуру). Последовательно и пошагово повторение этой процедуры для каждого следующего помещения дома (последовательно открывая вентили, двигаясь от помещения к помещению), позволит приложению GO Balance определить базовое значение расхода для каждой точки регулировки (участку системы отопления) и запишет эти данные в базу программы.

Наконец можно приступить к собственно балансировке. Приложение автоматически рассчитает рекомендованные значения расхода для каждой точки индивидуальной регулировки и покажет, как с помощью регулировочного вентиля настроить нужный расход именно для данного участка системы. После завершения регулировки вентилей по всему дому на предложенные программой настроечные значения, система отопления будет полностью отбалансирована.

Видео. Пример гидравлической балансировки системы отопления в доме с помощью насоса

После завершения гидравлической балансировки, приложение сформирует детальный отчет, включающий полную информацию о проведенной балансировке, данные о собственнике дома и инсталляторе, выполнявшем эту работу. Приложение предусматривает возможность ввода ручной подписи такого документа, чтобы сохранить его и затем отправить Заказчику.

После всего с лицевой панели насоса можно снять ALPHA Reader, чтобы использовать его для балансировки систем в других домах.

Гидравлическая балансировка с помощью насосов серии Grundfos ALPHA и смартфона – это просто, быстро, удобно, надежно и оптимально.

Читайте статьи и новости в Telegram-канале AW-Therm. Подписывайтесь на YouTube-канал.

Просмотрено: 4 954
Вас может заинтересовать:

Вам также может понравиться


Заказ был отправлен, с Вами свяжется наш менеджер.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *