25.04.2024

Электролиз воды в домашних условиях: Водородный генератор своими руками – схема, конструкция установки, чертежи – Домашний электролиз своими руками — Блог Дениса Сепетова

Содержание

Электролиз обыкновенной воды

В данной статье поговорим про электролиз обыкновенной воды.

Тот, кто не задумываясь, тешит себя роликами с Ютюба, а после этого пытается повторить преподнесённое им на блюдечке, обречён на неудачу. Интернет «кишит» роликами-обманками, и это шоу является частью жизни людей. Кто-то на этом зарабатывает деньги, а кто-то помогает ему зарабатывать деньги, просматривая это шоу. К видеороликам необходимо подходить осторожно. Я, например, знаю, что можно повысить КПД электролизной установки, но я не уверен, действительно ли Мэйер ездил на своем автомобиле на воде? Первое, я себе доказал и теоретически и практически, а второе пока нет.

Для достаточного количества газа необходимого автомобилю, площадь электродов в ячейке Мэйера слишком мала! Один из загадочных элементов в конструкции автомобиля Мэйера – красный бак, находящийся за креслом водителя. Про него ничего нигде не пишут. В бак вставлены ячейка — «Resonant Cavity», индикатор уровня воды – «water level indicator», и лазерный стимулятор. Всё кроме этого бака, так или иначе, описано, а про бак вообще ничего. Неужели это и есть топливный бак (для воды). Но на видеороликах Мэйер наливает воду непосредственно в ячейку. Это было небольшое отступление от темы статьи, а для Вас — тема для раздумий.

Мои исследования, прежде всего, направлены не на скорейшее «подключение» электролизной ячейки к автомобилю, а на максимальное повышение её производительности. Цель – уменьшить электролизный ток, или другими словами – затраты энергии, но при этом увеличить объём выхода кислородно-водородной смеси. В ходе моих экспериментальных исследований выявились определённые физические свойства воды, изучив которые и в последующем используя, удалось увеличить производительность обыкновенной электролизной установки в несколько раз. Сначала я начинал эксперименты с установки, собранной из пластин, но в ходе экспериментов пришлось от них отказаться, перейдя на трубки. Пластины, представляли собой несогласованную нагрузку на сверхвысоких частотах. Тяжело было сделать синфазный СВЧ-разветвитель без потери мощности. Самая банальная, но главная проблема – все активные элементы должны были быть равноудалены от специального СВЧ-резонатора на расстояние кратное длине волны, иначе происходило неравномерное выделение газа. Поэтому я вынужден был перейти на трубки.

Для того, чтобы было с чем сравнивать в дальнейшем, последовательность экспериментов началась с обыкновенного электролиза постоянным током. Опыты я проводил на установке изображённой ниже. Электролизную ячейку я наполнял обыкновенной, пропущенной через угольный фильтр водопроводной водой, не используя при этом кислоты и щелочи. Во время эксперимента, из электролизной ячейки, водородно-кислородная смесь поступала в «перевёрнутую» наполненную водой ёмкость 1 объёмом 100 миллилитров. В начале опыта, при включении установки запускался секундомер. Когда ёмкость наполнялась газом и появлялись выходящие из неё во внешнюю ёмкость 2 пузырьки, секундомер останавливался. Для сокращения времени на опыты, были взяты три пары трубок описанных в патентах Мейера длиной 4 дюйма. Общая площадь электролизного активного пространства (площади электродов) составила около 180 см2.

Указанную ёмкость я «наполнял» газом несколько раз при различных токах электролиза. Мной были выбраны токи: 0,25А; 0,5А; 1А; 1,5А; 2А.

При обыкновенном электролизе постоянным током обнаружилось, что с повышением напряжения U на пластинах электролизной установки, происходит нелинейный рост тока I. По предварительному предположению, пузырьки газа должны препятствовать прохождению тока в межэлектродном пространстве, поэтому увеличение напряжения на пластинах должно приводить к увеличению сопротивления водно-газовой смеси по параболическому закону. На самом деле происходило обратное явление.

Сопротивление R , с повышением напряжения резко падало по нелинейному графику – «гиперболе». Ожидалось, что появляющиеся на поверхности электродов пузырьки газов должны препятствовать прохождению электрического тока между электродами. Но на практике, оказалось, что при повышении тока еще на малых его значениях, происходило резкое падение сопротивления, а при токах выше 7-ми ампер, свойства проводимости воды не изменяются – выполняется Закон Ома. Описанное явление поясняется графиками.

Опыты показали, что пузырьки газов не препятствуют току, а наоборот – проводят его. Произведя несложные вычисления расхода электрической мощности P, и сопоставив её с выходом газа V, получился интересный результат. Оказалось, что чем меньше мощность, а конкретнее – ток, тем производительнее установка. Другими словами, затраты электроэнергии на единицу объёма вырабатываемой кислородно-водородной смеси меньше при малых токах, а при повышении тока, растут его паразитные потери. Это показано на следующих графиках.

Безусловно, при большом токе вырабатывается больше газа, ведь мы стремимся к большему количеству газа, но соотношение выхода газа к затраченной мощности резко падает, что снижает КПД установки.

Проводя эксперименты, я заметил, что в начальный момент подачи фиксированного напряжения, ток электролизной установки увеличивается не сразу, а постепенно. Что это за явление? Какой бы ток не прикладывался, вода свой химический состав не изменит. Это же не философский камень: «Из гумна делать золото». Можно было предположить, что вода обладает индуктивными свойствами, но откуда этим свойствам взяться? Другой вариант является наиболее приемлемым – вода, под действием электрического тока изменяет свои электрохимические свойства. Но что изменяется? Неужели молекулы медленно выстраиваются в ряды? Можно долго рассуждать об ориентации и вытягивании молекул, как это объясняет Мэйер, о поверхностной ионизации электродов, как это делает Канарев, но мы не будем этого делать сейчас. В ходе экспериментов я обратил внимание, что пузырьки образуются не только на внутренних поверхностях электродов, но и снаружи (более медленно). Я решил сбить пузырьки ударами по пластиковому корпусу моей электролизной установки. И тут я заметил, что когда я стучал рукояткой отвёртки по корпусу электролизёра, то стрелка амперметра незначительно, но резко отклонялась в меньшую сторону, а через секунду возвращалась на прежнее деление шкалы. Это и стало очередным открытием. Я подключил вместо стрелочного амперметра параллельно соединенные осциллограф и 25-ти ваттный резистор сопротивлением 1 Ом. При ударах по корпусу электролизной установки, на экране осциллографа наблюдалось более резкое падение тока. Оказалось, что в результате тряски, поверхность электродов быстрее освобождалась от пузырьков газа, что приводило к уменьшению паразитного тока снижающего КПД установки. Этот факт и явился решающим в моих дальнейших экспериментах.

Необходимо было создать такое устройство, которое бы «трясло» электролизную установку. На роль трясущего можно рассмотреть кандидатуру пенсионера — нигде не работает, сидит и трясёт, но он занимает определённый объём пространства, его надо кормить, лечить его старые косточки! Выйдет дороже! Поэтому необходимы технические средства.

На некоторых сайтах встречаются статьи о том, что трубки Мэйера имеют специальные пропилы для настройки в резонанс на звуковых частотах. Пропилы вы видите на рисунке.

Конечно, такой вариант использования звуковых колебаний возможен, но крепление трубок сделано так, что не позволяет трубкам вибрировать. Зная о том, что вода хорошо передает звуковые колебания, проще установить в ёмкости один, например – ультразвуковой резонатор и эффект достигнут. Мной использовался обыкновенный генератор прямоугольных импульсов на ТТЛ-микросхеме и ультразвуковой «пятак». Эксперимент с ультразвуковым резонатором показал незначительное увеличение количества выхода газа, при неизменной затрачиваемой мощности. Характеристика этого процесса показана на графике.

Здесь первый график – отношение объёма выходящего газа V, к электрической мощности P, от самой мощности, затрачиваемой на получение кислородно-водородной смеси без ультразвукового воздействия, а второй график — с ультразвуковым воздействием. Положительный эффект имеется, но не выразительный. На малой мощности (малом токе), ультразвуковое воздействие вообще не влияет на процесс электролиза, а на большой мощности производительность установки в некоторой степени повышается. В идеале, можно предположить, чем сильнее вибрация, тем выше будет график производительности, но для удаления пузырьков газа из межэлектродного пространства всё равно необходимо время.

Один из вариантов, позволяющих удалять пузырьки газа из межэлектродного пространства – обеспечить быструю циркуляцию воды, вымывающую пузырьки кислорода и водорода. Этот способ использует в своих реакторах товарищ Канарёв. А Мэйер, помимо других способов, конструкцию трубок своей мобильной установки сделал так, чтобы обеспечить наилучшую естественную циркуляцию воды и газов.

Обратившись к патентам Мэйера, я обратил внимание на то, что в патентах он значительное место отводит лазерной стимуляции. Мерцание светодиодов происходит на частоте, приблизительно равной 30 кГц. В качестве стимуляторов, используются мощные красные светодиоды, подобные тем, которые стоят в лазерных указках. Колупать лазерные указки – не дешёвое удовольствие, поэтому я этого делать не стал. Можно конечно повозиться со сверхъяркими светодиодами, но я до этого не дошёл. Если у Вас есть желание и возможности, попробуйте.

До красного светового диапазона я не дошёл, остановившись на СВЧ-частотах. Как я писал ранее, используется резонансная частота молекул воды. Это позволяет коротким маломощным импульсом с СВЧ-заполнением «встряхнуть» практически любой объём воды. Но поскольку непрерывное колебание на сверхвысоких частотах способно только нагревать молекулы воды (подобно квазинепрерывному колебанию микроволновой СВЧ-печи), а нам этого не надо, я применил короткий импульс. Старая конструкция показала неравномерный выход газа из разных пар трубок, поэтому пришлось переделывать конструкцию ячейки с выполнением премудростей техники СВЧ. Благодаря использованию короткого сверхвысокочастотного импульса, произошло значительное увеличение количества выхода газа, при неизменной затрачиваемой мощности.

Здесь первый график – зависимость отношения объёма выходящего газа V, к мощности P, от самой электрической мощности, затрачиваемой на получение кислородно-водородной смеси без дополнительного воздействия. Второй график – с ультразвуковым воздействием, а третий — с воздействием СВЧ-импульсом. Положительный эффект от стимуляции СВЧ-импульсами выразительнее, чем стимуляция ультразвуком. В ходе экспериментов при СВЧ-стимуляции, наблюдалось незначительное падение производительности на подводимой мощности около 16-ти Ватт, а потом снова наблюдался подъём производительности. Что это за падение, объяснить пока не могу, думал – ошибка измерения, но при повторных экспериментах и проводимых с использованием других приборов «падение» повторялось. Для точности, повторные измерения проводились с шагом тока в 0,2А, в диапазоне от 0,2А, до 2,4А. На конечном участке графика происходило резкое падение производительности. Правильнее сказать – ток повышался, а количество газа не увеличивалось. Предполагаю, что на больших токах, большое количество выделяемого газа препятствовало работе установки, поэтому при более больших токах, я экспериментировать не стал, нет смысла.

Если Вы посмотрите на последний график, то сможете сделать вывод: эта экспериментальная установка с полезной площадью электродов равной 180 см2 (три пары трубок), способна при затрате 27 Ватт электрической мощности вырабатывать около 2,2 литров кислородно-водородной смеси в час. При указанной мощности и напряжении 12 вольт, ток потребления приблизительно будет равен 2,25 ампера. Отсюда следует, что для выработки 22 литров кислородно-водородной смеси в час, требуется 270 Вт электрической энергии, что при бортовом напряжении в 12 вольт соответствует току 22,5 ампер. При этом необходимо 30 пар трубок высотой около 10 сантиметров. Как видите, ток не малый, но он вполне «вписывается» в затраты энергии штатным генератором автомобиля. Можно и по другому: на 1 киловатт затраченной электрической мощности вырабатывается 81 литр газа, или с пересчётом на метры кубические – необходимо приблизительно 12,3 киловат*час. для выработки одного кубического метра кислородно-водородной смеси.


Если сравнивать с известными электролизными установками, например ИФТИ, затрачивающими 4…5 киловат*час на кубический нормированный метр водорода, то описанная в этой статье установка проигрывает в производительности, поскольку она затрачивает на кубический нормированный метр водорода 18,5 киловат*час. Поэтому из приведённых мной цифр делайте выводы сами.

Обратите внимание, что в описываемой мной установке используется обыкновенная вода, не «сдобренная» каустической содой, или другой щелочью. Щелочь необходима в обыкновенных электролизных установках, без неё установки не производительны. Кроме того, подача напряжения на электроды производится в непрерывном режиме. Но по патентам Мэйера следует, что он использовал импульсный режим. Мэйер пишет, что во время пауз, происходит восстановление воды. Думаю, что паузы в подаче напряжения используются для очистки электродов от пузырьков газа, которые вызывают появление в межэлектродном пространстве дополнительных паразитных токов.

Какой объем газа необходим для работы двигателя внутреннего сгорания, я пока не разбирался. Но то, что показывают на Ютюбе, мало соответствует действительности.

Как сделать аппарат живой и мертвой воды своими руками? :: SYL.ru

Каждый человек мечтает о долгой и счастливой жизни, которую не омрачают различные недуги. И это желание всегда стремилась осуществить народная медицина. Ею накоплен огромный опыт по изучению лекарственных растений и создано множество рецептов, избавляющих от разнообразных болезней.

 аппарат живой и мертвой водыОдним из предлагаемых народной медициной чудодейственных средств является вода, котрую именуют живой и мертвой. Помните, как в сказках, когда с помощью этого средства воскрешали погибшего богатыря? Сначала его окропляли мертвой, а затем живой водой.

История применения

Дары природы уже давно используются человеком в лечебных целях. Один из них, который заслуживает особого внимания, – «живительная водица». Еще в древних рукописях исследователи нашли упоминание о том, что во время своих боевых походов вдоль горных цепей Памира, Кавказа и Тянь-Шаня Александром Македонским был найден источник целебной воды. Он набрал жидкость в кувшин, однако его дочь похитила ее, вылила на себя. В результате этого она стала невидимой и бессмертной.

Сохранились также сведения и о том, что многие Римские Папы, китайские императоры и другие сильные мира сего организовывали экспедиции в поисках позволяющего получить бессмертие эликсира. Все эти сказки и легенды являются ярким подтверждением тому, что наши предки знали о существовании водицы живой и мертвой.

Источники

Сегодня может быть изготовлена живая и мертвая вода своими руками. А в древние времена люди брали ее из природных источников.

аппарат живой и мертвой воды своими рукамиМертвая находилась в стоячих озерах и болотах. Такую жидкость внутрь не употребляли. Ее использовали лишь знахари для различных наружных снадобий. Живой же считают воду горных рек, ледников и водопадов. Ее пили, а также использовали при приготовлении различных лекарств.

Современные исследования

Сегодня для получения целебной жидкости нет необходимости в поисках ее источников. Для этого достаточно сделать аппарат живой и мертвой воды в домашних условиях. При его использовании в результате гидролиза и получается так называемая активированная вода.

Исследованиям свойств этой жидкости были заняты советские ученые еще в 80-х годах 20 в. Однако результаты всех опытов и экспериментов для широкой публики были просто засекречены. Однако все тайное рано или поздно становится явным. По истечении некоторого времени о результатах проводимых опытов узнали врачи и народные знахари. И здесь большую роль сыграли работы западных исследователей. Полученные ими результаты можно было прочесть в опубликованных научных статьях.

Исследования доказали, что живая вода, которую также называют католитом, благодаря гидролизу становится отрицательно заряженной. Подобное превращение способствует получению ею высоких регенерирующих и иммуностимулирующих свойств. Это и дает возможность жидкости, прошедшей процесс гидролиза, стать целебной и применяться для избавления от многих недугов.

Уникальные свойства такой воды были подтверждены Фармакологическим Комитетом СССР. При этом было сказано об ее абсолютной безвредности не только при наружном, но и при внутреннем использовании.

Вода, скапливаемая после электролиза возле положительного электрода, называется анолитом. Ее уникальные свойства были известны народным знахарям с незапамятных времен. Благодаря этой воде людям удавалось спастись от гниющих ран и пролежней.

Получение целебной жидкости

Для того чтобы получить активированную воду, не нужно искать какие-то далекие и порой недоступные источники. Для этого достаточно открыть кран и применить специальный прибор.

Исходя из основных понятий химии, живая вода имеет щелочные свойства. Они и способствуют заживляющему действию. Свойства же мертвой воды – кислотные. Именно поэтому она проявляет дезинфицирующий эффект.

Электрический ток при прохождении через обычную воду коренным образом изменяет имеющуюся у нее внутреннюю структуру. При этом он стирает находящуюся в жидкости вредоносную экологическую информацию. После подобной обработки вода и делится на живую и мертвую. Причем каждая из этих двух фракций имеет лечебные качества.

Эксперименты по применению активированной жидкости

Первый аппарат живой и мертвой воды в нашем отечестве был изобретен Н. М. Кратовым. Идея создания данного прибора пришла автору не случайно. В 1981 г. Кратов лечился в больнице. Там ему был поставлен диагноз «аденома предстательной железы». Одновременно с этой патологией он страдал от воспалительного процесса в почках. Курс лечения в больнице длился в течение месяца, однако ощутимых результатов так и не принес. Именно поэтому врачи предложили Кратову операцию. От хирургического вмешательства он отказался и был выписан домой.

В это же время сын Кратова страдал от длительно незаживающей раны. И автор, создавший аппарат живой и мертвой воды, стал испытывать свойства целебной жидкости на пораженном участке на коже сына. Результаты не заставили себя долго ждать. Рана затянулась в течение двух дней. Такой успех окрылил изобретателя. Он начал принимать такую воду сам, и вскоре поправил свое здоровье. Вместе с аденомой от него ушли радикулит и опухоль ног.

Область применения

Помимо Кратова целебные свойства подобной воды изучал Г.Д. Лысенко, а также еще целый ряд авторов. В результате проведенных исследований стало очевидно, что вода, как живая, так и мертвая, способна избавить человека практически от пятидесяти наименований различных заболеваний, начиная ангиной и заканчивая язвой желудка и двенадцатиперстной кишки.

живая вода и мертвая вода прибор

В этом перечне находятся и столь распространенные болезни, как простуда и грипп, насморк и радикулит, гипертония и т.д.

Изготовление в домашних условиях

Для того чтобы пользоваться целебной жидкостью, достаточно изготовить аппарат живой и мертвой воды своими руками. Конечно, подобные приборы несложно найти и в продаже. Купить и доставить их не составит особого труда.

самодельный аппарат живой и мертвой воды

Однако приобретенный аппарат для получения живой и мертвой воды при его детальном рассмотрении имеет довольно простую конструкцию. Это наводит на мысль об экономии денег. Ведь цена на подобный прибор не столь уж и мала. Гораздо проще изготовить аппарат живой и мертвой воды своими руками. Это потребует лишь немного времени и небольшого количества материалов. Умение же у наших мастеров присутствует всегда.

Основные детали

Для того чтобы соорудить аппарат живой и мертвой воды своими руками, понадобится:

— стеклянная банка;
— диодный мостик, выпрямляющий сетевое напряжение;
— мешочек, пошитый из водонепроницаемой ткани;
— два электрода;
— сетевой шнур.

При помощи умелых рук все эти детали легко превратятся в самодельный аппарат живой и мертвой воды.

Электроды

Данная деталь обязательно должна быть выполнена из пищевой нержавеющей стали. Для этой роли великолепно подходят салатницы, оставшиеся в доме еще с советских времен. Но если их нет, то подойдет любая посуда, произведенная из нержавейки. Для анода может быть использован графитовый стержень.

Если аппарат для приготовления живой и мертвой воды будет собран с использованием пол-литровой банки, то длина электродов должна составлять 100 мм. Однако этот объем может быть увеличен. Банку для того, чтобы создать аппарат живой и мертвой воды своими руками, можно взять и трехлитровую. В любом случае электроды можно удлинить. Их размер должен быть таким, чтобы расстояние между металлом и дном стеклянной емкости составляло не менее 5-10 мм.

Листы нержавейки, подходящей для изготовления анода и катода, в толщину должны составлять 0,8-1 мм. Некоторые умельцы утверждают, что аппарат для изготовления живой и мертвой воды был создан ими с использованием алюминиевых электродов.

Мешочек

Эта деталь понадобится для отделения получаемых фракций воды. Как правило, для изготовления мешочка берут брезент. Это может быть кусок от пожарного шланга или противогазной сумки. Но в любом случае материал для мешочка не должен содержать в себе никаких пропиток. Для того чтобы убедиться в отсутствии посторонних веществ, приготовленный кусок необходимо поместить в воду и прокипятить. Компоненты, используемые при пропитке, проявят себя при нагреве.

Длина готового мешочка должна находиться в полном соответствии с высотой стеклянной банки, которую применяют для создания аппарата. При крое этой детали отрезают необходимую длину брезента. Низ мешочка зашивают кусочком этого же материала или вставляют пищевой пластик.

Сборка прибора

Схема аппарата, получающего живую и мертвую воду, довольно проста, и ознакомиться с ней можно в статье. Для сборки прибора на положительном электроде делается П-образный пропил. Он необходим для размещения на аноде матерчатого мешочка. В нем будет происходить сбор мертвой воды. На катоде такого пропила делать не нужно.

живая и мертвая вода аппарат отзывыОба электрода крепятся к банке с помощью обыкновенной капроновой крышки. Однако здесь стоит применить одну хитрость. В связи с тем, что подобные крышки имеют небольшую механическую прочность, электроды лучше всего крепить на них, используя изолирующую уплотняющую прокладку. Это позволит избежать непредсказуемости их поведения в процессе работы. Подобные прокладки выполняют из стеклотекстолита (без фольги) или любой пластмассы. Данная деталь имеет вид прямоугольника с закругленными концами. На ней вырезается два отверстия, диаметр которых совпадает с диаметром электродов. Прокладка устанавливается на пластиковую крышку. В процессе работы, когда образуется живая вода и мертвая вода, прибор выделяет из жидкости газы. Для их выхода в крышке предусматривается дополнительное отверстие.

Далее к электродам крепится выпрямительный диодный мост. При этом важно пометить положительный и отрицательный выходы на пластину («+» и «-»). Для соблюдения безопасности мост может быть накрыт крышкой. В случае использования диода с резьбовым креплением резьба должна быть прикреплена к положительному электроду.

Существует и еще один способ сборки подобной схемы. Ее можно выполнить с выпрямительным мостиком. В таком случае еще более интенсивно будет производиться живая и мертвая вода. Аппарат (отзывы умельцев подтверждают это) станет в четыре раза мощнее. Ускорения процесса приготовления целебной жидкости особенно важно при систематическом ее использовании.

К диодному мосту подводится сетевой шнур с вилкой. Его длина должна быть не менее 500-700 мм. При этом важно провести изоляцию всех открытых электрических соединений, ведь для процесса, в результате которого получается живая вода и мертвая вода, прибор потребляет переменное напряжение в 220 В. Далее электрод, который помечен знаком «минус», размещают в брезентовый мешочек, в банку заливается вода, и вся конструкция начинает работать при подключении к электрической сети.

Приготовление воды

Получить целебную жидкость довольно просто. Для этого в матерчатый мешочек надо залить воду. Далее в него помещают положительный электрод. Вся эта конструкция погружается в банку с водой. И здесь также имеются некоторые нюансы. Воду в банке не слудет наливать до краев. Она должна быть немного ниже верхнего края мешочка.

Весь процесс длится не более 5-10 минут. Далее электроды вынимаются из банки. Делать это нужно очень аккуратно. В противном случае произойдет смешение двух полученных фракций. По окончании процесса вода из матерчатого мешочка выливается в отдельную посуду.

Сборка прибора с другой конструкцией

В связи с необходимостью бережного обращения с полученными фракциями данное устройство является не очень удобным. Кроме того, должна быть соблюдена определенная техника безопасности, когда работает аппарат живой и метрвой воды.

Инструкция к нему предупреждает, что все манипуляции по заливке воды и изъятию конечного продукта должны быть проделаны без включения устройства в сетевую розетку.

сделать аппарат живой и мертвой водыБолее удобным считается аппарат, в конструкции которого не предусматривается использование матерчатого мешочка. В этом случае понадобится взять две емкости. Однако для этого не годятся банки. Такие емкости отличаются отсутствием горлышка и отвесными прямыми краями. Конструкция электродов в таком приборе остается без изменений. Отличие подобного аппарата лишь в том, что анод и катод должны быть установлены в отдельные емкости. Между электродами необходимо обеспечить электрический контакт. Для этого их соединяют замотанным в марлю ватным жгутом, который предварительно замачивается в воде. Такая деталь позволит свободно перемещаться ионам. В результате работы прибора и будет вырабатываться как живая, так и мертвая вода. Причем каждую из них можно будет увидеть в отдельной емкости. Это позволяет в конце работы просто отключить установку от сети и получить анолит и католит сразу же, причем в одинаковых объемах.

В схеме этой конструкции, как и в предыдущем варианте, желательно использовать лампочку, имеющую мощность 15 Вт. Их, как правило, применяют в швейных машинах и холодильниках. При коротком замыкании электродов лампочка сыграет роль предохранителя, а если процесс не будет иметь никаких сбоев – индикатора. В начале производства воды свет от нее будет достаточно ярким. Ближе к окончанию процесса лампочка начнет тускнеть. Сигналом об окончании производства активированной воды будет служить ее полное отключение.

Правила использования целебной воды

Католит, приготовленный в приборе, является щелочным раствором голубоватого оттенка. Он представляет собой прозрачную мягкую жидкость, обладающую щелочным привкусом с рН от 8,5 до 10,5. Католит, или живая вода, способен сохранять свои лечебные свойства не менее двух суток. Только при этом важно, чтобы были соблюдены условия хранения. Живая вода должна находиться в закрытой емкости и в затемненной комнате.

Аналит же имеет желтоватый оттенок. Кроме этого, отличие мертвой воды от живой кроется в ее вяжущем кисловатом вкусе и несколько кислотном аромате. Свои свойства анолит сохраняет в течение половины месяца. Но происходит это только в том случае, когда хранится он в закрытой емкости. Кислотность такой жидкости — от 2,5 до 3,5 рН.

Перед использованием активированную воду следует подогреть. Однако при этом необходимо соблюдать некоторую осторожность. Вода должна быть налита в керамическую или эмалированную посуду и подогрета на небольшом огне. Использование электроплиты вызовет утрату ее полезных свойств. Категорически запрещено доводить такую воду до кипения. В этом случае также становится бесполезной.

 аппарат живая и мертвая вода инструкцияЕсли одновременно используется и мертвая, и живая вода, то между их приемами нужно сделать перерыв не менее полутора часов. В случае местного применения пауза значительно меньше. Она составляет всего 10 минут. Объяснить подобную схему приема можно тем, что при смешивании аналита и католита происходит их нейтрализация. В результате целебная жидкость просто утрачивает свою активность.

Вода вместо бензина: электролиз — технология будущего

Это возможно самая важная вещь, которую вы когда-либо читали!

Похоже, что изобретатель из США Стэнли Мэйер разработал электрическую ячейку, которая позволяет разделять воду на водород и кислород с гораздо меньшими затратами энергии, чем требуется при обычном электролизе.

Что это значит для вас? Как это повлияет на вашу жизнь? Позвольте мне рассказать, почему это КРАЙНЕ ВАЖНО ДЛЯ ВСЕХ НАС!

Вот лишь некоторые плюсы:

  • Подумайте о МИЛЛИАРДАХ долларов США, которые тратятся на выкачивание веществ из почвы. Мы посылаем эти деньги в ДРУГУЮ СТРАНУ! И они воюют и убивают друг друга и хотят еще больше.
  • Если это изобретение будет установлено в ВАШЕМ СУЩЕСТВУЮЩЕМ АВТОМОБИЛЕ, вы больше не потратите ни цента на БЕНЗИН!
  • Это бы означало, что эти МИЛЛИАРДЫ долларов остались бы здесь, в старой доброй Америке и использовались бы для медицинского исследования, новых технологий, космических изысканий и многого другого. ЭТО СДЕЛАЛО БЫ ВАШУ ЖИЗНЬ НАМНОГО ЛУЧШЕ!
  • Кроме того, это поможет избежать кучи загрязнений. Вы могли бы питать 2 наиболее мощных устройства в вашем доме (ваш Воздушный Кондиционер и Холодильник) благодаря системе, использующей это устройство… Применениям нет числа!!!! ЭТО ТАК ВАЖНО! Я НЕ МОГУ ДАЖЕ СКАЗАТЬ, НАСКОЛЬКО!

ОСТАНОВИТЕСЬ, ЧТО БЫ ВЫ НИ ДЕЛАЛИ И ПОЛУЧИТЕ ЭТУ ИНФОРМАЦИЮ И ДРУГИЕ ДАННЫЕ, ОТДАЙТЕ ТОМУ, КТО ЗНАЕТ, ЧТО ДЕЛАТЬ С НИМИ! ВОЗЬМИТЕ ВЫХОДНОЙ, НЕ ВКЛЮЧАЙТЕ ТЕЛЕВИЗОР НЕСКОЛЬКО ДНЕЙ!

РАСПРОСТРАНЯЙТЕ ЭТО, ПЕЧАТАЙТЕ ЭТО И ПОСЫЛАЙТЕ НА СТАНЦИИ РАДИО, ПЕРЕДАВАЙТЕ ПО ФАКСУ, ЗАГРУЖАЙТЕ ЭТО НА ВСЕ BBS, КОТОРЫЕ НАЙДЕТЕ!

Знайте, что жадные (!) НЕФТЯНЫЕ компании будут сражаться, как СОБАКИ, чтобы удержать нас от использования этой технологии! НЕ ПОЗВОЛЬТЕ ЭТОМУ СЛУЧИТЬСЯ! СДЕЛАЙТЕ ЭТО ДОСТОЯНИЕМ ГЛАСНОСТИ! НЕ ЖДИТЕ, ЧТО КТО-ТО СДЕЛАЕТ ЭТО ЗА ВАС!

Вы можете увидеть эту статью полностью и с цветной иллюстрацией устройства, посетив вашу местную библиотеку и заказав журнал Моделист Конструктор» №7 1980г (скачать этот номер журнала).

А вот выборочные цитаты из статей различных журналов и сборников по радиоэлектронике:

Демонстрации проводились и прежде профессором Michael Laughton, Dean из Engineering при Колледже Королевы Mary, Лондон, Адмирал Сэр Anthony Griffin, бывший командующий британским Флотом, и Д-ром Keith Hindley, английским химиком-исследователем. Ячейка Мэйер, сделанная дома изобретателем в Grove City, Огайо, производила гораздо больше водород-кислородной смеси, чем могло ожидаться при простом электролизе.

В то время как обычный электролиз воды требует тока, измеряемого в амперах, ячейка Мэйер производит тот же эффект при миллиамперах. Более того, обыкновенная водопроводная вода требует добавления электролита, например, серной кислоты, для увеличения проводимости ячейка Мэйер действует при огромной производительности с чистой водой.

Согласно очевидцам, самым поразительным аспектом клетки Мэйер было то, что она оставалась холодной даже после часов производства газа.

Эксперименты Мэйер, которые он счел возможными представить к патентованию, заслужили серию патентов США, представленные под Секцией 101. Представление патента под этой секцией зависит от успешной демонстрации изобретения Патентному Рецензионному Комитету.

Клетка Мэйер’а имеет много общего с электролитической ячейкой, за исключением того, что она работает при высоком потенциале и низком токе лучше, чем другие методы. Конструкция проста. Электроды — отсылаем заинтересовавшихся к Мэйер’у — сделаны из параллельных пластин нержавеющей стали, образующие либо плоскую, либо концентрическую конструкцию. Выход газа зависит обратно пропорционально расстоянию между ними предлагаемое патентом расстояние 1.5 мм дает хороший результат.

Значительные отличия заключаются в питании ячейки. Мэйер использует внешнюю индуктивность, которая образует колебательный контур с емкостью ячейки, — чистая вода, по-видимому, обладает диэлектрической проницаемостью около 5, — чтобы создать параллельную резонансную схему.

Она возбуждается мощным импульсным генератором, который вместе с емкостью ячейки и выпрямительным диодом составляет схему накачки. Высокая частота импульсов производит ступенчато поднимающийся потенциал на электродах ячейки до тех пор, пока не достигается точка, где молекула воды распадается и возникает кратковременный импульс тока. Схема измерения тока питания выявляет этот скачок и запирает источник импульсов на несколько циклов, позволяя воде восстановиться.

Химик-исследователь Keith Hindley предлагает следующее описание демонстрации ячейки Мэйер’а: «После дня презентаций, Griffin комитет засвидетельствовал ряд важных свойств WFC (водяная топливная ячейка, как назвал ее изобретатель).

Группа очевидцев независимых научных наблюдателей Великобритании свидетельствовала что американский изобретатель, Стэнли Мэйер, успешно разлагает обыкновенную водопроводную воду на составляющие элементы посредством комбинации высоковольтных импульсов, при среднем потреблении тока, измеряемого всего лишь миллиамперами. Зафиксированный выход газа был достаточным, чтобы показать водородно-кислородное пламя, которое мгновенно плавило сталь.

По сравнению с обычным сильноточным электролизом, очевидцы констатировали отсутствие какого-либо нагревания ячейки. Мэйер отказался прокомментировать подробности, которые бы позволили ученым воспроизвести и оценить его «водяную ячейку. Однако, он представил достаточно детальное описание американскому Патентному Бюро, чтобы убедить их, что он может обосновать его заявку на изобретение.

Одна демонстрационная ячейка была снабжена двумя параллельными электродами возбуждения. После наполнения водопроводной водой, электроды генерировали газ при очень низких уровнях тока — не больше, чем десятые доли ампера, и даже миллиамперы, как заявляет Мэйер, — выход газа увеличивался, когда электроды сдвигались более близко, и уменьшался, когда они отодвигались. Потенциал в импульсе достигал десятков тысяч вольт.

Вторая ячейка содержала 9 ячеек с двойными трубками из нержавеющей стали и производила намного больше газа. Была сделана серия фотографий, показывающая производство газа при миллиамперном уровне. Когда напряжение было доведено до предельного, газ выходил в очень впечатляющем количестве.

«Мы обратили внимание, что вода вверху ячейки медленно стала окрашиваться от бледно-кремового до темно-коричневого цвета, мы почти уверены в влиянии хлора в сильно хлорированной водопроводной воде на трубки из нержавеющей стали, использованные для возбуждения&quot.

Он продемонстрировал производство газа при уровнях миллиампер и киловольт.

«Самое замечательное наблюдение — это то, что WFC и все его металлические трубки остались совершенно холодные на ощупь, даже после более чем 20 минут работы. «Раскалывающий молекулы» механизм развивает исключительно мало тепла по сравнению с электролизом, где электролит нагревается быстро.»

Результат позволяет рассмотреть эффективное и управляемое производство газа, которое быстро возникает, и безопасно в функционировании. Мы ясно увидели, как увеличение и уменьшение потенциала используется, чтобы управлять производством газа. Мы увидели, как поток газа прекращался и начинался вновь, соответственно когда напряжение на входе было выключено и вновь включено.»

«После часов обсуждения между собой, мы заключили, что Steve Мэйер явился, чтобы изобрести совершенно новый метод для разложения воды, которая обнаруживала некоторые черты классического электролиза. Это подтверждается тем, что его устройства, реально работающие, взятые из его коллекции, удостоверены американскими патентами на разные части WFC системы. Так как они были представлены под Секцией 101 Патентным Бюро США, аппаратура, включенная в патентах, проверена экспериментально экспертами американского Патентного Бюро, их вторыми экспертами и все заявления были установлены.»

«Основной WFC подвергался трехлетнему испытанию. Это подняло предоставленные патенты до уровня независимого, критического, научного и инженерного подтверждения того, что устройства фактически работают, как описано.»

Практическая демонстрация ячейки Мэйер’а является существенно более убедительной, чем псевдонаучный жаргон, который использован для объяснения. Изобретатель лично говорил об искажении и поляризации молекулы воды, приводящему к самостоятельному разрыву связи под действием градиента электрического поля, резонанса в пределах молекулы, который усиливает эффект.

Не считая обильного выделения кислорода и водорода и минимального нагревания ячейки, очевидцы также сообщают, что вода в внутри ячейки исчезает быстро, переходя в ее составные части в виде аэрозоли из огромного количества крошечных пузырей, покрывающих поверхность ячейки.

Мэйер заявил, что у него работает конвертер водородно-кислородной смеси в течение последних 4 лет, использующий цепочку из 6 цилиндрических ячеек.

Рис. 1. Схема, используемая в процессе получения водорода.

Рис. 2. «Водяной конденсатор» в перспективе.Рис. 3a … 3f. Иллюстрация теоритических основ явлений, наблюдаемых во время функционирования изобретения.Рис. 4. Блок-схема.

Лучшее описание реализации:

Кратко, изобретение представляет собой метод получения смеси водорода и кислорода и других растворенных в воде газов.

Процесс заключается в следующем:

(A) конденсатор, в котором вода заключена в качестве диэлектрической жидкости между обкладками, включенный в последовательную резонансную схему с дросселем

(B) к конденсатору прикладывается пульсирующее однополярное напряжение, в котором полярность никак не связана с внешним заземлением, благодаря чему молекулы воды в конденсаторе подвержены заряду той же полярности и молекулы растягиваются под действием электрических полярных сил

(C) подбирают частоту импульсов, поступающих на конденсатор, соответствующую собственной частоте резонанса молекулы

(D) продолжительное действие импульсов в режиме резонанса приводит к тому, что уровень колебательной энергии молекул возрастает с каждым импульсом

(E) комбинация пульсирующего и постоянного электрического поля приводит к тому, что в некоторый момент сила электрической связи в молекуле ослабляется настолько, что сила внешнего электрического поля превосходит энергию связи, и атомы кислорода и водорода освобождаются как самостоятельные газы

(F) сбор готовой к употреблению смеси кислорода, водорода и других растворенных в воде газов в качестве топлива.

Последовательность процессов показана в таблице, в которой молекулы воды подвергаются увеличению электрических сил. В обычном состоянии, наугад ориентированные молекулы воды выравниваются по отношению к внешнему полю.

Последовательность состояний молекулы воды и/или водорода/кислорода/других атомов:
Aслучайное
Bориентация молекул вдоль силовых линий поля
Cполяризация молекулы
Dудлинение молекулы
Eразрыв ковалентной связи
Fосвобождение газов

Конструкционные параметры, основанные на знании теоретических принципов, позволяют рассчитать энергию постоянного и импульсного тока, необходимого для разложения воды.

Оптимальный выход газа достигается в резонансной схеме. Частота подбирается равной резонансной частоте молекул.

Для изготовления пластин конденсатора отдается предпочтение нержавеющей стали марки T-304, которая не взаимодействует с водой, кислородом и водородом.

Начавшийся выход газа управляется уменьшением эксплуатационных параметров. Поскольку резонансная частота фиксирована, производительностью можно управлять с помощью изменения импульсного напряжения, формы или количества импульсов.

Повышающая катушка намотана на обычном тороидальном ферритовом сердечнике 1.50 дюйма в диаметре и 0.25 дюйма толщиной. Первичная катушка содержит 200 витков 24 калибра, вторичная 600 витков 36 калибра.

Диод типа 1N1198 служит для выпрямления переменного напряжения. На первичную обмотку подаются импульсы скважности 2.

Трансформатор обеспечивает повышение напряжения в 5 раз, хотя оптимальный коэффициент подбирается практическим путем. Дроссель содержит 100 витков калибра 24, в диаметре 1 дюйм.

В последовательности импульсов должен быть короткий перерыв. Через идеальный конденсатор постоянный ток не течет. Рассматривая воду как идеальный конденсатор, убеждаемся, что энергия не будет расходоваться на нагрев воды.

Реальная вода обладает некоторой остаточной проводимостью, обусловленной наличием примесей. Лучше, если вода в ячейке будет химически чистой. Электролит к воде не добавляется.

Основное отличие принципа работы данной установки — использование резонансного разложения воды эл. током. Это существенно снижает потребляему мощность.

В процессе электрического резонанса может быть достигнут любой уровень потенциала.

Как отмечалось выше, емкость зависит от диэлектрической проницаемости воды и размеров конденсатора.

В примере схемы Рис. 1 кондесатор составляю два концентрических цилиндра 4 дюйма длиной. Расстояние между поверхностями цилиндров 0.0625 дюйма. Резонанс в схеме был достигнут при импульсе 26 вольт, приложенном к первичной обмотке.

В любой резонансной схеме при достижении резонанса ток минимален, а выходное напряжение максимально. Расчет резонансной частоты традиционный. Вторую индуктивность подстраивают в зависимости от чистоты воды так, чтобы потенциал, приложенный к воде, был постоянен. Расход воды контролируется любым подходящим способом.

Настройка аппарата несложна для квалифицированного специалиста.

Примечания:

Диод 1N1198 можно заменить на NTE5995 или ECG5994. Это импульсные диоды на 40 ампер 600 вольт (40 А — куда столько?!).

Нержавеющая сталь T304 великолепна, но но другие типы должны работать так же. T304 просто более доступна.

Внешняя трубка подгоняется под размер 3/4 дюйма 16 калибра (толщина стенки 0.06 дюйма), длиной 4 дюйма. Внутренняя трубка диаметром 1/2 дюйма 18 калибра (стенка 0.049 дюйма, это приблизительный размер для этой трубки, фактический калибр не может быть вычислен из патентной документации, но этот размер должен работать), 4 дюйма длиной.

Вам потребуется присоединить два проводника к трубкам. Используйте для этого нержавеющие стержни и БЕСКИСЛОТНЫЙ ПРИПОЙ! (когда-нибудь эта вода все равно вернется в ваш водопроводный кран).

Вы должны также предусмотреть, чтобы трубки были разделены. Это можно сделать с помощью небольшого куска пластика. Он не должен препятствовать свободному прохождению воды. Не указано, должна ли быть вода внутри трубки. Думается, что она там есть, но это совершенно не влияет на работу прибора. Патент не говорит, но я бы думал, что некоторая изоляция проводов не повредила бы (и, видимо, не должна быть опасной).

Частота не была озвучена, но исходя из размера катушек и трансформатора, она не превышает 50 Mhz. Не упирайтесь в этот факт, это всего лишь моя догадка.

ЭЛЕКТРОЛИЗ ВОДЫ — КАК ОН ЕСТЬ: hajoh — LiveJournal

По материалам книги Позднякова Э.А. http://predmet.ru/zagadki-nauki.pdf

Еще раз про Н2О
Как уже говорилось, впервые химический состав воды был определен французским химиком Лавуазье в 1784 году. Лавуазье вместе с военным инженером Мёнье, прогоняя пары воды над раскаленным листом железа, обнаружил, что вода разлагается, выделяя при этом водород и кислород. Да, конечно, для своего времени, для эпохи «упорядочения вещей», эти выводы имели большое значение. В самом деле, ведь до этого открытия вода считалась совершенно однородным веществом. Нельзя, однако, не отметить и другого: открытие это сыграло и свою вполне очевидную отрицательную роль, так как надолго отвлекло внимание других ученых от поисков в этой области и утвердило в умах многих поколений непогрешимость данного вывода, освященного к тому же авторитетом ученого.
Но, что условия, при которых он проводился, были настолько несовершенны, были «грязны».
Чего стоит одно только наличие железа, над которым пропускались пары воды. Оно способно внести такие моменты в опыт, которые даже трудно учесть наперед. Лавуазье с партнером зафиксировали в своем опыте то, что было наиболее очевидным: выделение двух газов — водорода и кислорода, а что было сверх того, на это они и вовсе не обратили внимание, скорее всего по той причине, что это «сверх того» не было столь очевидным, как выделение двух газов.
Поскольку до этого открытия общим мнением, господствовавшим в науке, было мнение, что вода яв­ляется однородным веществом, факт открытия ее не­однородного состава можно назвать революцион­ным. Чего еще можно было требовать от первооткры­вателей! К тому же очевидность результатов опыта была слишком подкупающей.
Старый взгляд на воду был отброшен и заменен новым представлением о во­де как соединении двух элементов — водорода и кис­лорода, которое быстро утвердилось в науке. Этому способствовало в значительной мере развитие элект­рохимии.

ЭЛЕКТРОЛИЗ по Дэви
Рядом ученых (Никольсон, Кавендиш и др.) был проведен опыт по электрохимическому разложению воды (подобное оп­ределение данного процесса совершенно ошибочно). Под словом «разложение» надо понимать электролиз воды как сложный окис­лительно-восстановительный процесс, но отнюдь не как простое разложение воды на составляющие эле­менты.
Итак, при разложении, т.е. электролизе воды вы­делялись водород и кислород, что, казалось бы, внешним образом подтверждало вывод Лавуазье. Однако при этом «черный ящик» стал неожиданно выдавать дополнительную информацию, которой прежде не было. В процессе электролиза обнаружи­лось два странных явления: во-первых, обе состав­ные части воды выделялись не вместе, а отдельно друг от друга — кислород у одного электрода, водо­род — у другого; во-вторых, наблюдалось образова­ние кислоты у кислородного полюса и щелочи у во­дородного. Это «странное» разложение воды озадачило ученых; притом их больше беспокоила вторая «странность», т.е. появление кислоты и щелочи.

То обстоятельство, что при пропускании через во­ду электрического тока выделялись водород и кисло­род, вполне устраивало ученых, ибо как бы под­тверждало ставшее уже господствующим мнение о составе воды. Вопрос же о том, каким образом эти составные части выделялись, при каких сопутствую­щих обстоятельствах, хотя и занимал ученых того времени, но все же не в такой степени: их внимание было направлено главным образом на вторую «странность», ибо она наводила тень сомнения на от­крытую формулу воды. Неизбежно встал вопрос о том, что является причиной образования кислоты и щелочи при электролизе воды.
За решение этой загадки взялся выдающийся анг­лийский химик Гемфри Дэви (1778—1829). Дэви ря­дом опытов, казалось бы, подтвердил предполагае­мый всеми учеными того времени факт, что образо­вание кислоты и щелочи при электролизе воды — яв­ление случайное, не связанное с самой водой, состо­ящей, как это и было определено Лавуазье, из водо­рода и кислорода. Но, каким образом Дэви удалось это «дока­зать».
Дэви проделал многочисленные опыты по «разло­жению» электричеством тщательно очищенной воды в различных сосудах: агатовых, стеклянных, сделан­ных из плавикового шпата, сернокислого барита и т.п., чтобы максимально уменьшить влияние мате­риала сосудов на результаты опытов. Во всех без ис­ключения опытах при электролизе воды он получал у анода сильную кислоту, у катода щелочь. Он связы­вал это с тем, что чистая вода отчасти все же разлага­ла материал сосудов, что и явилось причиной образо­вания кислоты и щелочи. Важным, однако, следстви­ем опытов было то, что количество образующихся у электродов кислоты и щелочи стояло в прямой за­висимости от продолжительности опытов, а именно: чем продолжительнее они были, тем больше образо­вывалось кислоты и щелочи и тем сильнее была их концентрация.
В опытах Дэви по электролизу различных раство­ров солей получалась аналогичная картина: у анода шло образование кислоты с выделением кислорода, у катода — образование щелочи с выделением водо­рода или чистого аммиака. Сами эти процессы долж­ны были бы подтолкнуть по аналогии к выводам от­носительно общих закономерностей, относящихся к процессу электролиза.
Ведь хорошо известно, что при электролизе различных веществ у электродов происходят окислительно-восстановительные про­цессы, но отнюдь не простое разложение веществ. Более того, только при наличии окислительно-вос­становительного процесса может идти и сам электро­лиз.
При этом реакция окисления происходит у од­ного электрода, а реакция восстановления у другого. Поэтому было бы самой грубой ошибкой рассматри­вать электролиз как простой процесс разложения ве­ществ на составляющие их элементы, будь то вода, соль или кислота. Окисление у одного полюса проис­ходит при одновременном восстановлении у другого, и наоборот. Эти положения суть святая святых элек­трохимических процессов, полностью согласующих­ся со вторым началом термодинамики. Действитель­но, если мы возьмем  примеры с электролизом солей, то легко видеть, что у анода происходила реакция восстановления с выделением кислорода (продуктом этой реакции, скапливаю­щимся у анода, во всех случаях выступала какая-ни­будь кислота). У катода происходила реакция окис­ления с выделением водорода или металла (продук­том этой реакции, скапливающимся у катода, всегда была какая-нибудь щелочь).

Естественно, казалось бы, распространить ту же закономерность и на воду: вода как химическое веще­ство, обладающее во многих отношениях кислотными свойствами, в принципе не может служить в данном случае исключением и просто разваливаться, подобно какой-нибудь механической смеси, на составляющие его части там, где все остальные вещества претерпева­ют сложные окислительно-восстановительные про­цессы. Поэтому уже априорно можно было бы ожи­дать при электролизе воды образования кислоты и щелочи у соответствующих электродов. Вопрос только в том — какой кислоты и какой щелочи?
Но именно эта совершенно очевидная вещь отвер­галась. Мысль о ней не допускалась или ею попроступренебрегали. Притом делали это не какие-то диле­танты, а профессионалы высокого класса. Для них, сдается, каким-то символом веры, своего рода «свя­щенной коровой» стал факт, что вода состоит из двух элементов — водорода и кислорода, и они направляли все свои недюжинные способности именно на под­тверждение данного факта, но отнюдь не на проверку его истинности. То, что оба газа выделялись при эле­ктролизе, хотя и у разных электродов, как бы под­тверждало эту веру, даже вопреки всем законам элек­тролиза и термодинамики. При этом никого нисколь­ко не смущало, что вода вот так легко может разде­ляться на составные части, будто два склеенных кус­ка дерева, опущенных в воду.

Для того чтобы избежать вся­ких побочных влияний, Дэви провел ряд опытов в зо­лотых сосудах с хорошо очищенной водой. На протя­жении четырнадцати часов, в течение которых про­должался опыт, количество кислоты в анодном сосу­де постоянно возрастало. Дэви обнаружил, что она по своим свойствам ничем не отличалась от азотной кислоты, которая точно таким же образом образовывалась в опытах, проводимых им прежде в стеклянных сосу­дах. В катодном же сосуде образовывалась летучая щелочь, количество которой скоро доходило до опре­деленного предела. Она обнаруживала свойство ам­миака (Nh4).
Дэви повторил свой опыт и продолжал его без пе­рерыва трое суток. К концу этого времени, как он сам свидетельствует, вода в сосудах была разложена и выпарилась больше чем на половину своего первоначального объема. В результате, в анодном сосуде образовалась сильная азотная кислота, количество же щелочи оставалось примерно на том же уровне, как и в предыдущем опыте. Дэви посчитал, что по­следнее было связано с ее постоянным испарением.

Не видя каких-либо явных источников появле­ния в опытах азота, Дэви предположил, что образо­вание азотной кислоты было обязано соединению водорода и кислорода в момент их выделения с азо­том воздуха, растворенным в воде. Для подтвержде­ния своей догадки, он проделал тот же опыт под ко­локолом воздушного насоса, из которого он выкачал воздух (как он пишет сам: осталась лишь 1/64 его первоначального объема). В итоге получились сле­дующие обнадеживающие для него результаты: в ка­тодном сосуде вода вовсе не обнаруживала присут­ствия щелочи, в анодном сосуде лакмусовая бумаж­ка слабо окрасилась в красный цвет, что свидетель­ствовало об образовании там небольшого количест­ва кислоты. Казалось, его догадка подтверждалась. Чтобы уже окончательно убедиться в своей правоте, Дэви еще раз повторил свой опыт под колоколом, но теперь уже в атмосфере чистого водорода. При этом для большей чистоты опыта он дважды на­полнял колокол водородом, чтобы удалить всякие остатки воздуха. Итоги опыта превзошли все ожида­ния: ни в одном из сосудов не было обнаружено да­же следов щелочи и кислоты. Эти опыты не остави­ли у Дэви никаких сомнений в том, что образование кислоты и щелочи у электродов — явление случай­ное и не связано с химическим составом воды, а обя­зано лишь присутствию воздуха, в котором, как изве­стно, содержится азот. Они убедили не только Дэви, но и многие поколения химиков после него. После этих опытов было уже как бы неприлично возвра­щаться вновь к вопросу о химическом составе воды — всем все стало ясно.

Вода «под пыткой» у Дэви
А действительно ли в опытах Дэви все было так безу­коризненно чисто и хорошо? Рассмотрим опыт Дэви по элек­тролизу воды под колоколом воздушного насоса. По­чему в этом опыте образовалось лишь небольшое ко­личество кислоты в анодном сосуде и не было вовсе обнаружено щелочи в сосуде катодном? Действи­тельно ли, как думал Дэви, это было связано с отсут­ствием воздуха, выкачанного из-под колокола? От­части да, но совершенно в другом смысле, нежели он предполагал. Начать с того, что Дэви допустил серь­езную ошибку в своем первоначальном предположе­нии, что причиной образования кислоты и щелочи являлся азот воздуха. Образование кислоты и щело­чи к азоту воздуха никакого отношения иметь не могло по той простой причине, что азот в обычных условиях химически не активен, не растворяется в воде и не вступает в реакции ни с кислородом, ни с водородом. Один этот факт должен был бы на­толкнуть на поиски иных источников образования кислоты и щелочи. Позже, правда, высказывалось предположение, что образование кислоты и щелочи в опытах было, возможно, вызвано присутствием в воздухе некоторого количества аммонийных солей. Этим объяснением и удовлетворились. Однако вряд ли можно всерьез принимать данное объяснение, так как, во-первых, оно было сделано постфактум и, во- вторых, даже если бы какое-то количество таких со­лей и впрямь присутствовало, то оно настолько должно было быть мало, что не могло оказывать по­стоянного и закономерного образования кислоты и щелочи в каждом опыте, количество которых стоя­ло, как говорилось, лишь в прямой зависимости от продолжительности проводимых опытов.

Главное, однако, не в этом, а в том, что именно происходило в опытах под колоколом и почему, в от­личие от обычных условий, там образовалось лишь небольшое количество кислоты и вовсе не было ще­лочи. Рассмотрим, прежде всего, возможное влияние на результаты опыта сильно разреженной атмосфе­ры. Известно, что в разреженной атмосфере происхо­дит быстрое выделение из жидкостей растворенных в ней газов и значительно ускоряется процесс ее ис­парения, причем последний вначале затрагивает бо­лее летучие вещества, а затем вещества менее лету­чие. Естественно предположить, что в опытах Дэви в сильно разреженной атмосфере начался, прежде всего, процесс выделения из раствора летучей щело­чи, которая отчасти поэтому и не была обнаружена в катодном сосуде. Затем, поскольку температура кипения азотной кислоты ниже температуры кипения воды, стала также частично испаряться и азотная кислота, образующаяся в анодном сосуде.Этим, однако, побочные влияния на ход опыта не ограничивались. Поскольку при электролизе воды выделяются кислород и водород, причем объем вы­деляющегося водорода в семь раз превышает объем кислорода, эти газы, и, прежде всего, водород, не мог­ли не оказывать своего влияния на ход опыта. Если в обычных условиях, т.е. не под колоколом, как ам­миак, так и водород, образующиеся во время опыта, улетучивались и не влияли на исход опыта, то под колоколом эти вещества собирались в замкнутом пространстве. Аммиак мог при этом частично всту­пать в реакцию с образующейся азотной кислотой, нейтрализуя какую-то ее часть. Помимо того, и это, может быть, самое главное, водород как сильный вос­становитель, собираясь в значительном количестве под колоколом, несомненно оказывал воздействие на весь ход реакции, давая те результаты, которые и бы­ли зафиксированы Дэви как окончательные.
Иллюстрация восстановительного действия водорода.
Если, взять два электрода, один из которых представляет полированную серебряную пластинку, а другой — обычную швейную иглу, поместить их под колокол, и в сильно разреженном воздухе пропус­кать электрический ток так, чтобы электрический разряд переходил с кончика иглы на полированную пластинку, то напротив кончика иглы пластинка за­метно изменится — она окислится и потускнеет, и тем больше, чем дольше будет пропускаться электричес­кий ток. Если же после этого воздух заменить разре­женным водородом, то при всех прочих равных и не­изменных условиях, дальнейшее пропускание тока приведет к тому, что окись на пластинке будет посте­пенно сходить, и полировка по большей части восстановится, что хорошо иллюстрирует восстанавли­вающие свойства водорода.

Второй пример из области живой природы. Клод Бернар приводит такой опыт: он смешивал один объ­ем воздуха с двумя объемами водорода и помещал в эту атмосферу семена. При всех прочих благопри­ятных условиях (влага, тепло и проч.) прорастания семян не происходило, хотя напряжение кислорода при этом было вполне достаточным для жизнедея­тельности. Очевидно, что негативный результат был обязан опять-таки действию водорода, оказывавшего сильное восстанавливающее действие, препятствуя течению окислительно-восстановительного процес­са, а вместе с ним и образованию его необходимых продуктов — кислоты и щелочи.
Третье: из физической химии хо­рошо известно, что азотная кислота является легко восстанавливающимся веществом. Она, например, восстанавливается водородом до свободного азота:
2N03+ 12Н + 10е—> N2+ 6Н20
Это свойство азотной кислоты специально ис­пользуется в некоторых гальванических элементах для предотвращения поляризации. В этих случаях азотную кислоту добавляют в катодное отделение, где выделяется водород.
Аналогичные процес­сы происходили и под колоколом в опытах Дэви. Когда он во втором опыте заменил воздух водородом, то тем самым создал там мощную восстановитель­ную среду, действие которой не преминуло сказаться на результатах: в анодном сосуде естественно не бы­ло (и не могло быть) обнаружено кислоты, в катодном — щелочи. Все было естественно и закономерно. Но факт остается фактом: опыты Дэви убедили всех окончательно, что вода состоит из двух простых эле­ментов — водорода и кислорода.

Дэви удалось лишь создать условия, при которых во время электролиза воды не образовывались ни кислота, ни щелочь, которые неизменно образуются внормальных, естественных условиях.
Однако предположим, что вода действительно со­стоит из водорода и кислорода. Тогда естественно было бы предполагать, что, коль скоро вода с такой легкостью разлагается на свои составные части, она должна столь же легко образовываться в результате их синтеза. Ничего подобного, однако, не происхо­дит. Как известно, смесь двух газов в пропорции один к двум (один объем кислорода и два объема во­дорода) дает так называемый гремучий газ, но от­нюдь не воду. Попытки образования воды из водоро­да и кислорода имели успех только в присутствии ка­тализатора (кстати, в роли катализатора может при этом выступать и железо, то самое железо, над кото­рым Лавуазье пропускал пары воды и извлекал свои исторические выводы).
Можно сказать, что большинство опытов по определению химического состава воды было направлено не столько на объективные поиски, сколько на подгонку их результатов к уже имеющемуся выводу, который стал поистине символом веры. «Черный ящик» давал в основном ту информацию, которую от него ожида­ли и которую часто заведомо предопределяли на­правленным действием на его входы.

Получение водорода электролизом воды.

Давно хотел сделать подобную штуку. Но дальше опытов с батарейкой и парой электродов не доходило. Хотелось сделать полноценный аппарат для производства водорода, в количествах для того чтобы надуть шарик. Прежде чем делать полноценный аппарат для электролиза воды в домашних условиях, решил все проверить на модели.

 

Общая схема электролизера выглядит так.

Эта модель не подходит для полноценной ежедневной эксплуатации. Но проверить идею удалось.

Итак для электродов я решил применить графит. Прекрасный источник графита для электродов это токосъемник троллейбуса. Их полно валяется на конечных остановках. Нужно помнить, что один из электродов будет разрушаться.

Пилим и дорабатываем напильником. Интенсивность электролиза зависит от силы тока и площади электродов.

К электродам прикрепляются провода. Провода должны быть тщательно изолированы.

Для корпуса модели электролизера вполне подойдут пластиковые бутылки. В крышке делаются дырки для трубок и проводов.

Все тщательно промазывается герметиком.

Для соединения двух ёмкостей подойдут отрезанные горлышки бутылок.

Их необходимо соединить вместе и оплавить шов.

Гайки делаются из бутылочных крышек.

В двух бутылках в нижней части делаются отверстия. Все соединяется и тщательно заливается герметиком.

В качестве источника напряжения будем использовать бытовую сеть 220в. Хочу предупредить, что это довольно опасная игрушка. Так что, если нет достаточных навыков или есть сомнения, то лучше не повторять. В бытовой сети у нас ток переменный, для электролиза его необходимо выпрямить. Для этого прекрасно подойдет диодный мост. Тот что на фотографии оказался не достаточно мощным и быстро перегорел. Наилучшим вариантом стал китайский диодный мост MB156 в алюминиевом корпусе.

Диодный мост сильно нагревается. Понадобится активное охлаждение. Кулер для компьютерного процессора подойдет как нельзя лучше. Для корпуса можно использовать подходящую по размеру распаячную коробку. Продается в электротоварах.

Под диодный мост необходимо подложить несколько слоев картона.

В крышке распаячной коробки делаются необходимые отверстия.

Так выглядит установка в сборе. Электролизер запитывается от сети, вентилятор от универсального источника питания. В качестве электролита применяется раствор пищевой соды. Тут нужно помнить, что чем выше концентрация раствора, тем выше скорость реакции. Но при этом выше и нагрев. Причем свой вклад в нагрев будет вносить реакция разложения натрия у катода. Эта реакция экзотермическая. В результате неё будет образовываться водород и гидроксид натрия.

Тот аппарат, что на фото выше, очень сильно нагревался. Его приходилось периодически отключать и ждать пока остынет. Проблему с нагревом удалось частично решить путем охлаждения электролита. Для этого я использовал помпу для настольного фонтана. Длинная трубка проходит из одной бутылки в другую через помпу и ведро с холодной водой.

Место подсоединения трубки к шарику хорошо снабдить краником. Продаются в зоомагазинах в отделе для аквариумов.

Процесс изготовления на видео.

Взрыв шарика с водородом

Структурирование воды без электролиза, электролиз, молекулярный водород, талая вода

В теле человека все важнейшие жидкости состоят из воды с различными примесями. Кровь, лимфа, слюна, пот и межклеточные жидкости — это те частицы, из которых построены мы сами. Все эти жидкости имеют низкомолекулярную структуру, тогда как структура простой воды высокомолекулярная. Клетки обычной воды слишком большие для нашего организма и разительно отличаются от клеток структурированной жидкости человеческого тела, так что они тоже должны подвергнуться структурированию.
В природе структурированной, живой водой, бывает только родниковая. Природные процессы не только очищают такую воду, но и делают ее более полезной для нашего организма. К несчастью не у всех есть возможность пить родниковую воду постоянно. А водопроводная вода, прежде чем попасть в наши чашки и чайники, подвергается процессу разрушения кристаллической решетки. Дошедшая до нас вода имеет остаточную структуру, составляющую от семнадцати до тридцати процентов, и содержит огромное количество вредных веществ.
Организму приходится структурировать ее заново, тратя силы и энергию, необходимую для жизнедеятельности, что неизбежно приводит к ухудшению качества жизни.


В настоящее время нам предлагается множество устройств, которые, по заявлению производителей, способны ионизировать, структурировать воду. Как же не запутаться в их многообразии и сделать правильный выбор? Прежде всего, обратите внимание, что структурировать воду можно следующими способами:

1. Омагничивание воды. При этом способе структура воды будет выстраиваться под воздействием магнитного поля. Такой способ структурирования воды приближен к природному: в природных условиях на источники воды влияет магнитное поле Земли. Доказано, что вода, пропущенная через магнит, обретает свойства, благотворно влияющие на здоровье и долголетие человека. Из-за того, что магнитное поле повышает активность кислорода, в такой воде появляются дезинфицирующие свойства. Исследования врачей показывают, что при постоянном потреблении омагниченной воды повышается проницаемость мембран, уменьшается количество холестерина, понижается артериальное давление, улучшается метаболизм. Эта вода содействует быстрому выведению небольших камней из мочевых путей. Вода, измененная магнитным полем, также способствует замедлению процессов старения кожи, уменьшает процессы выпадения волос. Например, пятичасовое замачивание семян свеклы в омагниченной воде заметно повышает урожай; полив магнитной водой стимулирует рост и урожайность сои, подсолнечника, кукурузы, помидоров.

Рис.1 Омагничивание воды и структурирование

 

Этот принцип реализован в системах фильтрации воды TRU-WATER Gravity, где специальные биокерамические шарики в картриджах омагничивают воду, разбивая ее на мелкие кластеры. Также в фильтрах для воды TRU-WATER Gravity вода на заключительном этапе проходит через магнитный краник, тем самым вода подвергается воздействию магнитного поля.

2. Механическое воздействие (создание вихрей). Некоторые источники даже дают своё определение такой воды: структурированная (вихревая). В домашних условиях самым примитивным способом создания «вихревой» воды — переливание воды из одной ёмкости в другую одной бутылки в другую, при котором возникает естественный вихрь.

Первые два принципа получили реализацию в структураторе воды (оптимизаторе) TRU-WATER 

3. Электролиз. Суть процесса заключается в пропускании электрического тока через воду, в результате в воде происходят химические реакции с выделением молекулярного водорода и кислорода. Трехминутный электролиз в аппарате водородной воды TRU-WATER Bubble позволяет не менять ионный состав воды, при этом происходит насыщение воды молекулярным водородом. Идеальным решением для домашнего использования будет Аппарат водородной воды со встроенным фильтром Ambrosia

 

 

4. Пьезоэлектрическая реакция (взаимообмен энергии и тепла). Наиболее распространённым веществом, применяемым при данном методе, остаётся турмалин, который излучает волны инфракрасного диапазона дальнего спектра, разделяя воду на более мелкие кластеры для лучшего усвоения. Сюда же можно отнести реакцию магнитного сплава, реализованную в портативном оптимизаторе TRU-WATER Capsule, где магний реагирует с водой так, что постепенно отдаёт электроны и словно «тает» в воде. 

5. Термическая реакция. Здесь мы, конечно, имеем ввиду талую воду. Вода структурируется, приобретает особую регулярную структуру, при замораживании-оттаивании воды (считается, что в такой воде сохраняются “ледяные” кластеры). Попадая в организм, талая вода положительно воздействует на водный обмен человека, способствуя очищению организма. В настоящее время существует две обсуждаемые проблемы структурирования воды путем замораживания. Основной проблемой остаётся качество исходного материала, а именно её чистота и отсутсвие вредных микроорганизмок и элементов. Этот вопрос очень актуален, если вспомнить, что талая вода имеет структуру, которая легко проникает через мембраны клеток: страшно подумать что будет, если эта вода будет сожержать вредные микроорганизмы и вещества. Второй проблемой получения талой воды в домашних условиях считается воздействие вредного электромагнитного излучения холодильника на замораживаемую воду. Кстати, излучение холодильников с удобной функцией «No frost» значительно выше, чем у моделей без нее. Электромагнитное излучение и структурирование воды — взаимоисключающие понятия, потому что такое воздействие «ломает» структуру воды. 

6. Настаивание на минералах-кристаллах. Наиболее часто используются кварц, шунгит, кремний, серебро и пр.

Предложения на рынке оборудования для структурирования воды сейчас значительно превышают спрос – огромное количество производителей со всего мира производят множество устройств. Среди ионизаторов, которые воздействую на воду магнитным полем, лидирующие позиции занимают устройства, производимые в Юж. Корее. 

В линейке компании NU-TRU имеются приборы, которые позволяют получать структурированную, минерализованную воду. Компания NU-TRU предлагает вам лучшие товары, которые прошли контроль качества и полностью соответствуют требованиям безопасности и экологичности. Также заметим, что основной рынок сбыта наших товаров — Япония, а теперь они стали доступны и для российского потребителя.

Бедьте здоровы: выбирайте для себя и своей семьи только лучшее!

 

Очистка воды прямым электролизом

При прохождении воды через электролизер в результате  действия электрического тока происходит образование особых соединений. С их помощью воду можно обеззараживать во время ее течения. Данная технология обеззараживания воды без применения реагентов является сегодня самым перспективным направлением.

Научные предпосылки.

Очистка воды прямым электролизом при прохождении электрического тока вызывает электрохимические реакции. Таким образом, в воде образуются новые вещества. Также происходит изменение структуры межмолекулярных взаимодействий.

Экологические предпосылки.

Окислители во время электролиза образуются непосредственно из воды, что не требует их дополнительного внесения.

Экономические предпосылки.

Природную воду методом прямого электролиза можно обрабатывать при помощи блока электропитания и электролизёра. Дозирующие насосы, реагенты в данном случае не нужны. При прямом электролизе природной воды затраты электроэнергии составляют около 0,2 кВт/м³.

Нормативные предпосылки.

Обеззараживание воды прямым электролизом рекомендуется СНиП 2.04.02-84 в том случае, если в воде содержится не менее 20 мг/л хлоридов. При этом ее жесткость выражается в показателе не больше 7 мг-экв/л. Такую обработку могут производить станции, производительность которых составляет 5 000 м³ в сутки.

Очистка и обеззараживание воды прямым электролизом

Прямой электролиз идеально подходит для очистки природных вод. Во время этого процесса образуются несколько окислителей, например, озон и кислород. Любая природная вода содержит хлориды в разной степени, поэтому в процессе прямого электролиза образуется свободный хлор.

Электролизные установки  базируются на модульности. Производительность электролизного оборудования можно увеличить за счет увеличения количества модулей. Модули с мощностью 5 или 12 кг активного хлора в сутки имеют сейчас повышенный спрос. Модули с производительностью от 20 до  50 кг активного хлора  в сутки применяются на объектах с большей мощностью.

Электролиз воды сопровождается серией электрохимических реакций, в результате которых в воде происходит синтез окислителей. Основными реакциями электролиза воды является образование кислорода O2 и водорода H2, а также гидроксид иона OH¯:

на аноде 2H2O → O2↑ + 4H+ + 4e (1)

на катоде 2H2O + 2e → H2↑ + 2OH¯ (2)

При электролизе воды также образуются озон O3 и перекись водорода H2O2:

на аноде 3H2O → O3↑ + 6e + 6H+ (3)

на катоде 2H2O + O2 + 2e → H2O2 + 2OH (4)

В присутствии хлоридов при электролизе воды образуется растворённый хлор:

на аноде 2Cl → Cl2+2e (5)

Растворённый хлор Cl2, реагируя с водой и гидроксид ионом, образует хлорноватистую кислоту HClO:

Cl2 + H2O → HClO + H+ + Cl¯ (6)

Cl2 + OH¯ → HClO + Cl¯ (7)

Разложение хлорноватистой кислоты HClO в воде приводит к образованию гипохлорит иона:

HOCl ↔ H+ + OCl¯ (8)

Из приведённых выше реакций следует, что при электролизе воды образуется ряд окислителей:

кислород O2,

озон O3,

перекись водорода H2O2,

гипохлорит ион OCl¯.

Появление при электролизе воды OH-радикалов, H2O2 и O3 приводит к образованию других сильных окислителей, таких как O3¯, O2¯, O¯, HO2, HO3, HO4 и др.

 

Компания «Принцип-Сервис» г. Краснодар данное оборудование изготавливает по следующим принципам:

  • функциональность. Все оборудование и каждый узел выполняют главную задачу по получению реагента;
  • экологическая безопасность при использовании электролизных установок по сравнению с газообразным хлором. Безопасная работа обслуживающего персонала;
  • легкость в эксплуатации, поэтому с данным оборудованием может работать даже персонал со средним образованием;
  • надежность. Для изготовления оборудования применяются в большинстве своем пластиковые материалы. Насосы и другие механические агрегаты не используются;
  • экономичность. Затраты на получение гипохлорита натрия методом электролиза включают в себя стоимость электроэнергии, соли, воды в установке. Также сюда входят расходы на профилактическое обслуживание оборудования. Специальной подготовки воды, например, ее декарбонизации, не требуется. Вместе с гипохлоритом происходит ее возврат в воду, проходящую обработку. Это позволяет стоимость воды не учитывать вообще. Так как в процессе используется обычная и неочищенная соль, то она также практически ничего не стоит;
  • эффективность означает наименьшие затраты при получении конечного результата. Данная установка позволяет получить гипохлорит натрия с концентрацией 5 г. активного хлора в 1л в первые 2 часа;
  • прозрачность. Наблюдать за процессом синтеза и состоянием электродного пакета позволяет прозрачный пластик. Для изготовления важных гидравлических коммуникаций также применяются материалы высокой прозрачности.  

 

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *