11.09.2024

Схема батареи отопления: Схемы подключения радиаторов, однотрубная и двухтрубная система

Содержание

Схемы подключения радиаторов отопления — Авалон

В процессе монтажа батарей сотрудники компании «Авалон» используют разные схемы подключения радиаторов отопления в зависимости от количества секций в них и особенностей системы обогрева (однотрубная, двухтрубная). Слесари-сантехники по доступной цене подключают алюминиевые, стальные, чугунные, биметаллические батареи в квартирах, коттеджах, офисах. Мастера оперативно выполняют работы «под ключ» в любое время года.

Наиболее распространенные схемы

Схемы подключения радиаторов отопления

Боковое одностороннее подключение

При использовании этой схемы верхний и нижний патрубки радиатора присоединяются к трубе с одной стороны. Этот способ можно применять как при однотрубной, так и при двухтрубной системе обогрева. Такая схема подключения радиаторов отопления с успехом используется в многоэтажных зданиях с вертикальной подачей теплоносителя.

Существенная особенность этого вида – монтаж так называемого байпаса (перемычки) и двух кранов нужных для того, чтобы можно было снять батарею для ремонта или замены, не прерывая циркуляцию горячей воды по трубам в стояке. У одностороннего бокового подключения есть, тем не менее, небольшой минус – оно не рекомендуется для присоединения радиаторов с большим количеством секций, так как они будут плохо прогреваться.

Боковое одностороннее подключение

Боковое подключение с закольцовкой

По сути, этот метод ничем не отличается от упомянутого выше способа.  Радиатор таким же образом подключается к стояку с одной стороны. Однако в этом случае теплоноситель, пройдя по батарее, не поднимается выше, а отправляется вниз. Боковое подключение с закольцовкой – это оптимальный вариант для квартир или офисов, располагающихся на последних этажах здания. Упомянутая схема подключения радиаторов отопления также предполагает использование байпаса и двух кранов, чтобы оставалась возможность отключения и демонтажа батареи осенью или зимой без перекрытия подачи теплоносителя.

Боковое подключение с закольцовкой

Двухтрубное подключение

Такая схема используется в зданиях, в которых имеются два стояка: один для циркуляции нагретой воды, второй для ее оттока. Верхний патрубок подключается к «подаче», нижний присоединяется к «обратке». В этом случае байпас не используется, соответственно, работы по покраске, ремонту или замене радиаторов желательно проводить в теплое время года, когда в трубах отсутствует теплоноситель.

Двухтрубное подключение

Диагональное подключение с двух сторон

Эта схема применяется в том случае, когда устанавливаются батареи с большим количеством секций (12 и выше). Подающий контур присоединяется к верхнему патрубку радиатора, а отводящий – к нижнему, находящемуся с противоположной стороны. Такая система подключения дает возможность равномерно прогревать все секции, так как обеспечивает хорошую циркуляцию носителя тепла по всем секциям батареи.

Диагональное подключение с двух сторон

Нижнее подключение

Сразу оговоримся, что такие схемы редко используются в квартирах и офисах. Они больше подходят для коттеджей с автономными системами обогрева с принудительной циркуляцией жидкости. Радиаторы в таком случае подключаются к трубам снизу, а не с боков. Нижнее подключение также можно использовать как при одно-, так и при двухтрубных системах отопления. К этому же типу относится так называемое седельное подсоединение радиаторов (с нижних боков), однако оно используется достаточно редко, так как менее эффективно. Подходит тогда, когда работает система водяного обогрева пола и батареи подключаются к ней.

Нижнее подключение

Преимущества подключения радиаторов отопления от нашей компании

Сразу отметим тот факт, что без наличия навыков, опыта, инструмента, лучше не пытаться самостоятельно установить батареи, изучив лишь краткое изложение основных схем подключения радиаторов отопления. Доверьте все работы профессионалам, чтобы получить положительный результат и быть уверенными в качестве выполненных работ.

Стоимость того или иного варианта подключения Вы можете просмотреть здесь

Мы рекомендуем воспользоваться нашими услугами в силу следующих причин:

  • опытные сотрудники, обладающие необходимой квалификацией;
  • быстрое выполнение заказов в любое время года;
  • привлекательная стоимость без необоснованных наценок;
  • решение всех вопросов по согласованию с ЖЭУ;
  • бесплатная доставка материалов, инструментов и радиаторов до объекта заказчика;
  • гарантия на выполненные работы – 5 лет;
  • гибкая система скидок;
  • профессиональные консультации, предоставляемые специалистами;
  • постоянное наличие комплектующих и батарей для систем отопления коттеджей и квартир;
  • бесплатный выезд сантехника на объект в день обращения;
  • составление сметы для прозрачности расходов;
  • предоставление услуг по официальному договору.

Позвоните или напишите нам, чтобы получить больше информации и оставить заявку. Наши контактные данные: г. Екатеринбург, Чкалова 124; Бахчиванджи 2а-406; +7 (343) 328-08-68; WhatsApp\Viber: (922) 174-00-00; [email protected].

Варианты подключения радиаторов отопления и их различия

С каждым годом благосостояние многих россиян улучшается. На фоне этого заметно увеличение строительства частных домов для постоянного проживания, что в обязательном порядке требует устройства системы отопления. Людям, далеким от вопросов строительства практически невозможно самостоятельно выбрать схему подключения радиаторов и сделать последовательное подключение.

При неправильном подходе к решению этой задачи, система отопления будет работать на 30−50% слабее от запланированной мощности. Если нет возможности осуществить подсоединение радиаторов самостоятельно, но ознакомившись с информацией, какие схемы подключения отопительных приборов существуют, зная их плюсы и минусы, можно проконтролировать рабочий процесс, осуществляемый специалистами.

Прежде чем говорить о подключении радиаторов, следует определиться, по какой схеме была произведена разводка трубопровода в вашем загородном доме или городской квартире. Именно от расположения и типа разводки напрямую зависит подключение приборов отопления. При монтаже трубопровода в жилых помещениях применяют два основных вида разводки:

  1. Однотрубный. По такой схеме, к радиаторам подключенным последовательно, теплоноситель переносится по подающей трубе, при этом постепенно остывая. Применяется в основном для создания системы отопления многоквартирных домов. Получила название — «ленинградка» и может осуществляться как в горизонтальном, так и в вертикальном положении. Единственное условие, все радиаторы должны быть расположены строго друг под другом, независимо от этажа. Подробное описание однотрубной системы отопления.
  2. Двухтрубный. По такой схеме, подающая и отводящая теплоноситель трубы независимы друг от друга и замыкаются они на источнике подачи тепла, в качестве которого может быть использован газовый, электрический или твердотопливный котел. Именно такая схема разводки и применяется в жилых помещениях, так как происходит постоянная циркуляция теплоносителя по радиаторам системы отопления. Особенности двухтрубной системы.

В подавляющем большинстве на рынке отопительных приборов представлены унифицированные радиаторы, которые имеют четыре точки подключения: две сверху и две снизу. В комплекте обязательно поставляются заглушки и воздухоотводный клапан. В настоящее время существует несколько основных схем подключения радиаторов отопления:

  • одностороннее;
  • перекрестное;
  • нижнее.

Одностороннее подключение

Такое подключение радиаторов характерно для многоквартирных домов и считается самой распространенной. По этой схеме радиаторы к трубам отопления подключаются только с одной стороны. Преимущества — номинальная мощность отопительного прибора при относительно небольших материальных затратах.

Именно поэтому она выбрана в качестве основной схемы при строительстве многоэтажных домов, когда удается достичь максимального результата, сократив при этом расход материалов. К минусам можно отнести тот факт, что если например, на первом этаже самостоятельно увеличить количество секций, то резко снизиться прогрев помещений верхних этажей. Для увеличения эффективности работы радиаторов отопления, предусмотрена установка перемычек — байпаса, за счет чего удается понизить скорость остывания отопительного прибора. Демонтаж такой перемычки самостоятельно, также приведет к нарушению работы отопления всего многоквартирного дома.

Перекрестное подключение

Такая схема подключения радиаторов рекомендуется только в том случае, если количество секции в отопительном приборе 15 штук. При таком подключение радиатора, теплоноситель перемещается по нему сверху вниз с противоположных сторон, тем самым обеспечивая равномерный прогрев всей поверхности прибора. Максимальный результат достигается только при двухтрубной системе отопления. Очень важна правильность подключения подводящей и отводящей трубы теплоносителя. Подводящая должна располагаться сверху, а отводящая снизу. Если нарушить правильность подключения отопительного прибора, то потеря мощности может составлять до 50%.

Нижнее подключение

Такая схема подключения радиаторов больше всего подходит для загородных домов с автономной или индивидуальной системой отопления. По такой схеме, подводящая и отводящая труба теплоносителя подключается снизу с разных сторон. При выборе такой схемы подключения отопительных приборов может теряться до 14% мощности радиатора. Немного исправить ситуацию помогает установка воздушных клапанов, с помощью которых удаляется воздух из системы и за счет этого увеличивается мощность прибора.

Существует еще одна схема нижнего подключения радиаторов, когда подводящая и отводящая трубы подсоединяются к батарее не с противоположных нижних сторон, а к его нижней грани. При таком подключение мощность радиатора используется по максимумам. Как боковое нижнее, так и полностью нижнее подключение применяется при скрытой плинтусной разводке, что позволяет не нарушать общую картину создаваемого интерьера.

Занимаясь подключением радиаторов, не стоит забывать, что как бы качественно не был изготовлен, и какой бы современный материал для этого не применялся. Всегда существует вероятность его преждевременного выхода из строя. Поэтому в обязательном порядке рекомендуется установка специальных кранов на отводящую и подводящую трубы для возможности прикрытия доступа теплоносителя. Такая предусмотрительность поможет заменить прибор отопления, не отключая всю систему. Кроме этого, на отводящую трубу можно установить запорную арматуру, а на подводящую — терморегулирующий кран, что позволит самостоятельно регулировать мощность отопительного прибора.

Правильная установка приборов отопления

Насколько эффективно будет прогреваться помещение, зависит не только от схемы подключения, но и от правильной установки радиаторов. На это существуют свои нормы и правила, которых следует придерживаться при проведении монтажных работ.

  1. Устанавливать радиаторы следует только под оконными проемами. Это позволит создать тепловой барьер для холодного воздуха, поступающего от окна;
  2. Располагаться радиатор должен в 10−12 см от пола;
  3. Расстояние от радиатора до стены должно быть в пределах от 2 до 5 см;
  4. Промежуток между подоконником и радиатором должен быть не менее 10 см.

Сегодня очень многие большое внимание уделяют созданию интерьера помещения и поэтому используют различные приемы декорирования отопительных приборов. Выступ подоконника над радиатором может привести к потере мощности до 4−5%. Устанавливая его в специально созданную нишу, можно недополучить тепла порядка 7%. Наибольшая потеря мощности происходит при установке полного или частичного экрана. В первом случае она может составлять 20%, во втором — 10%.

Видео инструкция по выбору схемы подключения

Автор довольно доходчиво рассказывает и иллюстрирует возможные варианты подключения радиаторов, рассказывае о плюсах и минусах каждой схемы.

Оцените статью: Поделитесь с друзьями!

Возможные схемы подключения радиаторов Ogint, необходимые комплектующие для однотрубной и двухтрубной системы подключения

Эффективность системы отопления определяется правильностью подбора необходимого оборудования и схемы его подключения.

ТМ Ogint предлагает большой выбор радиаторов, трубопроводной арматуры и комплектующих. Широкий ассортимент оснащения позволяет подобрать все необходимые детали и элементы для прокладки и подключения различных систем отопления. Наши менеджеры помогут вам с оформлением заказа и подбором необходимых комплектующих, какую бы схему подключения вы ни выбрали. Для оптовых покупателей — существенные скидки и акции.

Нюансы и преимущества двухтрубной системы

Один из востребованных вариантов — двухтрубная схема. В этом случае радиаторы присоединяются к сети отопления с помощью двух магистралей: одна служит для транспортировки горячего теплоносителя, а вторая — для оттока остывшей воды. Популярность двухтрубной схемы подключения батарей обусловлена следующими факторами:

  • возможностью использования отопительного оборудования для разного вида топлива;
  • одинаковой температурой радиаторов, независимо от их удаления от источника тепла;
  • вероятностью корректировки степени нагрева отдельных батарей и установки комфортной температуры в помещении.

В зависимости от способа монтажа двухтрубная система отопления бывает вертикальной и горизонтальной, а присоединение радиаторов осуществляется снизу, сбоку или по диагонали. Самым распространенным является боковое подключение, при котором к верхнему патрубку подводится труба с горячим теплоносителем, а к нижнему — с остывшей рабочей средой. Такой способ предусматривает расположение труб по одну сторону от батареи и предполагает минимальную потерю тепла, составляющую не более 5%.

Подключение к вертикальной двухтрубной системе

Вертикальная схема подключения радиаторов чаще используется при прокладке сети отопления в многоэтажных домах. Она предусматривает присоединение всех элементов и приборов системы обогрева к вертикальному стояку и не склонна к образованию воздушных пробок.

Монтаж с помощью ручного и запорного клапанов

Для подключения такой системы помимо труб и радиаторов потребуются ручной и запорный клапан, а также соединительные элементы. Полный перечень необходимых комплектующих деталей представлен в таблице.

Наименование комплектующих элементов Количество, шт.
1 Ручной клапан ДУ 15 — 1/2″ 1
2
Муфта МПЛ (20х2) xG ½”НР 4
3 Клапан запорный ДУ 15 — ½” 1
4 Тройник стальной ¾” ВР x½” ВР х ¾” ВР 2
5 Муфта стальная 1” ВР x1” ВР 2
6 Сгон стальной 1” НР x1” НР 2
7 Труба МПЛ 20x 2 зависит от протяженности сети
8 Контргайка 1&rdquo 2

Подсоединение радиатора к стояку сети отопления осуществляется с помощью муфт, тройников и сгонов. Прочность фиксации трубопроводной арматуры обеспечивается за счет контргайки. Используя стальные муфты, устанавливают ручной и запорный клапаны.

Первый элемент трубопроводной арматуры подсоединяется к верхней трубе разводки сети обогрева и служит для плавной регулировки расхода теплоносителя при его прохождении через отопительный прибор. Запорный клапан подключается на выходе рабочей среды из радиатора и предназначен для балансировки системы. С его помощью осуществляют настройку расхода теплоносителя и ограничивают его доступ. Оба вида клапанов могут выполнять функции запорной арматуры, которая позволяет отключить радиатор от общей сети отопления для проведения ремонтных и профилактических работ.

Монтаж с использованием термостатического клапана

Подключение батарей отопления с применением термостатического клапана позволяет регулировать температуру в помещении и обеспечивает экономный расход тепловой энергии, что позволяет снизить затраты на обогрев. Спецификация необходимого оборудования приведена в таблице.

Для подсоединения радиаторов к стоякам отопительной сети используют стальные тройники, сгоны и муфты. Фиксация трубопроводной арматуры осуществляется с помощью контргайки.

Непосредственно к батареям подключают:

  • Терморегулятор. Он состоит из термостатического клапана и термостатической головки, которые позволяют регулировать температуру воздуха в помещениях и поддерживают ее на заданном уровне с точностью до 1 °C. Монтаж элементов терморегулятора выполняют с помощью муфты, устанавливая клапан и головку на верхней трубе разводки отопительной сети.
  • Запорный клапан. Устанавливается на нижней трубе, по которой перемещается охлажденный теплоноситель. Запорный клапан используют при первичной балансировке отопительной системы. Он служит для монтажной настройки расхода рабочей среды и позволяет перекрывать поток теплоносителя и отключать батареи при проведении профилактических работ или ремонта.

Термостатические клапаны Ogint для вертикальной двухтрубной системы обогрева рассчитаны на функционирование при возможных перепадах давления. Они отличаются повышенным гидравлическим сопротивлением и имеют проходное сечение оптимального размера. Нормативный срок службы изделий составляет до 30 лет при максимальной температуре теплоносителя до +110 °C.

Для эффективного функционирования термостатического клапана его следует устанавливать перпендикулярно панели радиатора. При этом прибор располагают таким образом, чтобы совпадали направления стрелки на корпусе и потока рабочей среды в сети. Во время отключения отопления терморегуляторы для защиты от загрязнений и деформации полностью открывают.

Подключение горизонтальной отопительной магистрали

Сеть отопления с горизонтальным подключением батарей обычно востребована в одноэтажных домах большой площади. Иногда она может использоваться и для обогрева двухэтажных зданий. При монтаже горизонтальной системы стояки располагают в коридорах или на лестничной клетке, а подача теплоносителя осуществляется сверху или снизу.

Первый вариант обеспечивает естественную циркуляцию рабочей среды и не требует дополнительного оснащения. Нижняя подача теплоносителя позволяет скрыть трубы, но нуждается в установке циркуляционного насоса. Систему с естественной циркуляцией можно использовать лишь при заглублении отопительного котла таким образом, чтобы он находился ниже уровня батарей. Радиаторы подключают к сети обогрева с помощью нижней, боковой или диагональной разводки. Для стравливания излишков воздуха при монтаже элементов горизонтальной магистрали на батареях устанавливают краны Маевского.

Другие виды подключения

Подсоединение радиаторов Ogint может также осуществляться путем нижнего подключения. Такой способ целесообразен в малоэтажных частных домах и загородных коттеджах при скрытой прокладке труб отопительной сети под полом. В этом случае потери тепла будут составлять до 10%.

Для нижнего подключения радиаторов Ogint помимо деталей, выпускаемых ТМ, можно использовать узлы Giacomini. Они представлены следующими комплектами оснащения:

  • микрометрической группой с отсечным клапаном с регулируемым байпасом и угловым осевым клапаном;
  • микрометрическим клапаном со встроенным компактным отсечным клапаном.

Оба узла нижнего подключения позволяют регулировать температуру батарей и могут применяться как в однотрубных, так и в двухтрубных сетях отопления.

Радиаторы и комплектующие детали для подключения системы обогрева, выпускаемые ТМ Ogint, производятся в соответствии с требованиями европейских стандартов и отличаются безупречным качеством. Оборудование для сети отопления адаптировано к российским условиям, сохраняя потребительские свойства и технические параметры в течение длительного времени. Для каждого типа радиаторов ТМ предлагает монтажные комплекты, кронштейны и другие аксессуары, упрощающие установку батарей и управление системой.

Правильное подключение радиатора отопления, боковое, нижнее, диагональное подключение

Комфорт и уют в помещениях зависит от созданного в них микроклимата. В холодное время года в его формировании участвуют радиаторы, вернее целая система отопления квартиры или дома. Мы расскажем о правильном подключении радиаторов отопления. Показать схемы подключения, виды, типы и попытаться выбрать самое эффективное подключение.

Ответы на эти вопросы необходимо получить до начала процесса монтажа, потому что переделывать всегда сложнее, чем делать. Вам интересно, или с нижним, чем они отличаются? Давайте разберемся в этом вопросе, чтобы не возникло проблем при эксплуатации.

 Основные схемы подключения

Вы выбрали для своих помещений стальные радиаторы. Мастера разработали схему, предложив один из способов подключения оборудования. Это важный момент. От выбранного варианта подачи теплоносителя зависит, как будут нагреваться радиаторы и поддерживаться микроклимат.

Основные схемы подключения радиаторов


Количество тепла, которое начнет давать ваш прибор отопления, встроенный в общую систему, не в последнюю очередь зависит от предложенной схемы установки. Существует три основных варианта монтажа подающего и отводящего патрубков: диагональный, боковой и нижний.

Диагональное подключение стального радиатора


Данный тип подключения стального радиатора отопления считается максимальным по эффективности теплоотдачи. При такой установке достигается равномерное распределение теплоносителя и оптимальный температурный градиент.  Предпочитают диагональные (перекрестные) при установке длинных секционных радиаторов (число секций от 12 и более) а также при обогреве больших площадей или

когда надо выжать из радиатора максимум теплоотдачи. Часто бывает что у клиента есть определенная ниша под радиатор, а таких размеров недостаточно для обогрева помещения, тогда можно пробовать для повышения эффективности диагональное подключения радиаторов.

В диагональной схеме подающий теплоноситель трубопровод монтируется к верхнему патрубку одной стороны радиатора, а к нижнему подходит отводящий трубопровод с другой стороны устанавливаемого оборудования, по диагонали. Или наоборот.

 

Недостатком этого типа подключения мастера считают неудобство монтажа, а потребители — неэстетичный внешний вид. Из-за этого в многоэтажных домах не практикуют диагональный монтаж. Если вы выбрали его для частного дома или при капитальном ремонте в квартире, то добиться внешней гармонии позволит прокладка трубопроводов в стене (штроба) или установка фальшстены.

Боковое подключение радиатора отопления


Это наиболее часто встречающийся вариант монтажа в городских в квартирах, потому что вертикальные контуры подачи и обратки (стояки), всегда проложены по единой системе.

  • При секционных моделях число секций батареи не превышает 12-ть.
  • Трубы идут от этажа к этажу в одном месте.

Схема бокового одностороннего подключения батареи отопления проста и предельно понятна: подающая труба монтируется к верхнему патрубку, а обратная — к нижнему. Подведение и обратка расположены на одной стороне оборудования. Такая схема энергетически эффективна и эстетически приемлема. Единственное что батарея не должна превышать 12 секций, или 1000 мм. Также есть еще разновидность седельного подключения — это когда подключение боковое но снизу (снизу по бокам).

Информация по теме: Обвязка радиаторов  | Радиаторные комплекты для бокового подключения | Лучшие алюминиевые радиаторы

Нижнее подключение радиаторов отопления


Третий вариант — нижнее подключение радиаторов отопления, которое теоретически относится к схемам одностороннего монтажа. Отличительная особенность этого типа в сравнении с боковым – запрет на перемену мест подводящего и обратного патрубка. Используется в новостройках, трубопровод подводится на прямую к каждому радиатору отопления, от рспределительного отопительного щитка в корридоре.

В данный момент самый распространенный метод подключения, еще называют лучевая развязка отопления. Обвязка стального радиатора и возможность самостоятельной установки оборудования.

Информация по теме: Обвязка стального радиатора  | Радиаторные комплекты для нижнего подключения |

Подключение радиаторов отопления при однотрубной системе


При однотрубной системе подача теплоносителя в радиатор и обратка возвращается в один и тот же контур, и потом последовательно теплоноситель проходит по всем радиаторам в одном контуре. Такую систему еще называют последовательной, последовательное подключение радиатора. Недостаток такой схемы, что последние радиаторы будут самые менее теплые. Данную систему обязательно надо отбалансировать с помощью преднастройки в клапанах.

Схема практически изжила себя, осталась более менее в частных домах, так как она менее затратна и легка в инсталяции.

Подключение радиаторов отопления при двухтрубной системе


Двухтрубная система отопления для радиаторов в данный момент самая распространенная, так как позволяет вести учет тепла каждого отдельного пользователя. На примере новостройки, есть общий стояк, а от него уже расходятся контура по всем квартирам. Каждый из пользователей может сам управлять подачей отопления в своем жилище. Применяется во всех новых домах и новостройках.


Грамотное решения вопроса, как правильно провести установку стального радиатора с нижним подключением, боковым или радиальным, обеспечивает еще и правильный выбор радиаторной арматуры. Она определяется мастером в соответствии с купленной моделью.

  • Потребители получили сегодня широчайший выбор вариантов вплоть до совершенно экзотических.
  • Ориентироваться при подключении приходится и на особенности самого радиатора.
  • От них, а не только от варианта монтажа, будет зависеть выбор .

Отопление – вид коммуникации, который имеет повышенные риски в эксплуатации. Никому не интересно мерзнуть в стужу, но еще менее привлекательным выглядит залив своей квартиры и соседей. Рекомендуем 10 раз подумать, прежде чем предпринимать самостоятельные действия по монтажу стальных радиаторов в квартирах и домах. Так как вариантов есть много, рпавильных и не правильных. Но главное, чтобы все это делал проверенный специалист. Обращайтесь к профессионалам Киевской Tепловой Компании. Предлагаем комплексное и гарантированное обслуживание в сфере водоснабжения, отопления, канализации.

Как правильно подключить батарею отопления в квартире

Здесь вы узнаете о том как правильно подключить батарею отопления в квартире: лучшее место для радиаторов, схемы и способы подключения в многоквартирном доме, как запустить отопительную систему.

Запуска отопительной системы с первыми похолоданиями ждут все жильцы многоквартирных домов.

Чтобы в помещениях было тепло, важно не только, как сработает в новом сезоне централизованное отопление и какие профилактические работы были проведены летом, но и как лучше подключить радиаторы отопления в квартире, чтобы получать 100% теплоотдачу.

Запуск отопительной системы в многоэтажном доме

Включение подачи тепла в высотных домах часто сопряжено с беспокойством, особенно в старых строениях. Связано это с тем, что зачастую профилактические меры и проверки не выявляют скрытых угроз и нарушений. Только пустив теплоноситель по системе под высоким давлением можно узнать, насколько она прочна и эффективна.

Чтобы обошлось без аварийных ситуаций, нужно знать, как запустить отопление в многоквартирном доме:

  1. Во-первых, теплоноситель должен подаваться насосом на малой мощности, чтобы система заполнялась постепенно, этаж за этажом.
  2. Во-вторых, его подача должна осуществляться снизу вверх, что позволит ему вытеснить воздух, который собирается в теплосети за время летнего «отдыха». При медленном подъеме воды нагрузка на трубы и радиаторы минимальная, что увеличивает их срок службы.
  3. В-третьих, может потребоваться спуск остатков воздуха, что делается работниками теплосети на чердаке здания через специальные воздухосборники. Достаточно открутить кран и подождать, когда из труб перестанет доноситься шипение и свист. Если чердачного помещения нет, то та же процедура проводится на последнем этаже здания при помощи крана Маевского.
  4. В-четвертых, необходимо слить немного теплоносителя во время развоздушивания труб, делая это осторожно, чтобы не залить квартиры жильцов.

Полная нагрузка на систему дается только после выполнения этих действий. Это убережет трубы от прорыва и позволит теплоносителю равномерно распределиться по всем ее элементам.

Лучшее место для радиаторов

Кроме запуска централизованного отопления, что делают работники теплосети, жильцам следует позаботиться о своих «участках работ».

Для того чтобы в помещениях действительно было тепло, нужно знать, как подключить батарею отопления в квартире так, чтобы она максимально эффективно ее обогревала.

Для начала, нужно проверить, насколько правильно было выбрано место для радиаторов. Обычно, их монтируют под окнами, чему есть логическое объяснение.

Остекление помещения – это его слабое «звено», так как даже самые качественные окна холоднее стен. Воздух, идущий от них, прогревается расположенными под подоконником батареями, что снижает теплопотери.

Мало установить обогреватели под оконным проемом, следует понимать, как правильно подсоединить батареи отопления в квартире, чтобы их секции разогревались равномерно.

Нормы указаны в СНиП и соответствуют:

  1. Длина радиатора должна занимать от 70% и выше площадь под подоконником. Лучше, если этот параметр равен 90%, тогда никакие холода не страшны, а воздух от холодного окна будет прогреваться практически мгновенно.
  2. Между батареей и полом расстояние должно быть не менее 6 см, а под подоконником – от 5 до 10 см.
  3. От стены обогревательная секция должна отступать на 2-2.5 см.

Выполнив эти условия, можно проверить, насколько качественно сделано подключение отопления в квартире. Распределение тепловых потоков будет заметно по равномерному нагреву помещения. Если в нем есть холодные зоны, значит, что-то было сделано неправильно. Возможно, дело не в месте, а в неправильном подключении батарей.

Схемы подсоединения элементов

Как подключают отопление в квартире? Если рассмотреть все способы подключения радиаторов отопления в многоквартирном доме, то самым эффективным, которого придерживается большинство мастеров, будет с верхней подачей и нижней обраткой (диагональное).

Оно гарантирует 100% эффективность, так как нагрев происходит наиболее равномерно и с полной теплоотдачей, но имеет так же ряд минусов:

  1. У теплоносителя практически нет на пути сопротивления, что позволяет ему максимально быстро проходить по системе, не успевая отдавать свое тепло. Чтобы уменьшить теплопотери, необходимо устанавливать обогреватели, у которых 10 и более элементов.
  2. Не слишком эстетично выглядят трубы, врезанные в вертикальный стояк.

В остальном, это достаточно эффективный и популярный способ подсоединения батарей.

Установка радиаторов отопления в квартире при одностороннем подключении так же имеет неплохие показатели, но они чуть ниже — 97%. При этом способе труба подающая теплоноситель и отводящая его подсоединяется с одной стороны батареи. Неплохой метод, но чаще применим для небольших конструкций.

При одностороннем подключении количество секций в радиаторах ограничено. Если требуется обогрев большой площади, то можно применить другой способ.

Самым не рентабельным считается нижнее подключение, когда подающая труба и обратка идут от нижней части батареи. Такой вид соединения используется, когда нужно «спрятать» трубы в пол, но следует учесть, что теплопотери могут достигнуть 15%.

Это основные способы подключения радиаторов отопления в квартире:

Двухтрубное подсоединение считается лучшим, так как подача теплоносителя и его отвод производятся разными трубами. При нем осуществляется параллельное подключение, которое максимально эффективно распределяет воду по системе, равномерно ее нагревая.

Двухтрубная схема подключения позволяет регулировать уровень теплоотдачи при помощи специального вентиля, установленного перед батареей.

Как правильно подключить батарею отопления в квартире?

Чтобы знать, как подключить радиаторы отопления в квартире, следует придерживаться некоторых советов, которые дают специалисты новичкам:

  1. На местах подсоединения радиаторов нужно ставить запорные и регулирующие устройства. Это позволит осуществлять балансировку системы и даст возможность при необходимости снять секцию для промывки или замены.
  2. Приобретать готовые комплекты радиаторов с подходящими для них соединительными деталями.
  3. Чтобы воздух не скапливался в системе, нужно батареи устанавливать под небольшим наклоном, противоположным крану Маевского.

Подводя итоги, можно сделать вывод, что наиболее эффективным для батарей небольшого размера является одностороннее подключение, тогда как для длинных сегментов больше подойдет диагональная схема. Вот как правильно подключить радиатор отопления в квартире, чтобы получать максимальный комфорт.

Полезное видео

Схемы подключения радиаторов отопления и области их применения

Схема подключения радиаторов существенно влияет на эффективность работы системы отопления.

Неправильное подключение отопительных приборов приводит к необходимости увеличения давления в системе и удорожанию монтажа, затрудняет регулировку температуры, ухудшает интерьер помещения.

Варианты подключения

Существуют несколько способов подключения радиаторов отопления:

  • диагональная
  • боковая
  • нижняя

Поскольку двигаясь по отопительным приборам вода охлаждается, при этом ее объем уменьшается и жидкость становится тяжелее, оптимальным при любой схеме считается направление движения теплоносителя сверху вниз, то есть подвод горячей воды должен осуществляться к верхней точке отопительного прибора, отвод – от нижней.

При неправильном выборе системы подключения радиаторов теплоотдача может уменьшается до 50%.

Комплект для подключения радиатора

Чтобы подключить радиатор к сети отопления, необходимо иметь радиаторную арматуру.

Часть ее поставляется вместе с отопительными приборами, остальное можно купить по отдельности или в составе комплектов.

Универсальные комплекты, комплекты для бокового, нижнего, диагонального подключения имеются в продаже.

В набор для подключения радиаторов входят:

  • термостатические головки
  • термостаты и термовентили для автоматической регулировки температуры
  • запорные краны
  • краны Маевского
  • заглушки и другие детали для подключения радиаторов.

Прочитайте обзор: Радиатор отопления какой лучше? И множество вопросов отпадут сами собой.

Хорошая статья о том как сделать водяное отопление частного дома своими руками

Диагональное подключение

Диагональное подключение радиаторов больше подходит для горизонтального расположения подводящих труб, поскольку места подключения расположены с противоположных сторон батарей (например: подвод воды – слева вверху, отвод – справа внизу).

Теплоноситель равномерно распределяется внутри батарей отопления, поэтому способ достаточно эффективен, особенно для отопительных приборов с большим количеством секций (до 24-х секций против 12-ти при боковом подключении).

Несимметричное подключение радиаторов выглядит не эстетично.

Оно является неудобным и не экономичным при подключении к вертикальным стоякам (требуется повышенный расход труб), поэтому редко используется в многоэтажных домах.

Нижняя разводка

При монтаже радиаторов отопления с нижним подключением, резко понижается кпд отопления.

Но данный способ позволяет сделать разводку труб незаметной и не портящей интерьер помещения.

Попытки добиться компромисса привели к созданию радиаторов отопления с нижним подключением.

В действительности такие радиаторы выполнены по схеме бокового или диагонального подключения, но вертикальный патрубок подвода теплоносителя скрыт под декоративными элементами.

Перед монтажом радиаторов следует приобрести наборы с узлами нижнего подключения радиатора и уплотнениями.

Узлы подключения радиатора состоят из шаровых запорных кранов с устройствами подключения к радиаторам и имеют различную конструкцию в зависимости от модели отопительных приборов, поэтому при их приобретении нужно быть внимательным.

Радиаторы нижнего подключения обладают высокой теплоотдачей и становятся все более популярными из-за отличного дизайна и возможности спрятать трубы в полах, коробах или стенах.

Прокладку труб следует осуществлять на первой стадии капитального ремонта.

Боковое подключение

Боковое подключение радиаторов отопления применяется чаще всего, при этом способе трубы присоединяются к одной из сторон радиатора.

При наличии вертикальных стояков или расположении подающей трубы выше батарей обеспечивается естественная циркуляция воды, что важно при автономном отоплении.

Данный способ позволяет оптимально расположить приборы регулирования.

При боковом подключении в случае недостаточного давления в системе последние секции батарей нагреваются меньше предыдущих. Оптимальное с точки зрения эффективности отопления расположение труб делает их слишком заметными.

Подача горячей воды осуществляется через терморегулятор (термостатическую головку), на обратной трубе размещается запорный кран.

С противоположной стороны радиатора сверху устанавливается клапан для отвода воздуха или кран Маевского, с нижней – заглушка. При необходимости между трубами подвода и отвода теплоносителя врезается перемычка – байпас.

Выбор схемы подключения

Из вышесказанного понятно, что каждая из схем подключения радиаторов подходит для определенных условий.

Монтаж бокового подключения стоит дешевле из-за малого расхода труб, оно оптимально подходит и для квартир в многоэтажных домах и для коттеджей, оснащенных автономной системой отопления.

Диагональное подключение радиаторов применимо для отопления одноэтажных домов.

Возможность использования радиаторов с большим количеством секций позволяет отапливать помещения значительного объема.

Любителям изысканного дизайна подойдут радиаторы с нижним подключением, но такие отопительные приборы стоят недешево. Выбирайте способ подключения исходя из своих условий и в вашем доме будет тепло.

Схемы подключения радиаторов отопления

Система отопления может быть спроектирована по однотрубной или двухтрубной схеме. Также существует четыре типа подключения радиаторов. Ниже мы рассмотрим особенности обеих схем и всех типов подключения батарей.

Однотрубная (последовательная) система

Эта система эффективна при небольшом количестве радиаторов отопления. В ней они подключены последовательно. То есть, от выхода одного радиатора, труба идет к входу в следующий.

За счет такой схемы подключения температура теплоносителя постепенно падает. Чем дальше радиатор от источника тепла, тем он холоднее. Избежать такого эффекта можно поэтапно увеличивая количество секций. Например:

• У первого радиатора 6 секций;
• Второй радиатор состоит из 8 секций;
• В третьем радиаторе 11 секций.

При таком расчете тепловая мощность каждого радиатора будет примерно одинаковой. Этот способ эффективен, если батареи отопления стоят в разных комнатах и нужно обеспечить их равномерный прогрев. Единственный минус – придется доплачивать за дополнительные секции.

Двухтрубная (параллельная) система

В двухтрубной системе отопления есть две трубы, одна обеспечивает подачу, а вторая – отвод теплоносителя. Они проходят по всей длине системы. Из подающей трубы нагретая вода попадает в каждый радиатор. Сброс охлажденной воды происходит во вторую, отводящую трубу.

При такой системе отопления каждый радиатор нагревается равномерно. Его температура не зависит от того, как далеко он находится от источника тепла (начала системы). Единственный нюанс – трубы между радиаторами должны быть уложены в теплоизоляцию. Это предотвратит теплопотери, особенно, если они находятся рядом.

  Виды подключения радиаторов отопления 

Существует четыре типа подключения радиаторов отопления:

1. Одностороннее;
2. Верхнее;
3. Нижнее;
4. Диагональное.

Каждый из них имеет свои недостатки и преимущества. Ниже мы рассмотрим их особенности по порядку.

Односторонне подключения радиаторов

При таком типе подключения подводящая и отводящая трубя находятся с одной стороны радиатора. Если между ними не установлен байпас, а вода идет параллельно с основным потоком, подводящую трубу лучше расположить снизу. За счет такого расположения мощность радиатора несколько увеличится.

Большинство радиаторов в современных квартирах подключены именно таким образом. Но у него есть большой недостаток – чем дальше секция от входа и выхода теплоносителя, тем меньше ее температура. Поэтому одностороннее подключение нежелательно использовать при установке радиаторов с количеством секций больше шести.

Верхнее подключения радиаторов 

В этом варианте обе трубы подведены сверху, с разных сторон радиатора. При этом теплая вода проходит прямотоком, а нижняя часть батареи отопления плохо прогревается. Чтобы избежать этого, можно установить заглушку в верхней части между первой и второй секцией.

За счет использования заглушки горячий теплоноситель будет по первой секции спускаться в нижний коллектор. Затем он равномерно будет распространяться по всей его длине, поднимаясь вверх. Это обеспечит лучший прогрев.

Нижнее (седельное) подключения радиаторов

Такой тип подключения батарей предусматривает подвод входящей и исходящей труб к нижней части с противоположных сторон. Теплоноситель будет проходить по нижнему коллектору и за счет естественной конвекции смешиваться с находящимся в секциях. Такой радиатор будет прогреваться равномерно по всей длине, но не в полную силу отдавать тепло.

Чтобы увеличить теплоотдачу, можно установить заглушку между последней и предпоследней секцией в нижней ее части. За счет нее вода не сможет проходить по прямому протоку нижнего коллектора. Она будет подниматься вверх, а в последнюю секцию попадать через верхнее отверстие. Использование заглушки поможет обеспечить максимальную теплоотдачу радиатора.

Диагональное подключения радиаторов

При таком типе подключения одна из труб входит в верхнюю часть радиатора, а вторая – в нижнюю. За счет того, что вход и выход расположены в разных коллекторах, теплоноситель будет равномерно проходить по всем секциям. При диагональном подключении обеспечивается максимальная теплоотдача радиатора.

Практика показывает, что идеальным является двухтрубная система отопления с диагональным подключением радиаторов. В таком случае можно добиться максимально эффективного и равномерного обогрева помещений.

Методики разогрева аккумуляторных батарей при отрицательных температурах для автомобилей: последние достижения и перспективы

Аннотация

Электромобили играют решающую роль в снижении расхода топлива и выбросов загрязняющих веществ для более экологичного транспорта. Литий-ионные батареи, являясь наиболее дорогим, но наименее изученным компонентом электромобилей, напрямую влияют на запас хода, безопасность, комфорт и надежность автомобиля. Однако общие характеристики тяговых батарей значительно ухудшаются при низких температурах из-за снижения скорости электрохимической реакции и ускоренного ухудшения здоровья, например, литиевого покрытия.Без своевременных и эффективных действий такое ухудшение характеристик вызывает эксплуатационные трудности и угрозу безопасности электромобилей. Разогрев / предварительный нагрев аккумуляторной батареи особенно важен при эксплуатации электромобилей в холодных географических регионах. С этой целью в данной статье рассматриваются различные стратегии предварительного нагрева батарей, включая внешний конвективный и кондуктивный предварительный нагрев, а также последние достижения в области внутреннего нагрева. Кратко описывается влияние низкой температуры на батареи с точки зрения производительности элементов, а также свойств материалов.Также освещаются вопросы терминологии, связанные с разминкой. Подробно представлена ​​структура систем управления батареями (BTMS) при низких температурах, включая ключевые конструктивные соображения на разных уровнях интеграции батарей и общую классификацию подходов к разогреву на внешние и внутренние группы. Далее представлен всесторонний обзор литературы по различным стратегиям разминки, а также разработаны основные принципы, преимущества, недостатки и потенциальные улучшения каждой стратегии.Наконец, обсуждаются будущие тенденции в методах разогрева батарей с точки зрения ключевых технологий, многообещающих возможностей и проблем.

ключевые слова

Литий-ионные батареи

Низкотемпературные

Электромобили

Система управления температурой

Стратегии предварительного нагрева

Сокращения

BEV

аккумуляторный электромобиль

BTMS

Системы управления температурой аккумулятора

CCD

Постоянный ток разряда

теплообменник охлаждающей жидкости

COP

коэффициент полезного действия

CPCM

композитный материал с фазовым переходом

CVD

разряд постоянного напряжения

DC / DC

постоянный ток в постоянный ток

ECT

электрохимико-термический

EEC

эквивалентная электрическая схема

EMS

управление энергопотреблением стратегия

HESS

гибридная система накопления энергии

HEV

гибридный электромобиль

HVAC

отопление, вентиляция и кондиционер

ICE

двигатель внутреннего сгорания

IGBT

биполярные транзисторы с изолированным затвором

SEI

твердоэлектролитный межфазный

MHPA

массив микротепловых труб

PCM

материалы с фазовым переходом

PHEV

подключаемый гибридный электромобиль

PTC

положительный температурный коэффициент

RETC

пониженный электротермический соединенный

SAC

синусоидальный переменный ток

самонагревающийся литий-ионный аккумулятор SHLB

UDDS

График вождения городского динамометра

Рекомендуемые статьи Цитирующие статьи (0)

Xiaosong Hu (SM’16) получил степень доктора философии.В 2012 году получил докторскую степень в области автомобильной инженерии Пекинского технологического института, Китай. Он проводил научные исследования и защитил докторскую диссертацию. В период с 2010 по 2012 год защитил диссертацию в Автомобильном исследовательском центре Мичиганского университета, Анн-Арбор, США. В настоящее время он является профессором Государственной ключевой лаборатории механических трансмиссий и кафедры автомобильной техники Университета Чунцина, Чунцин, Китай. В период с 2014 по 2015 год он работал докторантом факультета гражданской и экологической инженерии Калифорнийского университета в Беркли, США, а также в Шведском центре гибридных транспортных средств и на факультете сигналов и систем Технологического университета Чалмерса, Гетеборг. , Швеция, с 2012 по 2014 год.В 2014 году он также был приглашенным научным сотрудником Института динамических систем и управления Швейцарского федерального технологического института (ETH), Цюрих, Швейцария. Научные интересы включают технологии управления батареями, а также моделирование и контроль электрифицированных транспортных средств. Доктор Ху опубликовал более 100 статей для журналов и конференций высокого уровня. Он был лауреатом нескольких престижных наград / наград, в том числе образовательной премии SAE Ralph Teetor в 2019 году, премии Emerging Sustainability Leaders в 2016 году, стипендии Марии Карри ЕС в 2015 году, премии ASME DSCD Energy Systems за лучшую работу в 2015 году и награды за лучшую докторскую степень в Пекине.Докторская диссертация в 2013 году. Он является старшим членом IEEE

Юшэн Чжэн получил степень бакалавра машиностроения в Университете Чунцина в 2018 году. В настоящее время он получает степень магистра наук. Имеет степень в колледже автомобильной инженерии при Чунцинском университете, Чунцин, Китай. Его исследовательские интересы включают терморегулирование аккумуляторных батарей и диагностику литиевых покрытий при низких температурах.

Дэвид А. Хоуи получил степень бакалавра и магистра медицины в Кембриджском университете, Кембридж, Великобритания, в 2002 году и докторскую степень.Докторская степень в Имперском колледже Лондона, Лондон, Великобритания, в 2010 году. Он доцент кафедры инженерных наук Оксфордского университета, Оксфорд, Великобритания, где возглавляет группу, занимающуюся моделированием, диагностикой и контролем электрохимических энергетических устройств. и системы. Он является редактором журнала IEEE Transactions on Sustainable Energy, а также старшим членом IEEE и членом ECS.

Гектор Э. Перес (S’14 – M’17) получил степень бакалавра машиностроения в Калифорнийском государственном университете, Нортридж, Калифорния, США, в 2010 году, степень магистра инженерных наук в области машиностроения в Мичиганском университете. Анн-Арбор, штат Мичиган, США, в 2012 г., и докторская степень.Докторская степень в области системной инженерии, полученная в Калифорнийском университете в Беркли, Беркли, Калифорния, США, в 2016 году. В настоящее время он является научным сотрудником Калифорнийского университета в Беркли и Мичиганского университета. Его текущие исследовательские интересы включают моделирование, оценку, оптимальное управление и экспериментальную проверку энергетических систем. Д-р Перес был стипендиатом Фонда Форда для докторантуры и стипендий GEM, AACC O, премии Hugo Shuck Best Paper Award, премии ACC за лучшую студенческую работу, премии ASME DSCC Energy Systems за лучшую работу и премии ASME DSCC за лучшую работу. Награда в сессии «Системы возобновляемой энергии».

Аойф М. Фоли получила степень бакалавра наук (с отличием) и докторскую степень. степени Университетского колледжа Корка, Корк, Ирландия, в 1996 и 2011 годах, соответственно, и степень магистра наук. Получила степень в Тринити-колледже, Дублин, Ирландия, в 1999 году. Она проработала в промышленности до 2008 года. В настоящее время она преподает в Школе механической и аэрокосмической инженерии Королевского университета Белфаста, Белфаст, Великобритания. Ее исследовательские интересы включают ветроэнергетику, энергетические рынки, хранение энергии и электромобили. Она дипломированный инженер (2001 г.), научный сотрудник отдела инженеров Ирландии (2012 г.) и главный редактор журнала Elsevier Renewable and Sustainable Energy Reviews.

Майкл Пехт (S’78-M’83-SM’90-F’92) получил степень бакалавра акустики, степень магистра электротехники и инженерной механики и степень доктора философии. степень в области инженерной механики в Университете Висконсина в Мэдисоне, Висконсин, США, в 1976, 1978, 1979 и 1982 годах, соответственно. Он является основателем Центра усовершенствованной инженерии жизненного цикла (CALCE) Университета Мэриленда, Колледж-Парк, штат Мэриленд, США, где он также является профессором кафедры. Он возглавлял исследовательскую группу в области прогнозирования.Доктор Пехт — профессиональный инженер и научный сотрудник IEEE / ASME / SAE. Он получил премию IEEE для студентов-преподавателей и премию Международного общества сборки и упаковки микроэлектроники (IMAPS) Уильяма Д. Эшмана за достижения в области анализа надежности электроники. Он был главным редактором журнала IEEE Transactions on Reliability в течение восьми лет и младшим редактором журнала IEEE Transactions on Components and Packaging Technology

View Abstract

Crown Copyright © 2019 Издано Elsevier Ltd.

pcb — Литий-ионная батарея и теплая печатная плата

Теперь вопрос в следующем: в какой степени мощные микросхемы, которые выделяют много тепла («тепло» — это тепловая энергия), передаются в батарею; это вопрос рассмотрения того, куда уходит тепло.

Первое, что нужно понять, это то, что если у вас есть идеально запечатанная, идеально теплоизолированная коробка, она будет вечно нагреваться и в какой-то момент сломается / растает / затмит солнце по своей температуре.

Очевидно, этого не происходит, потому что корпус вашего устройства не является идеальным теплоизолятором.

И наоборот, ваша плата сама по себе не является идеальным проводником тепла: если бы это было так, все точки на плате мгновенно имели бы одинаковую температуру!

Итак, на первом этапе важно смоделировать, насколько нагревается ваше устройство в целом. Давайте рассмотрим это как черный ящик: внутри кто-то преобразует \ $ P \ $ ватт электроэнергии в тепло, и его нужно будет рассеять в окружающую среду, чтобы остановить бесконечный нагрев.

Теперь, способ, которым мы моделируем, на самом деле использует терминологию, аналогичную той, что мы использовали в законе Ома: есть тепловое сопротивление , которое говорит нам, насколько что-то мешает тепловому потоку.Единицей измерения обычно является «К / Вт» или «° C / Вт», и она говорит нам, насколько горячее становится что-то, если определенная мощность преобразуется в тепло внутри.

Часто в таблице данных микросхемы указывается что-то вроде «тепловое сопротивление перехода к окружающей среде 45 ° C / Вт» и вместе с оценкой того, сколько энергии потребляет микросхема (например, время падения напряжения на ток в линейном регуляторе напряжения ), вы можете сказать, насколько жарче, чем в окружающем мире.

Итак, наш процесс выглядит следующим образом:

  1. Оцените, сколько энергии преобразуется в тепло в вашей системе.
  2. Оцените тепловое сопротивление вашего корпуса; это умноженное на мощность от 1. дает вам, насколько горячее внутри корпуса, чем снаружи

Отсюда, я бы предположил, что в любом типичном устройстве улучшения незначительны, поскольку они более подробны: если у вас уже выше 45 ° C, то внутри коробки вам не станет холоднее (через некоторое время, по крайней мере, ), и вашему устройству требуется лучшее охлаждение.

Если вы достаточно низко и есть достаточно мест, где тепло может пройти, не проходя через батарею, вам, честно говоря, не стоит слишком беспокоиться.

Проблема будет, если вы приблизитесь к температуре внутри корпуса ниже 45 ° C; тогда вам нужно будет вычислить дальше:

  1. Оцените, насколько теплее компоненты в непосредственной близости от батареи, чем окружающая среда в коробке: та же процедура, что и выше, но температура окружающей среды уже повышена внутри коробки.
  2. рассчитывает перенос тепла, который достигает батареи, помещая все тепловые сопротивления параллельно между источником тепла и батареей, и вычисляет, сколько тепла будет проходить в батарею.

Шаги 3 и 4 довольно часто выполняются при моделировании, потому что оценить, сколько тепла будет переносить сложная печатная плата и фиксатор батареи, сложно.

Шаги 1 и 2 можно довольно хорошо выполнить вручную: для внешней части коробки вы часто можете принять что-то вроде «достаточно хорошо вентилируемого места» и, следовательно, предположить, что охлаждение осуществляется конвекцией и, возможно, излучением. Существуют готовые формулы, которые связывают площадь горизонтальной и вертикальной поверхности с полученной теплопроводностью и сопротивлением.

pcb — Почему моя зарядная цепь всегда нагревается и выходит из строя?

Я работаю над устранением проблем с перегревом печатных плат. Я обнаружил, что 2 компонента в моей цепи зарядки всегда нагреваются или работают со сбоями даже после замены.

Первым проблемным компонентом является микросхема управления питанием LTC 4085, которая соединяет литий-ионную батарею, микросхему преобразователя напряжения и сетевой адаптер. 5 В поступает от сетевого адаптера и передается на микросхему LTC 4085.Когда зарядное устройство подключено, напряжение зарядки аккумулятора составляет 4,2 В с контакта 14. Когда зарядка выключена, напряжение аккумулятора подается на микросхему преобразователя. Проблема с этой микросхемой управления питанием в том, что я всегда получаю неправильный вывод на 14-м выводе батареи. Я заменил микросхему, почистил контактные площадки под ней, но у многих все еще не было правильного выхода (0 В или> 4,2 В).

Второй проблемный компонент — это микросхема преобразователя напряжения TPS63001, конвертирующая 5В в 3.3В. Этот компонент всегда нагревается. Однако он имеет правильный вывод. Опять же, я попытался заменить компоненты, которые нагреваются, и очищать паяльную площадку, но проблема все еще существует.

Я также попытался добавить конденсатор фильтра шумов на зарядный кабель, чтобы убедиться, что входное напряжение стабильно около 5 В.

Вот схемы конструкции:


Спасибо за ответы. Я все еще борюсь с этой проблемой.

Вот ссылка на лист данных LTC 4085 и TPS63001:

http: // cds.linear.com/docs/en/datasheet/4085fd.pdf

http://www.ti.com/lit/ds/symlink/tps63002.pdf

Я также недавно пробовал следующий метод, пытаясь найти проблему:

Увеличьте мой R11 до 100 кОм, который подключен к контакту 12 на U1. Это снижает ток заряда аккумулятора с 1,2 А до 500 мА. Ранее я узнал, что рекомендуемый ток заряда для моей батареи составляет около 800 мА. 1,2А может быть великовато .. Однако после того, как я перешел на настройки 500мА. Мне все еще нужно нагреть плату.

Мы будем благодарны за любой вклад!

Спасибо


Еще одно обновление схем ..

Текущая плата не имеет этих компонентов (Q5 и R40, которые подключаются к контакту 11 от LTC 4085). Может ли это быть причиной нагрева и неисправности?

Зарядка аккумулятора — МОП-транзистор в цепи ограничителя тока

МОП-транзистор нагревается из-за низкого сопротивления галогенной лампы. 12 В при 35 Вт означает, что он имеет нагретое сопротивление 4 Ом, а в холодном состоянии сопротивление может быть в 10 раз ниже, при 0.4 Ом.

Если нагрузка находится между этими двумя, на 2 Ом, и ток через нее составляет 1,24 А, напряжение на ней составляет 2,48 В. Если ток через другой резистор составляет 1,24 А, напряжение на нем составляет 0,5828 В. Если источник питания установлен на 14,4 В, тогда напряжение на МОП-транзисторе должно быть 14,4- (2,48 + 0,5828) = 11,3 В. При 1,24 А это означает, что МОП-транзистор рассеивает 14 Вт тепла, что очень много. Даже если лампа полностью нагрета с сопротивлением 4 Ом, МОП-транзистор все равно будет рассеивать более 10 Вт тепла.

Если ваша лампа на 12 В потребляет 0,7 А, ее сопротивление, вероятно, составляет около 17 Ом (при условии, что напряжение на ней составляет 12 В). Это означает, что напряжение на МОП-транзисторе будет намного ниже, и поэтому он не будет рассеивать столько тепла. Анализировать это на самом деле становится немного сложно, возможно, невозможно, так как мы на самом деле не знаем, какое сопротивление лампочки в этот момент. Если вы указали номинальную мощность, мы могли бы рассчитать ее так же, как и для другой лампы.

Если вы зарядите этим аккумулятор, то, вероятно, все будет в порядке.Вообще говоря, чем выше напряжение на батарее, тем ниже напряжение на МОП-транзисторе. Если напряжение батареи выше 11 В (что будет, если батарея не разряжена опасно), максимальное напряжение на МОП-транзисторе будет около 2 В, а при 1,24 А — около 3 Вт. В техническом описании указано тепловое сопротивление перехода к окружающей среде как 62,5 ° C / Вт, поэтому он нагревается до> 180 ° C (и быстро ломается), поэтому вам понадобится значительный радиатор.

Этот радиатор имеет тепловое сопротивление 9.6C / Вт. В сочетании с внутренним тепловым сопротивлением МОП-транзистора 1,63 ° C / Вт вы должны получить повышение температуры примерно на 35 ° C, что неплохо, хотя все еще довольно тепло (при температуре окружающей среды 20 ° C, это всего 55 ° C, что выше порог термических ожогов для человека). Если вы добавите вентилятор, он еще больше снизит температуру.

Источник питания

— цепь зарядки MAX712 — диод становится слишком горячим

Нет, не слишком жарко. Нигде в области электроники термин «слишком жарко» не определяется как «слишком жарко для прикосновения».’

Электроника нагревается. Это факт жизни. В технических паспортах обычно не говорится, станет ли какой-то компонент нагреваться, потому что вы должны знать, какие вещи станут горячими, насколько они станут горячими и почему. Силовая электроника — это столько же термиков, сколько и электроника.

И определенно нет неписаного предположения, что детали всегда будут достаточно прохладными, чтобы их можно было дотронуться, не обжигая вас. На самом деле так бывает редко. Тот диод 1N5404? Максимальная рабочая температура 150 ° C.Если она не превышает эту температуру, значит, она не становится «слишком горячей». Нет ничего плохого в том, что он постоянно работает при 140 ° C в течение длительного времени, и во многих реальных устройствах диоды могут и будут работать при таком нагреве. Обычно только при максимальной температуре окружающей среды для продукта, но все же такое случается.

Если вы откроете старую электронику с помощью мостового выпрямителя, часто вы увидите обесцвечивание печатной платы в области вокруг этих диодов. Это потому, что эти лохи получают горячий .И это нормально. Они созданы для работы в таких условиях.

Существует множество полевых МОП-транзисторов, рассчитанных на температуру 175 ° C. Новые полупроводники на основе карбида кремния имеют теоретический рабочий диапазон 400 ° C (!!), хотя большинство из них ограничены 200-225 ° C из-за того, что их эпоксидная смола не может выдерживать более высокие температуры.

Все равно да, диоды греются. Особенно, когда вы просите тот, у кого падение напряжения 1,2 В, нести 1 А, как в вашем случае. Откровенно говоря, диод 1N5404 совершенно не подходит для этого приложения.Как и 1N4004, я не уверен, о чем думал Максим. Но в вашем случае этот диод рассеивает не менее 1,2 Вт. Если становится жарко — хорошо. Это означает, что схема работает. Если вы не хотите, чтобы он стал горячее, чем вы можете дотронуться, очень плохо, он станет слишком горячим для вас.

Теперь, если вы выберете диод с меньшим падением напряжения, практически любой диод Шоттки, он станет немного менее горячим. Эти диоды обычно имеют примерно половину падения напряжения кремниевого диода, поэтому назовем его 600 мВ.Это сократит вырабатываемое тепло вдвое, до 600 мВт. Он все равно будет нагреваться, но не так тихо.

Чтобы представить вещи в перспективе, представьте размер резистора в сквозном отверстии 1/4 Вт. Попробуйте пропустить через него 1/4 ватта. Он будет достаточно горячим, чтобы обжечься, но он также прекрасно переносит эту температуру, конечно, намного лучше, чем ваш палец. Этот диод теряет в 5 раз больше. 1,2 Вт может показаться не таким уж большим, но крошечные вещи нагреваются без добавления к ним большого количества джоулей.

Что касается транзистора, то он конечно греется даже с радиатором. В этом весь смысл радиаторов. Чтобы стать горячим. Они работают лучше, если им жарко. Они отводят больше тепла через пассивный воздушный поток, а если они черные, то тоже будут излучать тепло. Тепло даже в названии. Транзистор и радиатор всегда будут горячими. Важно только то, чтобы они не сильно нагревались. Вы можете понизить температуру, и радиатор в конечном итоге достигнет

  1. Уменьшение количества энергии, которую он должен сбрасывать.Итак, сделайте так, чтобы он тратил менее 9 Вт на тепло. Я не думаю, что у вас получится с этой схемой, так как она линейная, а линейное регулирование работает, сжигая избыточное напряжение в виде тепла.

  2. Установите на него радиатор большего размера (он все равно будет нагреваться, но не достигнет такой высокой температуры, как равновесная).

  3. Сделайте более прохладную температуру в помещении / окружающей среды.

Откровенно говоря, с вашей схемой нет ничего плохого, даже если что-то не так с вашими ожиданиями.Простите. Обогреватели нагреются.

Зажигание> Электрооборудование> Резистивное нагревание

Зажигание> Электрооборудование> Резистивное нагревание

Нагрев сопротивления
Свинцово-кислотные батареи

Свинцово-кислотные батареи служили основой двигателя. транспортных средств в течение многих десятилетий, снабжая электроэнергией для запуска двигателя и аксессуары для бега. Электрохимическая система внутри батареи состоит из свинца, диоксида свинца. и серная кислота.Со временем многие дизайны введены доработки для повышения надежности, обслуживания жизнь и долговечность.

При расследовании пожара имеется несколько обстоятельств. в котором аккумуляторные батареи могут выступать в качестве источника воспламенения.

1) Смещение или физическое повреждение аккумулятора может привести к короткому замыканию. Свободный аккумулятор может сместиться из-за вибрации или ударов дороги, что приведет к контакту клемм проводящие поверхности.Если поддерживать контакт, это может привести к перегреву и возгоранию. Уровень заряда батареи высокий; обычно ожидается, что любая короткометражка, включающая клемма аккумулятора или заземляющий кабель оставят хорошо заметный след. Столкновение Повреждение может вызвать смещение аккумулятора, короткое замыкание кабелей или повреждение корпуса аккумулятора, что может привести к возгоранию.

Пример пожара, вызванного повреждение аккумулятора в результате столкновения можно найти в отчете о краш-тесте General Motors [1].Этот тест проводился со стандартными жидкостями и заряженным аккумулятором. Во время испытания из-за деформации острый винт пробил корпус аккумулятор, закорачивая внутренние пластины, и что привело к пожару.

2) Батарейки выпуска газообразный водород во время зарядки. Были случаи газообразного водорода воспламенение при воздействии искр от статического электричества или других источников. Эта тема будет обсуждаться в разделе «Топлива». Раздел.

3) Корпуса аккумуляторов также могут нагреваться до точки возгорания. Это не кажется быть частым явлением, но задокументировано как минимум 2 режима отказа:

а) Проводящий Загрязнение поверхности аккумулятора может вызвать короткое замыкание с высоким сопротивлением. между клеммами аккумулятора. Например, утечка электролита на поверхность батарея создаст цепь между клеммами [4]. В большинстве случаев можно было бы ожидайте, что сам нагрев изменит местные условия и тем самым прервет контур без нагрева до точки возгорания.Однако в редких случаях при сохранении короткого замыкания аккумулятор может перегреться и воспламениться [4]. Эксплуатация автомобиля с ослабленными или отсутствующими прижимами может вызвать вибрацию аккумулятора. и утечка электролита через форточки.

б) Злоупотребление батареей также может привести к перегреву [2-6]. При перезарядке аккумуляторов выделяется тепло, водород выделяется газ, и уровень электролита снижается. В старом, оскорбленном или перезаряженные батареи, внутреннее повреждение батареи может усугубиться использованием.Ожидается, что этот режим отказа будет сопровождаться запахом. серы (тухлые яйца). История жалоб на систему зарядки или аккумулятор проблемы указывает на повышенную вероятность того, что пожар был вызван перегрев АКБ.

c) В последнее время тесты на неправильное использование аккумуляторной батареи (в соответствии с SAE J2464, «Электромобиль Тестирование на неправильное использование батарей ») 12 и 36-вольтовые батареи подверглись короткому замыканию. через положительные и отрицательные клеммы. Короткое замыкание внутри батареи остановило ток перед значительным нагревом [7] Перегрев все еще возможен, если короткое замыкание на клеммах имело достаточное сопротивление нагреву, но недостаточное для вызвать преждевременный выход из строя аккумуляторной батареи.

Как и в случае других факторов электрической причинности, ожоговое повреждение батареи, обнаруженные после пожара, могут быть результатом пожара, а не потому, что аккумулятор был источником возгорания. При расследовании возгорания батареи в автопарк, состояние аккумуляторных батарей в негорючих транспортных средствах аналогичной конструкции, использование или обслуживание может дать информация о вероятности возгорания аккумуляторной батареи в исследуемом автомобиле. Этот методика обследования негорючих транспортных средств в парке может быть применена к пожарным расследование в целом.

Для просмотра ссылок для этого раздела прежде чем продолжить, нажмите здесь.

Управление температурным режимом батареи

Температурные эффекты

Пределы рабочих температур

Все батареи зависят от своего электрохимического процесса, будь то зарядка или разрядка, и мы знаем, что эти химические реакции в некотором роде зависят от температуры.Номинальная производительность батареи обычно указывается для рабочих температур где-то в диапазоне от + 20 ° C до + 30 ° C, однако фактическая производительность может существенно отличаться от этого, если батарея эксплуатируется при более высоких или более низких температурах. См. «Температурные характеристики» для получения типичных графиков производительности.

Закон Аррениуса говорит нам, что скорость, с которой протекает химическая реакция, увеличивается экспоненциально с повышением температуры (см. Срок службы батареи).Это позволяет получать больше мгновенной энергии от батареи при более высоких температурах. В то же время более высокие температуры улучшают подвижность электронов или ионов, уменьшая внутренний импеданс ячейки и увеличивая ее емкость.

В верхней части шкалы высокие температуры могут также вызвать нежелательные или необратимые химические реакции и / или потерю электролита, что может вызвать необратимое повреждение или полный выход батареи из строя. Это, в свою очередь, устанавливает верхний предел рабочей температуры для аккумулятора.

В нижней части шкалы электролит может замерзнуть, что приведет к ограничению низкотемпературных характеристик. Но значительно выше точки замерзания электролита производительность батареи начинает ухудшаться, поскольку скорость химической реакции снижается. Даже если батарея может работать при температурах до -20 ° C или -30 ° C, производительность при 0 ° C и ниже может быть серьезно снижена.

Также обратите внимание, что нижний рабочий предел температуры батареи может зависеть от ее состояния зарядки.Например, в свинцово-кислотном аккумуляторе по мере разряда аккумулятора сернокислый электролит становится все более разбавленным водой, и его точка замерзания соответственно увеличивается.

Таким образом, аккумулятор необходимо поддерживать в ограниченном диапазоне рабочих температур, чтобы можно было оптимизировать как емкость заряда, так и срок службы. Поэтому для практической системы может потребоваться как нагрев, так и охлаждение, чтобы поддерживать ее не только в рабочих пределах, указанных производителем батареи, но и в более ограниченном диапазоне для достижения оптимальной производительности.

Управление температурным режимом заключается не только в соблюдении этих ограничений. Батарея подвержена нескольким одновременным внутренним и внешним тепловым воздействиям, которые необходимо контролировать.

Источники тепла и водоотводы

Электрический нагрев (Джоулев нагрев)

При работе любой батареи выделяется тепло из-за потерь I 2 R, поскольку ток течет через внутреннее сопротивление батареи, независимо от того, заряжается она или разряжается.Это также известно как Джоулев нагрев. В случае разряда общая энергия в системе фиксирована, а повышение температуры будет ограничено доступной энергией. Однако это все еще может вызвать очень высокие локальные температуры даже в батареях с низким энергопотреблением. Во время зарядки такое автоматическое ограничение не применяется, так как нет ничего, что могло бы помешать пользователю продолжать подавать электроэнергию в аккумулятор после того, как он полностью зарядился. Это может быть очень рискованная ситуация.

Разработчики аккумуляторов стремятся поддерживать внутреннее сопротивление ячеек как можно более низким, чтобы минимизировать тепловые потери или тепловыделение внутри батареи, но даже с сопротивлением элементов всего 1 миллиОм нагрев может быть значительным.См. Примеры в разделе «Влияние внутреннего импеданса».

Термохимический нагрев и охлаждение

Помимо джоулева нагрева, химические реакции, протекающие в ячейках, могут быть экзотермическими, добавляясь к выделяемому теплу, или они могут быть эндотермическими, поглощая тепло в процессе химического воздействия. Поэтому перегрев с большей вероятностью будет проблемой с экзотермическими реакциями, в которых химическая реакция усиливает тепло, генерируемое током, а не с эндотермическими реакциями, когда химическое воздействие ему противодействует.В аккумуляторных батареях, поскольку химические реакции обратимы, химические вещества, являющиеся экзотермическими во время зарядки, будут эндотермическими во время разряда и наоборот. Так что от проблемы никуда не деться. В большинстве ситуаций Джоулев нагрев будет превышать эффект эндотермического охлаждения, поэтому меры предосторожности все же необходимо принимать.

Свинцово-кислотные батареи

экзотермичны во время зарядки, а батареи VRLA склонны к тепловому разгоне (см. Ниже). NiMH-элементы также являются экзотермическими во время зарядки, и по мере приближения к полной зарядке температура элемента может резко повыситься.Следовательно, зарядные устройства для никель-металлгидридных элементов должны быть спроектированы так, чтобы определять это повышение температуры и отключать зарядное устройство, чтобы предотвратить повреждение элементов. Напротив, никелевые батареи с щелочными электролитами (NiCad) и литиевые батареи эндотермичны во время зарядки. Тем не менее, при зарядке этих аккумуляторов возможен тепловой выход из строя, если они подвержены перезарядке.

Термохимия литиевых элементов немного сложнее, в зависимости от степени внедрения ионов лития в кристаллическую решетку.Во время зарядки реакция сначала является эндотермической, а затем переходит в слегка экзотермическую в течение большей части цикла зарядки. Во время разряда реакция обратная, сначала экзотермическая, затем переходящая в слегка эндотермическую на протяжении большей части цикла разряда. Как и другие химические составы, эффект джоулевого нагрева больше, чем термохимический эффект, пока ячейки остаются в пределах своих проектных ограничений.

Внешнее тепловое воздействие

Тепловое состояние аккумулятора также зависит от окружающей среды.Если его температура выше температуры окружающей среды, он будет терять тепло из-за теплопроводности, конвекции и излучения. Если окружающая температура выше, аккумулятор будет нагреваться от окружающей среды. Когда температура окружающей среды очень высока, система управления температурным режимом должна работать очень усердно, чтобы поддерживать температуру под контролем. Одиночный элемент может очень хорошо работать при комнатной температуре сам по себе, но если он является частью аккумуляторной батареи, окруженной аналогичными элементами, все из которых выделяют тепло, даже если он несет ту же нагрузку, он может значительно превысить свои температурные пределы.

Температура — ускоритель

Конечным результатом термоэлектрических и термохимических эффектов, возможно, усиленных условиями окружающей среды, обычно является повышение температуры, и, как мы отметили выше, это вызывает экспоненциальное увеличение скорости протекания химической реакции. Мы также знаем, что при чрезмерном повышении температуры может произойти много неприятностей

    • Активные химические вещества расширяются, вызывая набухание клетки
    • Механическое искажение компонентов ячейки может привести к короткому замыканию или разрыву цепи
    • Могут происходить необратимые химические реакции, вызывающие необратимое снижение количества активных химикатов и, следовательно, емкости элемента
    • Продолжительная работа при высоких температурах может вызвать растрескивание пластиковых частей ячейки
    • Повышение температуры вызывает ускорение химической реакции, повышение температуры еще больше и может привести к тепловому разгоне
    • Газы могут выделяться
    • Давление внутри ячейки
    • Ячейка со временем может разорваться или взорваться
    • Могут выделяться токсичные или легковоспламеняющиеся химические вещества
    • Судебные иски последуют за

Тепловая мощность — конфликт

По иронии судьбы, поскольку инженеры по аккумуляторным батареям стремятся втиснуть все больше и больше энергии во все меньшие объемы, инженеру по приложениям становится все труднее получить ее снова.К сожалению, большая сила батарей с новыми технологиями является также источником их наибольшей слабости.

Теплоемкость объекта определяет его способность поглощать тепло. Проще говоря, для заданного количества тепла, чем больше и тяжелее объект, тем меньше будет повышение температуры, вызванное теплом.

На протяжении многих лет свинцово-кислотные аккумуляторные батареи были одними из немногих источников питания, доступных для приложений большой мощности.Из-за их большого размера и веса повышение температуры во время работы не было большой проблемой. Но в поисках меньших и легких батарей с большей мощностью и плотностью энергии неизбежным следствием является уменьшение тепловой емкости батареи. Это, в свою очередь, означает, что для данной выходной мощности повышение температуры будет выше.

(Это предполагает аналогичный внутренний импеданс и аналогичные термохимические свойства, что не обязательно так.В результате отвод тепла является серьезной инженерной проблемой для аккумуляторов с высокой плотностью энергии, используемых в мощных приложениях. Разработчики ячеек разработали инновационные методы строительства ячеек, чтобы отводить тепло от ячейки. Разработчики аккумуляторных блоков должны найти столь же инновационные решения, чтобы избавить аккумулятор от тепла.

Температурные характеристики аккумуляторных батарей EV и HEV

Подобные конфликты возникают с батареями EV и HEV.Аккумулятор электромобиля большой, с хорошими возможностями рассеивания тепла за счет конвекции и теплопроводности и подвержен небольшому повышению температуры благодаря своей высокой теплоемкости. С другой стороны, батарея HEV с меньшим количеством ячеек, но каждая из которых имеет более высокие токи, должна выдерживать ту же мощность, что и батарея EV, менее чем на одну десятую размера. Благодаря более низкой теплоемкости и более низким характеристикам рассеивания тепла это означает, что аккумулятор HEV будет подвергаться гораздо более высокому повышению температуры.

Принимая во внимание необходимость поддерживать работу элементов в допустимом температурном диапазоне (см. Срок службы в разделе «Отказы литиевой батареи»), батарея электромобиля с большей вероятностью столкнется с проблемами, связанными с поддержанием ее тепла на нижнем конце диапазона температур, в то время как аккумулятор HEV с большей вероятностью будет иметь проблемы с перегревом в условиях высоких температур, даже если они оба рассеивают одинаковое количество тепла.

В случае электромобиля при очень низких температурах окружающей среды самонагрев (нагрев I 2 R) за счет протекания тока во время работы, скорее всего, будет недостаточным для повышения температуры до желаемых рабочих уровней из-за большого размера батареи и для повышения температуры могут потребоваться внешние нагреватели. Это может быть обеспечено за счет отвода части емкости батареи на обогрев. С другой стороны, такое же тепловыделение I 2 R в аккумуляторной батарее HEV, работающей в высокотемпературной среде, может привести к тепловому неуправляемому запуску, и необходимо обеспечить принудительное охлаждение.

См. Также Технические характеристики EV, HEV и PHEV в разделе «Тяговые батареи»

.

Термический побег

Рабочая температура, достигаемая в батарее, является результатом увеличения температуры окружающей среды за счет тепла, выделяемого батареей. Если батарея подвержена чрезмерному току, возникает возможность теплового разгона, что приводит к катастрофическому разрушению батареи.Это происходит, когда скорость выделения тепла внутри батареи превышает ее способность рассеивания тепла. Это может произойти при нескольких условиях:

  • Первоначально тепловые потери I 2 R зарядного тока, протекающего через элемент, нагревают электролит, но сопротивление электролита уменьшается с температурой, так что это, в свою очередь, приведет к более высокому току, вызывающему еще более высокую температуру, усиление реакции до достижения состояния выхода из-под контроля.
  • Во время зарядки зарядный ток вызывает экзотермическую химическую реакцию химических веществ в элементе, которая усиливает тепло, выделяемое зарядным током.
  • Или во время отвода тепла, возникающего в результате экзотермического химического воздействия, генерирующего ток, усиливается резистивный нагрев из-за протекания тока внутри элемента.
  • Слишком высокая температура окружающей среды.
  • Недостаточное охлаждение

Если не приняты какие-либо защитные меры, последствия теплового разгона могут привести к расплавлению элемента или повышению давления, что приведет к взрыву или возгоранию, в зависимости от химического состава и конструкции элемента. Более подробную информацию см. В разделе «Неисправности литиевых батарей».

Система терморегулирования должна держать все эти факторы под контролем.

Примечание

Температурный разгон может произойти во время зарядки свинцово-кислотных аккумуляторов с регулируемым клапаном, когда выделение газа запрещено, а рекомбинация способствует повышению температуры. Это не относится к залитым свинцово-кислотным аккумуляторным батареям, поскольку электролит выкипает.

Регуляторы температуры

Обогрев

Относительно легко справиться с низкотемпературными условиями эксплуатации.В простейшем случае в батарее обычно достаточно энергии для питания самонагревательных элементов, которые постепенно доводят батарею до более эффективной рабочей температуры, когда нагреватели могут быть отключены. В некоторых случаях достаточно, чтобы аккумулятор не перезаряжался, когда он не используется. В более сложных случаях, например, с высокотемпературными батареями, такими как батарея Zebra, работающая при температурах, значительно превышающих нормальные температуры окружающей среды, может потребоваться некоторый внешний обогрев, чтобы довести батарею до рабочей температуры при запуске, и может потребоваться специальная теплоизоляция для поддержания температуру как можно дольше после выключения.

Охлаждение

Для маломощных батарей достаточно обычных схем защиты, чтобы поддерживать батарею в рекомендуемых пределах рабочих температур. Однако цепи большой мощности требуют особого внимания к управлению температурным режимом.

Проектные цели

  • Защита от перегрева —
    В большинстве случаев это просто включает в себя мониторинг температуры и прерывание пути тока, если температура при достижении температурных пределов достигается с использованием обычных схем защиты.Хотя это предотвратит повреждение аккумулятора от перегрева, оно, тем не менее, может отключить аккумулятор до того, как будет достигнут предел допустимой нагрузки по току, что серьезно ограничит его производительность.
  • Рассеивание избыточного тепла —
    Удаление тепла из батареи позволяет переносить более высокие токи до достижения температурных пределов. Тепло выходит из батареи за счет конвекции, теплопроводности и излучения, и задача разработчика блока состоит в том, чтобы максимизировать эти естественные потоки, поддерживая низкую температуру окружающей среды, обеспечивая прочный, хороший путь теплопроводности от батареи (используя металлические охлаждающие стержни или пластины между ячейки, если необходимо), максимально увеличив площадь его поверхности, обеспечив хороший естественный поток воздуха через или вокруг блока и установив его на проводящей поверхности.
  • Равномерное распределение тепла —
  • Даже несмотря на то, что тепловая конструкция батареи может быть более чем достаточной для рассеивания общего тепла, выделяемого батареей, внутри батареи все же могут быть локализованные горячие точки, которые могут превышать указанные температурные пределы. Это может быть проблемой для ячеек в середине многоячеечной упаковки, которая будет окружена теплыми или горячими ячейками по сравнению с внешними ячейками в упаковке, которые обращены к более прохладной среде.

    Температурный градиент аккумулятора может серьезно повлиять на срок его службы. Закон Аррениуса указывает, что с увеличением температуры на каждые 10 ° C скорость химической реакции увеличивается примерно вдвое. Это создает несбалансированную нагрузку на элементы в батарее, а также усугубляет любой возрастной износ элементов. См. Также «Взаимодействие между ячейками и балансировка ячеек».

    Разделение ячеек во избежание этой проблемы увеличивает объем упаковки.Для выявления потенциальных проблемных участков может потребоваться тепловидение.

    Пассивное рассеяние можно еще улучшить, установив ячейки в блоке из теплопроводящего материала, который действует как теплоотвод. Теплопередача от ячеек может быть максимизирована, если для этой цели используется материал с фазовым переходом (PCM), поскольку он также поглощает скрытую теплоту фазового перехода при переходе из твердого в жидкое состояние. Находясь в жидком состоянии, конвекция также вступает в игру, увеличивая потенциал теплового потока и выравнивая температуру в аккумуляторной батарее.Для этого применения доступны графитовые губчатые материалы с высокой проводимостью, пропитанные воском, который поглощает дополнительное тепло, когда температура достигает точки плавления.

  • Минимальная прибавка в весе —
    Для приложений с очень высокой мощностью, таких как тяговые батареи, используемые в электромобилях и HEV, естественного охлаждения может быть недостаточно для поддержания безопасной рабочей температуры, и может потребоваться принудительное охлаждение. Это должно быть последним средством, поскольку это усложняет конструкцию батареи, увеличивает ее вес и потребляет электроэнергию.Однако, если принудительное охлаждение неизбежно, первым выбором будет принудительное воздушное охлаждение с помощью вентилятора или вентиляторов. Это относительно просто и недорого, но теплоемкость теплоносителя, воздуха, который предназначен для отвода тепла, относительно мала, что ограничивает его эффективность. В худшем случае может потребоваться жидкостное охлаждение.
    Для очень высоких скоростей охлаждения требуются рабочие жидкости с более высокой теплоемкостью. Вода обычно является первым выбором, поскольку она недорогая, но можно использовать и другие жидкости, такие как этиленгликоль (антифриз), которые имеют лучшую теплоемкость.Вес хладагента, насосы для его циркуляции, рубашки охлаждения вокруг ячеек, трубопроводы и коллекторы для транспортировки и распределения хладагента, а также радиатор или теплообменник для его охлаждения — все это значительно увеличивает общий вес, сложность и стоимость. батареи. Эти штрафы вполне могут перевесить выгоды, которые, как ожидается, будут достигнуты за счет использования химического состава батарей с высокой плотностью энергии.

Рекуперация тепла

В некоторых приложениях, таких как электромобили, как отмечалось выше, есть возможность использовать отработанное тепло для обогрева салона, и большинство автомобильных систем включают в себя некоторую форму интеграции управления температурным режимом аккумуляторной батареи с системами климат-контроля транспортного средства.Однако это полезно только в холодную погоду. В жарком климате высокая температура окружающей среды ложится дополнительным бременем на управление температурным режимом батареи.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *