22.11.2024

Трубы пнд температура плавления – характеристики, расшифровка, что это такое, маркировка, какую температуру эксплуатации выдерживает, назначение труб низкого давления

Содержание

Температура плавления и размягчения пластиков, температура эксплуатации пластмасс

Полиолефины (полиэтилен, полипропилен)
Полиэтилен высокого давления (низкой плотности) ГОСТ 16337900-939105-10880-90-70-50…70
Полиэтилен низкого давления (высокой плотности) ГОСТ 16338948-959125-135128-134-60-60…100
Высокопрочный полиэтилен низкого давления (ТУ 6-05-1721-75)942-957125-135125-140-140
Высокомолекулярный полиэтилен низкого давления (ТУ 6-05-50-76)935140-150
Модифицированный полиэтилен низкого давления (ТУ 6-05-55-76)937-943120-125
Полипропилен (ТУ 6-05-11-05-73)900-910164-17095-100-15…-8
Блоксополимер пропилена с этиленом (ТУ 6-05-1756-76)910164-170140-145
Сополимер этилена с пропиленом низкого давления (ТУ 6-05-529-76)907-913-140
Сэвилин — сополимер этилена с винилацетатом (ТУ 6-05-1636-73)920-95930-95-75…-60*
Кабельный полиэтилен (ТУ 6-05-475-73)921105-120-60
Композиция самозатухающая на основе полиэтилена (ТУ 6-05-1445-72)100080-50
Композиции полиэтилена низкой плотности с наполнителями (ТУ 6-05-1409-74)940-110080-92-60…-30
Композиции на основе поли-4-метил-1-пентена (темплена) (ТУ 6-05-589-77)830-834190-210150-180-60*
Термостойкие окрашенные композиции на основе темплена (ТУ 6-05-637-77)200-210170-180-60*
Композиция темплена с повышенной диэлектрической проницаемостью (ТУ 6-05-583-75)1800-2000220-40*
Полипропиленовая пленка (ТУ 6-05-360-72, ТУ 6-05-469-77, ТУ 38-10524-73)890-910
-50…120
Полистирол и пластмассы на его основе
Полистиролы общего назначения1050-110082-95-40*до 65
Полистирол ударопрочный (ОСТ 6-05-406-75)106085-95-40
Полистирол вспенивающийся (ОСТ 6-05-202-73)20-30-65…-60*до 70
АБС-пластики (ТУ 6-05-1587-74)1030-105095-117-60…-40
АБС-пластик СНП (ГОСТ 13077)1140103
-40…70
Полистирол оптический и светотехнический (ТУ 6-05-1728-75)1050-108082-100-40…65
Сополимеры стирола САН (ТУ 6-05-1580-75)1000-104096-108-60до 75
Сополимер стирола САМ-Э1050-1170-60до 90
Сополимеры стирола МС и МСН (ГОСТ 12271)1120-114086-88-40…70
Сополимер стирола ударопрочный МСП (ТУ 6-05-626-76)110095-105
Ударопрочные полистирольные пластики СНК и УПМ (ТУ 6-05-041-528-74)1050-108070-80до 70
Пресс-материал 390 (ТУ 84-89-75) 46 и 46а (ТУ 84-142-70)1100-1300-60…60
Материал АТ-1 (МРТУ 6-05-1197-69) и АТ-21150-1300100-102-40…70
Композиция стилон (ТУ 6-05-478-73)1100125-130
Пленка полистирольная (ГОСТ 12998)105095-100-50…70
Высокочастотный диэлектрик стиролинк1200
-60…100
Фольгированный материал СА-3,8Ф (ТУ 16-503-108-72)1800120-60…90
Листовой самозатухающий материал АБС-090ЗС (ТУ 6-05-572-75)80-60*
Пенопласт полистирольный ПС-1 (ТУ 6-05-1178-75)70-600-60…65
Пенопласт полистирольный ПС-4 (ТУ 6-05-1178-75)40-65-65…70
Фторопласты
Фторопласт-3 (ГОСТ 13744)2090-2160210-215-195…130
Фторопласт-4 (ПТФЭ или тефлон ГОСТ 10007)2190-2200327100-110-269…260
Фторопласт-4Д (ГОСТ 14906)2210327-269…260
Фторопласт-4ДПТ (ТУ 6-05-372-77)2200-2230-269…260
Фторопласт-4МБ (ОСТ 6-05-400-74)2140-2170270-290100-120-190…205
Фторопласт-4НА (ТУ 6-05-373-77)2000-2100210-23090-120-200…200
Фторопласт-23 (ТУ 6-05-1706-74)1740130-60…200
Фторопласт-26 (ТУ 6-05-1706-74)1790-60…250
Фторопласт-30П, 30А (ТУ 6-05-1706-74)1670215-235-198…170
Фторопласт-32Л (ТУ 6-05-1620-73)1920-1950105-60…200
Фторопласт-40 (ОСТ 6-05-402-74)1650-1700260-275140-143-100…200
Фторопласт-40Д и 40ДП (ТУ 6-05-1706-74)1650-1700265-100…200
Фторопласт-40Б (ТУ 6-05-501-74)1650-1700260-265-60…200
Фторопласт-40ШБ (ТУ 6-05-383-72)1650140-60…200
Фторопласт-2 (ТУ 6-05-646-77)1700-1800170-180140-160-60…150
Фторопласт-2М (ТУ 6-05-1781-76)1750-1800155-165120-145-60…145
Фторопласт-45 (ТУ 6-05-1442-71)1910-2000150-16097-105-60…120
Фторопласт-1 (ТУ 6-05-559-74)1380-1400196-204120-80…200
Фторопласт-10Б и 100Б2100-100…150
Фторопласт-4001700-60…150
Композиция Ф40С15 (ТУ 6-05-606-75)265-275
Композиция Ф4К20 (ТУ 6-05-1412-76)2100-2120-60…250
Композиция Ф4С15 (ТУ 6-05-1412-76)2170-2180-60…250
Композиция Ф4К15М5 (ТУ 6-05-1412-76) и Ф4С15М52190-60…250
Композиция Ф4М152250-60…260
Композиция Ф4Г21М72100-2300-100…250
Антифрикционный материал Ф40Г401700-1800-60…200
Антифрикционный материал Ф40С15М1,51800-100…210
Антифрикционный графитофторопластовый материал 7В-2А1900-200до 250
Антифрикционный графитофторопластовый материал АФГМ2100-2300до 180
Антифрикционный графитофторопластовый материал АФГ-80ВС и 80ФГ2050-2100до 200
Антифрикционный графитофторопластовый материал ГФ-5М2100-2200до 180
Пленка из фторопласта-10 (ТУ 6-05-538-77)2100-100…100
Пленка фторопластовая Ф-42200-2300-60…200
Пленка фторопластовая Ф-4ЭО, Ф-4ИО, Ф-4ИН и Ф-4ЭН2100-2200-60…250
Поливинилхлорид (ПВХ) и пластмассы на его основе
Винипласт листовой (ГОСТ 9639)1380
70-85-75
Изоляционные пластикаты И40-13, И50-13, И60-12, ИТ-105 (ГОСТ 5960)1180-1340170-190-60…-40
Винипроз и эстепроз (ТУ 6-05-1222-75)1350-1400-35…60
Пенопласт ПВХ-1, ПВХ-270-300-60…60
Пенопласт ПВХ-1, ПВХ-250-400-70…70
Пенопласт ПВХ-Э100-270-10…40
Пеноэласт80-300-20…70
Винипор С, Д, М90-180-10…55
Вибропоглощающий материал ВМЛ-25 (ТУ 6-05-980-75)1500-1600-10…50
Пленка винипластовая (ГОСТ 16389, ГОСТ 15976)1370-1450-50…60
Поливинилацетат119044-50-5*
Поливинилформаль (ГОСТ 10758)1240115-120
Поливинилбутираль (ГОСТ 9439)110060-75
Поливинилэтилаль (ТУ 6-05-564-74)1350118-120
Поливинилформальэтилаль (ГОСТ 10400)1200120
Поливинилбутиральфурфураль (ТУ 6-05-1102-74)105570-85
Поливинилкеталь1180105-115
Пленка ПВС-Э, ПВС1200-1300-5…130
Поливинилбутиральные пленки А-17, Б-Н, Б-10, Б-17, Б-17-О (ГОСТ 9438)1050-1100-60…150
Полиакрилаты
Полиметилметакрилат литьевой ЛПТ (ТУ 6-05-952-74)1180-1200120-125-50*-60…60
Дакрил-2М ( ТУ 6-01-707-72)1190110
Компаунд МБК-1 (ТУ 6-05-1602-71)1600-60…105
Герметики ДН-1 и Анатерм-1, 2, 4, 5, 6, 71050-1200до 150
Герметик Унигерм1050-1200-185…200
Стекло органическое СОЛ (ГОСТ 15809)118090-60…60
Оргстекло СТ-1 (ГОСТ 15809)1180110-60…80
Оргстекло 2-55 (ГОСТ 15809)1190133-60…100
Стекло органическое ТОСП (ГОСТ 17622)118090
Оргстекло ТОСН (ГОСТ 17622)1180105-110
Оргстекло ТОСС (ГОСТ 17622)1180125-130
Полиарилаты
Полиарилаты Д-3, Д-4, Д-3Э ( ТУ 6-05-211-834-72)1150-1190260-285210-100*до 180
Полиарилат Д-4С (ТУ 6-05-818-72)1210255-280210-100*до 180
Полиарилат Ф11110-1260300-310268-100*до 200
Полиарилат Ф21100-1170320-340280-100*до 250
Антифрикционный пластик Аман-13600до 220
Антифрикционный пластик Аман-23700до 180
Антифрикционный пластик Аман-72500до 120
Антифрикционный пластик Аман-102500до 200
Антифрикционный пластик Аман-123000до 300
Антифрикционный пластик Аман-223700до 250
Антифрикционный пластик Аман-243200до 250
Полиарилатная пленка Д-4П (ТУ 6-05-823-72)-60…180
Полиарилатная пленка ДФ-55П и Ф-2П (ТУ 6-05-823-72)-60…250
Полиарилатная пленка Д-3Э (ТУ 6-05-834-72)-60…155
Фенопласты
Фенопласт О6-010-02 (ГОСТ 5689) и К-18-2 (ТУ 6-05-480-72)1400-60…60
Фенопласт О7-010-02 (ГОСТ 5689)1450-50…110
Фенопласты СП1-342-02, СП2-342-02 (ГОСТ 5689)1400-60…60
Фенопласты Э1-340-02, Э2-330-02 (ГОСТ 5689)1400-60…100
Фенопласт Э3-340-65, Э3-340-61 (ГОСТ 5689)1950-60…115
Фенопласт Э6-014-30 (ГОСТ 5689)1850-60…220
Фенопласт В-4-70 (ГОСТ 5.1958)2000-60…150
Фенопласт влагохимстойкий ВХ-090-34 (ГОСТ 5689)1600-40…110
Фенопласт влагохимстойкий ВХ4-080-34 (ГОСТ 5689)1750-60…200
Фенопласты ударопрочные У1-301-07, У2-301-07, У3-301-07 (ГОСТ 5689)1450-40…110
Фенопласты ударопрочные У5-301-41, У6-301-411950-40…130
Фенопласты жаростойкие Ж1-010-40, Ж2-040-60, Ж3-010-62, Ж4-010-621750-1900-40…120
Фенопласт жаростойкий Ж2-010-60 (ГОСТ 5689)1750-40…130
Антифрикционный пластик АФ-3Т ( ТУ 26-01-55-1-73)1760-1800-70…250
Пресс-материал АТМ-1 (антегмит)1800-1850до 115**
Пресс-материал АТМ-1К (антегмит)1800-1850до 300**
Изодин (ТУ 16-503-013-74)1350-1450до 120**
Пластик ПГТ (ТУ 16-503-023-75)1300-1450-60…105
Текстолит конструкционный ПТК, ПТ, ПТМ-1 (ГОСТ 5-72)1300-1400до 130**
Текстолит электротехнический листовой А, Б, Г, ВЧ (ГОСТ 2910)1300-1450-65…105
Текстолит электротехнический листовой ЛЧ (ГОСТ 2910)1250-1350-65…120
Текстолит электротехнический листовой влагостойкий ЛТ (ТУ 16-503.149-75)1200-1350-65…65
Пенофенопласт ФФ (МРТУ 6-05-1302-70)190-230-50…150
Пенофенопласт ФК-20 (МРТУ 6-05-1302-70)190-230-60…120
Звуконепроницаемая теплоизоляция ФС-7-2 (ТУ 6-05-958-73)70-100-55…100
Пенофенопласт ФК-20-А-20 (ТУ 6-05-1303-70)140-200до 250
Пенопласт Резопен (ТУ В-302-71), Виларес-1, Виларес-530-80-150…150
Пенопласт ФРП-2М (ТУ 6-05-304-74)100-180…200
Пенопласт ФЛ-1, ФЛ-240-60-60…120
Карбамидные пресс-материалы (композиты и аминопласты)
Аминопласты А1 и А2 (ГОСТ 9359)1400-1500-60…60
Аминопласт В1 (ГОСТ 9359)1600-1800-60…120
Аминопласт В5 (ГОСТ 9359)1600-1850-60…60
Пресс-материал П-1-11480-60…100
Пенопласты мочевиноформальдегидные МФП-1 и МФП-2 (ТУ 6-05-206-73)10-30-60…100
Пресс-материалы на основе кремнийорганических смол
Пресс-материалы КФ-9 и КФ-10 (ТУ 6-05-1471-71)1500-1650-60…250
Пресс-материалы КЭП-1 и КЭП-21500-1800-60…200
Антифрикционный пластик АМС-1 (ТУ 48-20-45-74)1740-1760-60…210
Антифрикционный пластик АМС-3 (ТУ 48-20-45-74)1780-1800-200…210
Органосиликатный материал Группа А марка 1 и 4-60…500
Органосиликатный материал Группа Т марка 11-60…700
Пенопласт К-40200-400до 250
Полиэфиры
Полиэтилентерефталат (ПЭТ, лавсан, майлар) (ТУ 6-05-830-76)1320160-180
Лавсан ЛС-11530190
Пленка полиэтилентерефталатная (ПЭТФ) аморфная (ТУ 6-05-1454-71)1330-1340260-264до 60
Пленка ПЭТФ общего назначения (ТУ 6-05-1065-76)1380260-60…155
Пленка ПЭТФ электроизоляционная (ТУ 6-05-1794-76)1380260-264-150…156
Пленка ПЭТФ конденсаторная (ТУ 6-05-1099-76)1380-1400250-60*-60…125
Пленка ПЭТФ для металлизации (ТУ 6-05-1108-76)1380260-264
Эпоксидные смолы и компаунды
Заливочный компаунд ЭЗК-1 и ЭЗК-41800-1850-60…120
Эпоксидный заливочный компаунд ЭЗК-61220-60…80
Заливочный компаунд ЭЗК-51520-50…70
Заливочный компаунд ЭЗК-111100-60…120
Заливочный компаунд ЭЗК-121500-60…100
Заливочный компаунд ЭЗК-71600-60…80
Заливочный компаунд ЭЗК-81450-60…70
Компаунд ЭК-201160-1200-60…150
Пропиточный компаунд ЭПК-1 и ЭПК-41230-60…120
Компаунд УП-5-186 (ТУ 6-05-87-74)190-210-60…100
Компаунд УП-5-187 (ТУ 6-05-87-74)200-230-60…100
Пастообразный компаунд УП-5-190 (ТУ 6-05-95-75)2700-2900-50…180
Компаунд ЭНТ-22200250-300
Компаунд ЭНКП-21800150-180
Компаунд ЭНГ-301290125-135
Компаунд ЭНМ-251320125-135
Пресс-материал УП-264С (ТУ 6-05-22-73)1650155-165-60…150
Пресс-материал УП-264П (ТУ 6-05-22-73)1900-2200160-165-60…150
Пресс-материал УП-284С (ТУ 6-05-70-73)1670-1710180-200-60…180
Пресс-материал УП-2198 (ТУ 6-05-94-75)-60…105
Пресс-материал УП-21971700-1900-60…230
Премиксы ЭФП-60, ЭФП-61, ЭФП-621700-1800-60…155
Премиксы ЭФП-64, ЭФП-651800-2300-60…155
Пенопласт ПЭ-2 (ТУ В-172-70)90-450-60…140
Пенопласт ПЭ-5 (ТУ 6-05-215-71)100-300-60…120
Пенопласт ПЭ-6 (ТУ 6-05-215-71)20-50-60…100
Пенопласт ПЭ-7 (ТУ 6-05-289-73)23-60-60…100
Пенопласт ПЭ-8 (ТУ В-171-70)150-500-60…120
Пенопласт ПЭ-9 (ТУ В-173-70)100-500-60…90
Полиамиды
Полиамид-6 (капролон) ОСТ 6-06-С9-761130215190-200
Смола капроновая литьевая (ТУ 6-06-390-70)1130215
Полиамид 610 литьевой (ГОСТ 10589)1090-1110215-221200-220-60…100
Полиамид П-66 литьевой (анид) (ОСТ 6-06-369-74)1140252-260210-220
Полиамид литьевой П-12Л (ТУ 6-05-1309-72)1020178-181140-55…-50
Полиамид П-12Б (ТУ 6-05-145-72)1020170140-50
Полиамид экструзионный П-12Э (ТУ 6-05-147-72)1020178-182140-60
Капролон В (ТУ 6-05-983-73)1150-1160220-225190-220-60…60
Капролит РМ1200220
Литьевой сополимер полиамида АК-93/7 (ГОСТ 19459)1140238-243220-230
Литьевой сополимер полиамида АК-85/15 (ГОСТ 19459)1130224-230210-220
Литьевой сополимер полиамида АК-80/20 (ГОСТ 19459)1130212-218200-210
Смола полиамидная П-54 и П-54/10 (ТУ 6-05-1032-73)1120160-165115-135-40*
Смола полиамидная П-548 (ТУ 6-05-1032-73)112015085-50*
Материал АТМ-2 (ТУ 6-05-502-74)1390218-220-50…60
Антифрикционный материал ЛАМ-1 (ТУ 26-404-74)235-60…165
Полиуретаны
Пенополиуретан ППУ-ЭМ-1 (ТУ 6-05-1473-76)30-50-50…100
Пенополиуретан ППУ-202-1 (ТУ 6-05-234-72)55-85до 100
Пенополиуретан ППУ-ЭФ-1, ППУ-ЭФ-2, ППУ-ЭФ-319-38-40…100
Пенополиуретан ППУ-305А (ТУ 6-05-121-74)35-500120
Пенополиуретан ППУ-307 (ТУ 6-05-251-72)35-220130-150
Пенополиуретан ППУ-311 (ТУ 6-05-221-72)30-60150
Пенополиуретан ППУ-313-2, ППУ-312-335-45120-150
Пенополиуретан ППУ-314 (ТУ 6-05-279-73)20-30080-100
Пенополиуретан ППУ-403 (ТУ 6-05-252-72)75-200120
Пенополиуретан ППУ-202-1 (ТУ 6-05-234-72)200-250-60…100
Пенополиуретан ППУ-202-2 (ТУ 6-05-229-72)130-250-60…100
Пенополиуретан ППУ-3Н, ППУ-9Н50-8070-75
Пенополиуретан ППУ-304Н30-200120
Пенополиуретан ППУ-308Н40-200150
Этролы
Этролы ацетилцеллюлозные АЦЭ-43А, АЦЭ-55А (ТУ 6-05-1528-72)1270-134065-85
Этрол ацетилцеллюлозный АЦЭ-47ТВ (ТУ 6-05-268-73)1270-134065-85
Этрол ацетилцеллюлозный АЦЭ-55АМ (ТУ 6-05-1528-72)1270-134070
Этролы АЦЭ-55У, АЦЭ-50У, АЦЭ-50-20У, АЦЭ-50-5У (ТУ 6-05-268-73)1270-134090
Этрол ацетобутиратцеллюлозный АБЦЭ-15АТ (ТУ 6-05-255-72)1160-125085
Этрол ацетобутиратцеллюлозный АБЦЭ-7,5-5, АБЦЭ-10, АБЦЭ-15ДСМ-В1160-125080
Этрол ацетобутиратцеллюлозный АБЦЭ-151160-125075-80
Пленка электроизоляционная триацетатная (ТУ 6-17-499-73)1260-60…100
Стеклопластики
Стеклопластик АГ-4С-6 (ТУ 84-359-73)1900-2000-60…200
Стеклопластик АГ-4В-10 (ТУ 84-438-74)1700-1900-60…130
Термопласт стеклонаполненный САН-С (ТУ 6-05-369-76)1280-1320115-120-40…120
Полиамид П-6 стеклонаполненный ПА6ВС, ПА6ВС-У (ТУ 6-05-953-74)1350212-216
Смола капроновая стеклонаполненная КС-30а1360214-221
Полиамид стеклонаполненный КПС-30 и КВС-30 (ГОСТ 17648)1350-1380214-221
Дифлон СТН (ТУ 6-05-937-74)1400170-172-100*
Стеклопластик ДАФ-С-22000-2150-60…180
Стеклопластик ДАИФ-С1 и ДАИФ-С22200-60…250
Стеклотекстолит листовой СТЭФ-НТ (ТУ 16-503.146-75)1600-1900-60…55
Стеклотекстолит листовой СТ-НТ (ТУ 16-503.147-75)1600-1850-65…130
Диэлектрик фольгированный ФДГ-1 и ФДГ-2-60…150
Фольгированные травящиеся диэлектрики ФДМТ (ТУ 16-503.113-72)3000-4500-60…100
Фольгированный диэлектрик ФДМ-12800-3400-60…100
Фольгированный диэлектрик ФДМ-23500-4000-60…100
Фольгированные диэлектрики ФДМЭ-1 и ФДМЭ-1-ОС2800-5100-60…105
Пластики на основе формальдегида и диоксолана
Сополимеры формальдегида с диоксоланом СФД (ТУ 6-05-1543-72)1390-1410160-165150-155-60…120
Пентапласт
Пентапласт (ТУ 6-05-1422-74)1400180155-165до 120
Пентапласт кабельный И3 (ТУ 6-05-1693-74)1320-1330170-172123-127-25…125
Пентапласт модифицированный1320176125-20
Пентапласт футеровочный (ТУ 6-05-5-74)1350-1400155-165
Пленка пентапластовая (ТУ 6-05-453-73)1400-50…130
Поликарбонаты
Поликарбонат дифлон (ТУ 6-05-1668-74)1200150-160-100…135
Поликарбонат модифицированный ДАК-8 и ДАК-12-3BN (ОСТ 6-05-5018-73)1200156-160
Дифсан (ТУ 6-05-852-72)1320155-160-100…120
Поликарбонатная пленка ПКО (ТУ 6-05-865-73)1210-60…150
Полиимиды
Полиимид ПМ-671390-1460280до 250
Полиимид ПМ-691380-1470280до 250
Пленки ПМФ-351 и ПМФ-352 (ТУ 6-05-1754-76)1390-1420-60…200
Полисульфон
Полисульфон1250180
Пенопласты изолан
Пенопласт изолан-135-400200-250-60…200
Пенопласт изолан-230-50170-50…180
Пресс-материал фенилон П и С1 (ТУ 6-05-101-71)1350260-270
Пресс-материал фенилон С2 (ТУ 6-05-226-72)1350300
Арилокс
Арилокс-2101 (ТУ 6-05-416-76), 2102 (ТУ 6-05-415-76)180
Арилокс-2103 (ТУ 6-05-417-76), 2104 (ТУ 6-05-421-76), 2105 (ТУ 6-05-423-77)130
Арилокс-1Н (ТУ 6-05-402-75)-60…150
Фольгированный арилокс-1Н (ТУ 6-05-404-74)-60…150
Диэлектрик фольгированный флан (ТУ 16-503.148-75)1200-2600190-200
Ниплон
Термостойкий пластик ниплон-1 (ТУ 6-05-998-75)1340330-340до 300
Термостойкий пластик ниплон-2 (ТУ 6-05-1001-75)1300до 300
Стеклопластик ниплон-1 и ниплон-21800до 300
Углепластик ниплон-1 и ниплон-21300до 300

Полиэтилен — Википедия

Полиэтиле́н — термопластичный полимер этилена, относится к классу полиолефинов[1]. Является органическим соединением и имеет длинные молекулы …—CH2—CH2—CH2—CH2—…, где «—» обозначает ковалентные связи между атомами углерода.

Представляет собой массу белого цвета (тонкие листы прозрачны и бесцветны). Химически стоек, диэлектрик, не чувствителен к удару (амортизатор), при нагревании размягчается (80—120°С), адгезия (прилипание) — чрезвычайно низкая. Часто неверно называется целлофаном[2].

Изобретателем полиэтилена считается немецкий инженер Ганс фон Пехманн, который впервые случайно получил этот продукт в 1899 году. Однако это открытие не получило распространения. Вторая жизнь полиэтилена началась в 1933 году благодаря инженерам Эрику Фосету и Реджинальду Гибсону. Сначала полиэтилен использовался в производстве телефонного кабеля и лишь в 1950-е годы стал использоваться в пищевой промышленности как упаковка[3].

По другой версии, более принятой в научных кругах, развитие полиэтилена можно рассматривать с работ сотрудников компании Imperial Chemical Industries по созданию промышленной технологии производства, проводившихся начиная с 1920-х. Активная фаза создания начата после монтажа установки для синтеза, с которой в 1931 году работали Фосет и Гибсон. Ими был получен низкомолекулярный парафинообразный продукт, имеющий мономерное звено, аналогичное полиэтилену. Работы Фоссета и Гибсона продолжались вплоть до марта 1933, когда было принято решение модернизировать аппарат высокого давления для получения более качественного результата и большей безопасности. После модернизации эксперименты были продолжены совместно с М. В. Перрином и Дж. Г. Паттоном и в 1936 завершились успешно, получением патента на полиэтилен низкой плотности (ПЭНП). Коммерческое производство ПЭНП было начато в 1938 году[4].

История полиэтилена высокой плотности (ПЭВП или ПЭНД) развивалась с 1920-х, когда Карл Циглер начал работы по созданию катализаторов для ионно-координационной полимеризации. В 1954 году технология была в целом освоена, и был получен патент. Позже было начато промышленное производство ПЭНД[4].

Различные виды полиэтилена принято классифицировать по плотности[5]. Несмотря на это, имеется множество ходовых названий гомополимеров и сополимеров, часть из которых приведена ниже.

  • Полиэтилен низкой плотности (высокого давления) — ПЭНП[6], ПЭВД, ПВД, LDPE (Low Density Polyethylene).
  • Полиэтилен высокой плотности (низкого давления) — ПЭВП[6], ПЭНД, ПНД, HDPE (High Density Polyethylene).
  • Полиэтилен среднего давления (высокой плотности) — ПЭСД[6].
  • Линейный полиэтилен средней плотности — ПЭСП[6], MDPE или PEMD[1].
  • Линейный полиэтилен низкой плотности — ЛПЭНП[6], LLDPE или PELLD[1].
  • Полиэтилен очень низкой плотности — VLDPE
  • Полиэтилен сверхнизкой плотности — ULDPE
  • Металлоценовый линейный полиэтилен низкой плотности — MPE
  • Сшитый полиэтилен — PEX или XLPE, XPE.
  • Высокомолекулярный полиэтилен — ВМПЭ, HMWPE или PEHMW или VHMWPE[1].
  • Сверхвысокомолекулярный полиэтилен — UHMWPE

В данном разделе не рассматриваются названия разных сополимеров, иономеров и хлорированного полиэтилена.

Макромолекулы полиэтилена высокого давления (n≅1000) содержат боковые углеводородные цепи C1—С4, молекулы полиэтилена низкого давления практически неразветвлённые, в нём больше доля кристаллической фазы, поэтому этот материал более плотный; молекулы полиэтилена среднего давления занимают промежуточное положение. Большим количеством боковых ответвлений объясняется более низкое содержание кристаллической фазы и соответственно более низкая плотность ПЭВД по сравнению с ПЭНД и ПЭСД.

Показатели, характеризующие строение полимерной цепи различных видов полиэтилена:
ПоказательПЭВДПЭСДПЭНД
Общее число групп СН3 на 1000 атомов углерода:21,651,5
Число концевых групп СН3 на 1000 атомов углерода:4,521,5
Этильные ответвления14,411
Общее количество двойных связей на 1000 атомов углерода0,4—0,60,4—0,71,1-1,5
в том числе:   
винильных двойных связей (R-CH=CH2), %174387
винилиденовых двойных связей , %71327
транс-виниленовых двойных связей (R-CH=CH-R’), %12256
Степень кристалличности, %50-6575-8580-90
Плотность, г/см³0,9-0,930,93-0,940,94-0,96

Полиэтилен высокой плотности HDPE (High-Density — высокая плотность)[править | править код]

Физико-механические свойства ПЭНД при 20°C:
ПараметрЗначение
Плотность, г/см³0,94-0,96
Разрушающее напряжение, кгс/см² 
при растяжении100—170
при статическом изгибе120—170
при срезе140—170
относительное удлинение при разрыве, %500—600
модуль упругости при изгибе, кгс/см²1200—2600
предел текучести при растяжении, кгс/см²90-160
относительное удлинение в начале течения, %15-20
твёрдость по Бринеллю, кгс/мм²1,4-2,5

С увеличением скорости растяжения образца разрушающее напряжение при растяжении и относительное удлинение при разрыве уменьшаются, а предел текучести при растяжении возрастает.

С повышением температуры разрушающее напряжение полиэтилена при растяжении, сжатии, изгибе и срезе понижается. а относительное удлинение при разрыве возрастает до определённого предела, после которого также начинает снижаться

Изменение разрушающего напряжения при сжатии, статическом изгибе и срезе в зависимости от температуры (определено при скорости деформации 500 мм/мин и толщине образца 2 мм):
Разрушающее напряжение, кгс/см²Температура, ºС
20406080
при сжатии1267740
при статическом изгибе1188860
при срезе1691319253
Зависимость модуля упругости при изгибе ПЭВД от температуры:
Температура, °С-120-100-80-60-40-2002050
Модуль упругости при изгибе, кгс/см²2810026700232001920013600740030502200970

Необходимо отметить, что свойства изделий из полиэтилена будут существенно зависеть от режимов их изготовления (скорости и равномерности охлаждения) и условий эксплуатации (температуры, давления, продолжительности. воздействия нагрузки и т. п.).

Сверхвысокомолекулярный полиэтилен высокой плотности[править | править код]

Относительно новой и перспективной разновидностью полиэтилена является сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ, англ. UHMW PE), изделия из которого обладают рядом замечательных свойств: высокой прочностью и ударной вязкостью в большом диапазоне температур (от — 200°С до + 100°С), низким коэффициентом трения, большими химо- и износостойкостью и применяются в военном деле (для изготовления бронежилетов, шлемов), машиностроении, химической промышленности и др.[7]

Горит голубоватым пламенем, со слабым светом[8], при этом издаёт запах парафина[9], то есть такой же, какой исходит от горящей свечи.

Устойчив к действию воды, не реагирует со щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже с концентрированной серной кислотой, но разрушается при действии 50%-й азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора. При реакции полиэтилена с галогенами образуется множество полезных для народного хозяйства продуктов, поэтому эта реакция может быть использована для переработки отходов полиэтилена. В отличие от непредельных углеводородов, не обесцвечивает бромную воду и раствор перманганата калия[8].

При комнатной температуре нерастворим и не набухает ни в одном из известных растворителей. При повышенной температуре (80°C) растворим в циклогексане и четырёххлористом углероде. Под высоким давлением может быть растворён в перегретой до 180°C воде.

Со временем подвергается деструкции с образованием поперечных межцепных связей, что приводит к повышению хрупкости на фоне небольшого увеличения прочности. Нестабилизированный полиэтилен на воздухе подвергается термоокислительной деструкции (термостарению). Термостарение полиэтилена проходит по радикальному механизму, сопровождается выделением альдегидов, кетонов, перекиси водорода и др.

На обработку поступает в виде гранул от 2 до 5 мм. Полиэтилен получают полимеризацией этилена:

Получение полиэтилена высокого давления[править | править код]

Полиэтилен высокого давления (ПЭВД), или Полиэтилен низкой плотности (ПЭНП), образуется при следующих условиях:

в автоклавном или трубчатом реакторах. Реакция идёт по радикальному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000—500 000 и степень кристалличности 50-60 %. Жидкий продукт впоследствии гранулируют. Реакция идёт в расплаве.

Получение полиэтилена среднего давления[править | править код]

Полиэтилен среднего давления (ПЭСД) образуется при следующих условиях:

продукт выпадает из раствора в виде хлопьев. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 300 000—400 000, степень кристалличности 80-90 %.

Получение полиэтилена низкого давления[править | править код]

Полиэтилен низкого давления (ПЭНД), или Полиэтилен высокой плотности (ПЭВП), образуется при следующих условиях:

Полимеризация идёт в суспензии по ионно-координационному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000—300 000, степень кристалличности 75—85 %.

Следует иметь в виду, что названия «полиэтилен низкого давления», «среднего давления», «высокой плотности» и т. д. имеют чисто риторическое значение. Так, полиэтилен, получаемый по 2 и 3-му методам, имеет одинаковую плотность и молекулярный вес. Давление в процессе полимеризации при так называемых низком и среднем давлениях в ряде случаев одно и то же.

Другие способы получения полиэтилена[править | править код]

Существуют и другие способы полимеризации этилена, например под влиянием радиоактивного излучения, однако они не получили промышленного распространения.

Модификации полиэтилена[править | править код]

Ассортимент полимеров этилена может быть значительно расширен получением сополимеров его с другими мономерами, а также путём получения композиций при компаундировании полиэтилена одного типа с полиэтиленом другого типа, полипропиленом, полиизобутиленом, каучуками и т. п.

На основе полиэтилена и других полиолефинов могут быть получены многочисленные модификации — привитые сополимеры с активными группами, улучшающими адгезию полиолефинов к металлам, окрашиваемость, снижающими его горючесть и т. д.

Особняком стоят модификации так называемого «сшитого» полиэтилена ПЭ-С (PE-X). Суть сшивки состоит в том, что молекулы в цепочке соединяются не только последовательно, но и образуются боковые связи которые соединяют цепочки между собой, за счёт этого достаточно сильно изменяются физические и в меньшей степени химические свойства изделий.

Различают 4 вида сшитого полиэтилена (по способу производства): пероксидный (а), силановый (b), радиационный (с) и азотный (d). Наибольшее распространение получил РЕх-b, как наиболее быстрый и дешёвый в производстве.

  • Полиэтиленовая плёнка (особенно упаковочная, например, пузырчатая упаковка или скотч),
  • Тара (бутылки, банки, ящики, канистры, садовые лейки, горшки для рассады)
  • Полимерные трубы для канализации, дренажа, водо-, газоснабжения
  • Электроизоляционный материал.
  • Полиэтиленовый порошок используется как термоклей[10].
  • Броня (бронепанели в бронежилетах)[11]
  • Корпуса для лодок[12], вездеходов, деталей технической аппаратуры, диэлектрических антенн, предметов домашнего обихода и др.
  • Вспененный полиэтилен (пенополиэтилен) используется, как теплоизолятор. Наиболее известны следующие марки: МультиФлекс, Изоком, Изолон, Порилекс, Алентекс
  • Полиэтилен низкого давления (ПЭНД), или высокой плотности (HDPE), применяется при строительстве полигонов переработки отходов, накопителей жидких и твёрдых веществ, способных загрязнять почву и грунтовые воды.[13]

Малотоннажная марка полиэтилена — так называемый «сверхвысокомолекулярный полиэтилен», отличающийся отсутствием каких-либо низкомолекулярных добавок, высокой линейностью и молекулярной массой, используется в медицинских целях в качестве замены хрящевой ткани суставов. Несмотря на то, что он выгодно отличается от ПЭНД и ПЭВД своими физическими свойствами, применяется редко из-за трудности его переработки, так как обладает низким ПТР и перерабатывается только прессованием.

Для борьбы с загрязнением окружающей среды полиэтиленовыми пакетами применяются различные меры, и уже около 40 стран ввели запрет или ограничение на продажу и(или) производство пластиковых пакетов.

Переработка[править | править код]

Изделия из полиэтилена пригодны для переработки и последующего использования. Полиэтилен (кроме сверхвысокомолекулярного) перерабатывается всеми известными для пластмасс методами, такими как экструзия, экструзия с раздувом, литьё под давлением, пневматическое формование. Экструзия полиэтилена возможна на оборудовании с установленным «универсальным» червяком.

Сжигание[править | править код]

При нагревании полиэтилена на воздухе возможно выделение в атмосферу летучих продуктов термоокислительной деструкции. При термической деструкции полиэтилена в присутствии воздуха или кислорода образуется больше низкокипящих соединений, чем при термической деструкции в вакууме или в атмосфере инертного газа. Исследование структурных изменений полиэтилена во время деструкции на воздухе, в атмосфере кислорода или в смеси, состоящей из O2 и О3, при 150—210°С показало, что образуются гидроксильные, перекисные, карбонильные и эфирные группы. При нагревании полиэтилена при 430°С происходит очень глубокий распад на парафины (65—67 %) и олефины (16—19 %). Кроме того, в продуктах разложения обнаруживаются: окись углерода (до 12 %), водород (до 10 %), углекислый газ (до 1,6 %). Из олефинов основную массу составляет обычно этилен. Наличие окиси углерода свидетельствует о присутствии кислорода в полиэтилене, то есть о наличии карбонильных групп.

Плесневые грибки Penicillium simplicissimum способны за три месяца частично утилизировать полиэтилен, предварительно обработанный азотной кислотой. Относительно быстро разлагают полиэтилен бактерии Nocardia asteroides. Некоторые бактерии, обитающие в кишечнике южной амбарной огнёвки (Plodia interpunctella), способны разложить 100 миллиграммов полиэтилена за восемь недель. Гусеницы пчелиной огнёвки (Galleria mellonella) могут утилизировать полиэтилен еще быстрее[14][15].

  1. 1 2 3 4 Описание и марки полимеров — Полиэтилен
  2. ↑ Король упаковки: как появился целлофан
  3. ↑ История полиэтилена: неожиданное рождение пластикового пакета
  4. 1 2 Дж. Уайт, Д.Чой.// Полиэтилен, полипропилен и другие полиолефины. — СПб.: Профессия, 2007.
  5. ↑ Vasile C., Pascu M.// Practical Guide to Polyethylene. — Shawbury: Smithers Rapra Press, 2008.
  6. 1 2 3 4 5 Кулезнев В. Н. (ред.), Гусев В. К. (ред.)// Основы технологии переработки пластмасс. — М.: Химия, 2004.
  7. ↑ Сайт Polymeri.ru » Сверхвысокомолекулярный полиэтилен: рынок в ожидании переработчиков»
  8. 1 2 Цветков Л. А. § 10. Понятие о высокомолекулярных соединениях // Органическая химия. Учебник для 10 класса. — 20-е изд. — М.: Просвещение, 1981. — С. 52—57. — 1 210 000 экз.
  9. Шульпин Г. Эти разные полимеры // Наука и жизнь. — 1982. — № 3. — С. 80—83.
  10. ↑ Сжать и провернуть: Сделано в России
  11. ↑ Доспехи XXI века (неопр.) (недоступная ссылка). Дата обращения 26 декабря 2009. Архивировано 27 июня 2009 года.
  12. ↑ Total Petrochemicals создала ротомолдинговую лодку из полиэтилена
  13. ↑ Геомембрана HDPE
  14. Русакова Е. Гусеницы приспособились к скоростному перевариванию полиэтилена (неопр.). N+1 Интернет-издание (25 апреля 2017). Дата обращения 25 апреля 2017.
  15. Bombelli P., Howe C. J., Bertocchini F. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella // Current Biology. — Vol. 27. — P. R283—R293. — DOI:10.1016/j.cub.2017.02.060.

Области применения ПНД труб — ЭКО-процессинг

В одной из статей мы уже говорили про производство ПНД труб, в этой статье рассмотрим области применения ПНД труб для сфер промышленности и быта.

ПНД трубы в наше время приходят на смену старым стальным и чугунным трубам в быту. Основное применение их – в системах подачи воды и водоотведения. Аббревиатура ПНД означает, что этилен, из которого изготовлена труба, был полимеризован под низким давлением. Главным достоинством такой трубы является более высокая температура плавления. 

Трубы, которые производят из полиэтилена при низком давлении, выпускают в пяти вариациях — SDR9, SDR11, SDR13,6, SDR 21 и SDR 26. Показатель SDR определяет степень устойчивости к внутреннему давлению. Он равен отношению внешнего диаметра изделия к толщине материала его стенки. В связи с этим, увеличение толщины стенок влечет за собой уменьшение SDR. То есть, чем меньше этот показатель, тем прочнее труба.

 

Все трубы ПНД для водопровода могут быть двух марок – это ПЭ 80 и ПЭ 100. При этом, трубы ПЭ 80 используют для монтажа водопровода и канализации с сечением до 90 мм, а ПЭ 100 в магистральных трубопроводах. Кроме того, пластик, используемый в изготовлении труб, может быть пищевым и техническим. Второй производят из вторичного сырья, поэтому его использование в бытовых водопроводах не допускается.

Производители поставляют полиэтиленовые трубы бухтами по 100, 200, а иногда и 1000 м. В некоторых случаях можно встретить изделия длиной 12 метров.

Полиэтиленовые трубы повсеместно применяются при строительстве и реконструкции водопроводов, для оборудования гидросооружений и бассейнов, поливальных установок и артезианских скважин. Трубы из полиэтилена используются для транспортировки различного жидкого и газообразного топлива в промышленности или коммунально-бытовой сфере.

 

Трубы ПНД канализационные соединяют с применением фитингов различных видов:

  1. Для стыковой сварки;
  2. Для электросварки;
  3. Компрессионного типа.

В процессе соединения ПНД труб с помощью фитингов стыкового типа происходит оплавление внутренней поверхности фитинга и торцов соединяемых труб посредством специального паяльного аппарата. Сразу после оплавления детали извлекают из насадок аппарата, совмещают их и удерживают в правильном положении до остывания.

Электросварные фитинги соединяют полиэтиленовые трубы по аналогичной схеме, отличие состоит лишь в том, что в фитинг изначально внедрены электронагревательные элементы, которые оплавляют детали, не требуя применения паяльного аппарата.

При использовании компрессионных фитингов герметизация достигается при помощи зажимного кольца специальной конструкции, которое не позволяет соединению ослабнуть.

Все произведенные трубы подвергаются строгому контролю качества по следующим параметрам:

  1. Состояние внутренней и внешней поверхности изделий. Стенки должны быть абсолютно гладкими. Допускается только присутствие незначительных продольных полос и некоторой волнистости, которая не превышает допустимых стандартами отклонений;
  2. Внутренняя, наружная, а также торцевая поверхности не могут иметь трещин, посторонних включений и раковин;
  3. Водопроводная пластиковая труба имеет только чёрный цвет. Часто могут присутствовать продольные синие маркировочные полосы, которых должно быть не менее трех штук. Их распределение по окружности обязательно должно быть равномерным.

Так как от качества материала зависит герметичность водопровода, то стоит уделять этому обстоятельству особое значение и приобретать продукцию только известных проверенных производителей.

Если провести сравнение с некоторыми другими материалами для производства труб (сталь, чугун, асбест), то полиэтилен превзойдет их по многим показателям:

  1. Пятидесятилетний гарантийный срок эксплуатации производители дают только полиэтиленовым трубам;
  2. Пластиковая труба диаметром от 20 до 110 мм намотанная в 1000-метровые бухты позволяет сэкономить все расходные материалы, которые требуются для монтажа трубопровода, а также значительно ускорить процесс прокладки трубы;
  3. Применение терморезисторных фитингов упрощает и ускоряет работу по соединению труб между собой;
  4. Подготовка квалифицированных сварщиков, умеющих работать с полиэтиленом, гораздо проще и быстрее, чем специалистов по металлу;
  5. Трубы ПНД для водопровода вполне возможно монтировать многократно с малыми затратами на перемонтаж. Они могут быть легко утилизированы и переработаны;
  6. Полиэтиленовую трубу можно протянуть внутрь уже существующего старого водопровода, даже не разбирая его;
  7. Химическая нейтральность полиэтилена способствует отсутствию коррозии при контакте с водой или даже более агрессивными средами;
  8. Материал имеет меньший удельный вес, что значительно удешевляет все производственные процессы и транспортировку изделий;
  9. Очень высокая эластичность (линейное расширение до 7,5%) позволяет изделиям выдерживать не только незначительные подвижки грунта, но даже землетрясения. Именно это обстоятельство подтолкнуло в свое время японцев к производству и повсеместному использованию таких труб;
  10. Идеальная гладкость внутренней поверхности допускает использование более тонких труб при сохранении гидравлических параметров на том же уровне, что и у более толстых стальных аналогов;
  11. Из-за низкого модуля упругости полиэтилена значительно снижается возможность появления гидроударов, а также разрушения при замерзании воды.
  1. Разрушаются под действием ультрафиолетового излучения;
  2. Деформируются при высоких температурах (более 65 градусов), что делает невозможным их использование в системе отопления;
  3. Несколько худшие механические свойства в сравнении с некоторыми видами металлических труб;
  4. Специфическая технология укладки.

Обсадная труба для скважин может изготавливаться из различных материалов — металла, пластика, асбоцемента. Основное предназначение обсадных труб — предупреждать осыпание земли внутрь скважины. Применяются такие трубы как в частных хозяйствах, так и в промышленности. 

 

Обсадная труба для скважин подбирается в зависимости от размера скважины, диаметра отверстия. Диаметры рассчитываются исходя из планируемого расхода воды и модели насоса, а в общем случае – исходя из производительности скважины и вида оборудования. Характеристики обсадных труб указываются в проекте по бурению. В каждом конкретном случае оптимальная конструкция скважины может быть разной.

 

Обсадные пластиковые трубы имеют ряд преимуществ перед трубами для скважин, изготовленными из других материалов. Важное преимущество — высокая прочность и стойкость к химическим воздействиям. Пластиковая труба для скважины значительно легче стальной трубы того же диаметра и длины. За счет небольшого веса такая труба не оказывает большого давления на грунт, и позволяет избежать проседания почвы. Использование пластиковых обсадных труб при бурении водозаборных скважин позволяет получать питьевую воду без посторонних привкусов и примесей.

 

К недостаткам можно отнести невысокую пластичность, которая мешает использовать пластиковые трубы для скважин при низких температурах. Не рекомендуется использовать трубы из пластика на большой глубине, так как они выдерживают меньший уровень механического давления, чем стальные трубы.

При всех достоинствах и недостатках, трубы из ПНД – достойный выбор для обустройства дома, офиса, промышленного производства. Качественное сырье, соблюдение технологий в процессе изготовления, грамотный монтаж позволят использовать эти трубы долгое время. Именно поэтому следует обращать внимание на фирму-производителя и гарантию, которую может предложить поставщик. В этом случае трубы из полиэтилена низкого давления прослужат долгие годы.

 

ПНД трубы так хороши, что в свое время Япония централизованно меняла на этот материал стальные магистрали водоснабжения.В России процессы тоже запущены и полиэтилен всё быстрее вытесняет стальные магистрали.

все про трубы из полиэтилена 2020

Трубы из полиэтиленаТрубы из полиэтилена пришли, можно сказать, совсем недавно на смену металлическим трубопроводам, используемым во всевозможных коммуникационных системах. Они не ржавели, как стальные, стоили намного дешевле чугунных, легко монтировались и сохраняли качество воды. Более того, с изобретением новых модификаций полиэтилена пластиковые трубы смогли вытеснить металл даже в применении к таким достаточно проблемным трубопроводным сетям, как системы отопления.

Основные свойства

Основой пластиковой трубы является полиэтилен – термопластичный полимер, который не боится естественного разрушения, свойственного природным материалам. Изделия, изготовленные из него, обладают массой свойств, отличающих их от продукции из иных материалов.

Преимущества

Главные преимущественные особенности исходят из свойств полимера, входящего в основу трубы:

  • Труба ПЭ не гниёт, не поддается действию грибка и коррозии,
  • Полиэтилен не реагирует с химически активными веществами, такими как кислоты, щелочи и даже масла,
  • Благодаря пластичности полиэтиленовая труба не трескается при замерзании жидкости в ней,
  • Она устойчива к деформациям растяжения и сжатия,
  • Способна выдерживать даже большой напор воды (гидроудар),
  • Обладает свойством шумопоглощения, при котором становятся незаметными звуки переливания жидкостей внутри трубных систем,
  • Имеет очень продолжительный срок эксплуатации, достигающий 100 лет и более,
  • Стоит намного дешевле труб из других материалов.

Кроме этого, трубы из полиэтилена очень лёгкие, что даёт две дополнительных возможности:

  1. Монтаж коммуникаций из них можно выполнить без особых физических усилий и опыта работы,
  2. Они не требуют установки дополнительного крепежа и усиления основы крепления, поэтому могут устанавливаться даже у перегородок из гипсокартона и подобных материалов.

Недостатки

Недостатков у труб из полиэтилена всего два, которые верны при появлении определенных условий:

  • Полиэтиленовые трубыТрубы ПЭ плохо переносят солнечные лучи, поэтому их рекомендуется использовать при установке защитных оболочек либо помещении. Также для преодоления этого недостатка часто к составу труб подмешивают вещества, увеличивающие стойкость к ультрафиолету.
  • Полиэтилен плохо переносит повышенные температуры, поэтому большинство полиэтиленовых труб плавятся при температуре выше 100 0C.

ИНТЕРЕСНО! Современный полиэтилен смог преодолеть неудобства, доставляемые его термопластичностью. Пластиковые трубы, изготовленные из «суперматериала» нового поколения — так называемого «сшитого» полиэтилена, не боятся повышения температуры даже более 150 0C.

Изготовление ПЭ труб

Материалы

Основным материалом для изготовления пластиковых труб служит полиэтилен – полимер углеводорода этилена, получаемый под давлением в специальных автоклавах, при высоких температурах и в присутствии катализаторов. В зависимости от применяемой технологии, он может быть:

  • Низкой плотности, получаемый при очень высоком давлении (ПВД),
  • Высокой плотности, который получают при низком давлении (ПНД),
  • Сверхвысокой плотности, известный как «сшитый полиэтилен».

При этом плотность исходного материала напрямую связана со свойствами получаемых изделий: чем она больше, тем тверже и прочнее конечный продукт. Так, полиэтиленовые трубы ПНД имеют более высокую температуру эксплуатации, чем изделия ПВД, а также большую устойчивость к воздействиям механического либо химического происхождения . Но при этом они в какой-то мере теряют пластичность, свойственную полимерам низкой плотности.

ВНИМАНИЕ! Полиэтиленовая труба низкой плотности, изготовленная из ПВД, не предназначена для транспортировки жидкостей, разогретых до очень высоких температур (выше 80 0C) и под большим давлением, хотя из этого материала и делают напорные трубы со стенками повышенной толщины.

Труба ПЭ, на производство которой идет «сшитый» полимер, имеет уникальную молекулярную структуру в виде сетки с особо прочными межмолекулярными связями. Этот материал начинает плавиться лишь при температурах, достигающих 200 0C. Именно поэтому он идет на изготовление элементов отопительных систем.

Производственный процесс

Трубы ПЭ изготавливают из готового гранулированного сырья методом экструзии:

  1. Установка трубыГранулы полиэтилена нагреваются до температуры их плавления и перемешиваются в однородную массу,
  2. Полиэтиленовая масса выдавливается через выходное отверстие экструдера нужного размера и формы,
  3. Еще горячая труба проходит калибровку для уточнения диаметра,
  4. В охлаждающих ваннах проходит нормализация температуры,
  5. Охлажденная труба нарезается на готовые изделия в виде прямых отрезков либо сматывается в бухты.

ВАЖНО! При изготовлении трубы ПЭ возможно армирование, для которого используются более сложные экструдеры, имеющие возможность настройки на эту операцию.

Виды полиэтиленовых труб

Полиэтиленовые трубы изготавливаются различных диаметров – в диапазоне от 16-ти до 1200 мм. Готовые изделия классифицируют по следующим параметрам:

  1. По конструкции самой трубы из полиэтилена:
    1. гладкая, имеющая обычные гладкие поверхности как внутри, так и снаружи,
    2. гофрированная, характеризуемая особой гибкостью и стойкостью к деформациям,
    3. двустенная, состоящая из двух слоёв – гладкого внутреннего и гофрированного наружного,
    4. армированная, усиленная нитью либо сетчатым каркасом для большей прочности,
    5. перфорированная, которая используется для водоотвода и может быть усилена геотекстилем для фильтрации жидкостей.
  2. По виду межтрубных соединений:
    1. разъёмные, которые крепятся между собой посредством фитингов или фланцев и могут разбираться в процессе эксплуатации,
    2. неразъёмные соединяются сварочным методом либо специальной несъемной муфтой.
  3. По пригодности трубы ПЭ к контакту с пищевыми продуктами:
    1. питьевые, материал которых не содержит никаких веществ, могущих повлиять на токсичность изделия,
    2. технические, которые могут изготавливаться из вторсырья.
  4. По величине разрешимого рабочего давления жидкости в полиэтиленовой трубе:
    1. напорные, выдерживающие даже гидроудары,
    2. средненапорные, не предназначенные для увеличения напора жидкости,
    3. работающие под разрежением (или вакуумом), способные выдерживать не внутреннее, а внешнее давление.
  5. По назначению:
    1. водопроводные,
    2. дренажные,
    3. газовые,
    4. канализационные,
    5. технические.

Классификационные особенности пластиковой трубы обычно отражаются в её маркировке: здесь вы найдете диаметр, толщину стенок, марку полиэтиленового сырья и запись о назначении изделия.

Трубы HDPE (ПНД, ПЭВП, ПЭНД)

Системы канализации на основе труб HDPE

В зависимости от условий эксплуатации, канализация HDPE подразделяется на:

  • Внутреннюю. Прокладывается внутри зданий. Благодаря эластичности труб, практически отпадает необходимость в использовании гофр. Канализационные трубопроводы HDPE можно прокладывать даже вблизи магистралей горячего водоснабжения.
  • Наружную. Прокладывается за пределами зданий. Трубы ПНД эластичны и не подвержены воздействию пучинистых грунтов. Они обладают устойчивостью к пониженным температурам и способны выдержать давление почвы.

Использование труб ПНД для создания канализационных систем обеспечивает ряд неоспоримых преимуществ. В первую очередь это касается гладкости внутренних стенок, на которых не образовываются наслоения и засоры.

Канализационные трубы HDPE также бывают:

  • Напорными. Они используются в тех случаях, когда канализационная коммуникация будет эксплуатироваться в условиях нестабильного давления. Подходят для устройства автономных канализационных систем, где имеется септик, и т.д.
  • Безнапорными. Такие трубы используются для монтажа канализаций, при эксплуатации которых не возникают колебания давления.

К ключевым преимуществам канализаций HDPE также следует отнести долговечность, экологическую безопасность, прочность, надёжность, устойчивость к негативному внешнему воздействию. По сравнению с металлическими трубопроводами, полиэтиленовые не поддерживают развитие коррозии. Трубы ПНД отличаются простотой монтажа и практически не нуждаются в последующем обслуживании. А так как для этого материала характерна низкая теплопроводность, то исключается замерзание сточных вод при понижении температуры.

Благодаря своим характеристикам, трубы HDPE позволяют создать функциональные и надёжные трубопроводы, которые при правильном монтаже и соблюдении правил эксплуатации способны прослужить на протяжении долгого времени.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *