23.11.2024

Компенсатор трубопровода – ГОСТ 32935-2014 Компенсаторы сильфонные металлические для тепловых сетей. Общие технические условия

Содержание

Компенсатор (трубопроводы) — Википедия

У этого термина существуют и другие значения, см. Компенсатор. Резиновый компенсатор трубопровода

Компенсатор — устройство, позволяющее воспринимать и компенсировать перемещения, температурные деформации, вибрации, смещения.

Применение компенсаторов на различных типах устройств обусловлено необходимостью избежать, стабилизировать, либо свести к минимуму возникновение нежелательных факторов, возникающих в результате воздействия окружающей или проводимой среды, а также в результате работы самого устройства. Такими факторами могут быть напряжения в металле, опорах трубопровода и пр.

Виды компенсаторов

В зависимости от рабочих параметров эксплуатации и среды применяют следующие виды компенсаторов: компенсатор сильфонный, компенсатор резиновый, компенсатор тканевый, компенсатор фторопластовый, компенсатор линзовый, компенсатор сальниковый.

Основными параметрами для выбора компенсатора являются: температура среды, давление, агрегатное состояние перемещаемой среды

Тканевые компенсаторы

Тканевый компенсатор

Основным местом применения тканевых компенсаторов являются системы с газообразными средами. Температура газов может достигать 1200°С.

Компенсаторы изготавливаются из одного или нескольких слоев изоляционных и газоплотных материалов. Материалы собираются вместе в так называемый «сэндвич». Газоплотные материалы изготавливаются из различных покрытий и имеют высокую химическую стойкость, порой превосходящую нержавеющую сталь. Существуют различные типы креплений компенсатора, например крепление под хомут или прижимной типа 000, фланцевое крепление тип 101 Для температур свыше 500 °С применяются конструкции с внутренней изоляцией.

Резиновые компенсаторы

Резиновый компенсатор трубопровода

Основным местом применения резиновых компенсаторов являются трубопроводные системы с жидкими средами. Температура жидкости может достигать 200 С. Стандартные исполнения имеют стойкость до 100 −110 С. Основным способом подсоединения к трубопроводу является фланцевое соединение. Для повышения устойчивости к внешнему воздействию резиновый компенсатор может быть упакован в специальный огнестойкий чехол.

Компенсаторы изготавливаются из различных эластомеров (резин) и имеют кордовое усиление. В зависимости от проходящей жидкости подбирается подходящий эластомер. Наиболее распространенным материалами являются EPDM (этилен-пропиленовый каучук) и NBR (бутадиен-нитрильный каучук). Резиновые компенсаторы EPDM используются для водной рабочей среды, NBR — для нефтепродуктов и их производных. Для химически агрессивных сред (кислоты, щелочи и пр.) используется специальный материал — гипалон (сульфохлорированный полиэтилен). Для повышения устойчивости к различным химически активным средам может быть использовано специальное тефлоновое напыление. Для повышения надежности гибкого соединения используются различные угловые ограничители и соединительные тяги.

Наиболее широкое распространение резиновые компенсаторы получили в водопроводах, канализационных трубопроводах, а также в нефтехимической промышленности. Большинство производителей насосного оборудования рекомендуют устанавливать резиновые компенсаторы между насосом и трубопроводом, что позволяет скомпенсировать вибрацию, исходящую от насоса, тем самым повысив надежность и срок службы всей системы, в том числе и другого оборудования, подключенного к трубопроводу. В последнее время у некоторых европейских производителей в линейке появились резиновые компенсаторы с особым составом резины, который позволяет применять их для водопроводов питьевой воды, а также в пищевой промышленности.

Резиновый компенсатор

Сильфонные компенсаторы

Основным местом применения сильфонных компенсаторов являются системы с жидкими и парообразными средами, работающие при высоких давлениях и высоких температурах. Сильфонные компенсаторы предназначены для компенсации температурных расширений, несоосностей трубопроводов и вибрационных воздействий. Широко применяются в энергетике, химической, нефтехимической, нефтеперерабатывающей, газовой и других отраслях промышленности. Основной элемент сильфонного компенсатора — сильфон — упругая асимметричная гофрированная металлическая оболочка. Конструкция сильфона позволяет компенсатору под действием продольных (ход), поперечных (сдвиг) и угловых (поворот) моментов растягиваться, сжиматься, деформироваться в поперечном направлении и изгибаться со значительными перемещениями (до десятков сантиметров и градусов), сохраняя герметичность

[1]. Вид деформации сильфона в процессе эксплуатации определяется конструктивным исполнением компенсатора.

Сальниковые компенсаторы

Сальниковые компенсаторы предназначены для компенсации температурных деформаций трубопроводов водяных и паровых теплосетей, с параметрами воды и пара: рабочем давлении до 2,5 МПа (25 кгс/см2), температуре воды до 200˚С, температуре пара до 300˚С. Сальниковые компенсаторы односторонние изготавливаются для условных проходов Ду от 100 до 1400 мм, а сальниковые компенсаторы двухсторонние — для Ду от 100 до 800 мм. Сальниковые компенсаторы применяются при строительстве тепловых сетей в районах с расчетной температурой наружного воздуха не ниже минус 40˚С. Компенсирующая способность компенсаторов сальниковых варьируется в зависимости от условного прохода: от 200 до 450 мм — для односторонних компенсаторов и от 400 до 800 мм для двухсторонних компенсаторов.

Сальниковые компенсаторы изготавливаются по серии 4.903-10 выпуск 7 и по серии 5.903-13 выпуск 4

Линзовые компенсаторы

Компенсаторы линзовые ПГВУ круглые и прямоугольные предназначены для компенсации температурных удлинений круглых и прямоугольных газовоздуховодов (ПГВУ) котельных установок. Компенсаторы линзовые ПГВУ применяется в неагрессивных и малоагрессивных средах с избыточным давлением до 1500 мм вод. ст. (0.015МПа) и температурой среды от −20 до 425°С. Компенсаторы круглые линзовые ПГВУ изготавливаются на Ду от 150 до 6000 мм, одно-, двух-, трех- и четырехлинзовыми, в соответствии с требуемой компенсирующей способностью: Компенсаторы прямоугольные линзовые ПГВУ изготавливаются размерами от 300х400 до 7850×8000 мм, одно-, двух-, трех- и четырехлинзовыми, в соответствии с требуемой компенсирующей способностью: Компенсаторы круглые осевые линзовые изготовленные по ГОСТ 34-10-569-93 предназначены для компенсации температурных изменений длины трубопроводов на которые распространяются требования «Правил устройства и безопасной эксплуатации трубопроводов пара и горячей воды», работающих в условиях неагрессивных и малоагрессивных сред, с условным давлением до 1,6МПа (16кгс/см2) и температурой до 300˚С и для Ду ≤ 400 мм температурой до 425˚С. Компенсаторы изготавливаются на Ду от 100 до 2200 мм, условные давления Ру 0,6МПа, 1,0МПа и 1,6МПа, одно-, двух-, трех- и четырехлинзовыми, в соответствии с компенсирующей способностью.

Примечания

  1. ↑ Справочник «Промышленное газовое оборудование» / Под ред. Е. А. Карякина. — 5-е. — Саратов: Научно-исследовательский центр промышленного газового оборудования «Газовик», 2010. — 990 с. — ISBN 978-5-9758-1209-4.

См. также

wikipedia.green

Компенсатор (трубопроводы) — Википедия

У этого термина существуют и другие значения, см. Компенсатор.
Резиновый компенсатор трубопровода

Компенсатор — устройство, позволяющее воспринимать и компенсировать перемещения, температурные деформации, вибрации, смещения.

Применение компенсаторов на различных типах устройств обусловлено необходимостью избежать, стабилизировать, либо свести к минимуму возникновение нежелательных факторов, возникающих в результате воздействия окружающей или проводимой среды, а также в результате работы самого устройства. Такими факторами могут быть напряжения в металле, опорах трубопровода и пр.

Виды компенсаторов

В зависимости от рабочих параметров эксплуатации и среды применяют следующие виды компенсаторов: компенсатор сильфонный, компенсатор резиновый, компенсатор тканевый, компенсатор фторопластовый, компенсатор линзовый, компенсатор сальниковый.

Основными параметрами для выбора компенсатора являются: температура среды, давление, агрегатное состояние перемещаемой среды

Тканевые компенсаторы

Тканевый компенсатор

Основным местом применения тканевых компенсаторов являются системы с газообразными средами. Температура газов может достигать 1200°С.

Компенсаторы изготавливаются из одного или нескольких слоев изоляционных и газоплотных материалов. Материалы собираются вместе в так называемый «сэндвич». Газоплотные материалы изготавливаются из различных покрытий и имеют высокую химическую стойкость, порой превосходящую нержавеющую сталь. Существуют различные типы креплений компенсатора, например крепление под хомут или прижимной типа 000, фланцевое крепление тип 101 Для температур свыше 500 °С применяются конструкции с внутренней изоляцией.

Резиновые компенсаторы

Резиновый компенсатор трубопровода

Основным местом применения резиновых компенсаторов являются трубопроводные системы с жидкими средами. Температура жидкости может достигать 200 С. Стандартные исполнения имеют стойкость до 100 −110 С. Основным способом подсоединения к трубопроводу является фланцевое соединение. Для повышения устойчивости к внешнему воздействию резиновый компенсатор может быть упакован в специальный огнестойкий чехол.

Компенсаторы изготавливаются из различных эластомеров (резин) и имеют кордовое усиление. В зависимости от проходящей жидкости подбирается подходящий эластомер. Наиболее распространенным материалами являются EPDM (этилен-пропиленовый каучук) и NBR (бутадиен-нитрильный каучук). Резиновые компенсаторы EPDM используются для водной рабочей среды, NBR — для нефтепродуктов и их производных. Для химически агрессивных сред (кислоты, щелочи и пр.) используется специальный материал — гипалон (сульфохлорированный полиэтилен). Для повышения устойчивости к различным химически активным средам может быть использовано специальное тефлоновое напыление. Для повышения надежности гибкого соединения используются различные угловые ограничители и соединительные тяги.

Наиболее широкое распространение резиновые компенсаторы получили в водопроводах, канализационных трубопроводах, а также в нефтехимической промышленности. Большинство производителей насосного оборудования рекомендуют устанавливать резиновые компенсаторы между насосом и трубопроводом, что позволяет скомпенсировать вибрацию, исходящую от насоса, тем самым повысив надежность и срок службы всей системы, в том числе и другого оборудования, подключенного к трубопроводу. В последнее время у некоторых европейских производителей в линейке появились резиновые компенсаторы с особым составом резины, который позволяет применять их для водопроводов питьевой воды, а также в пищевой промышленности.

Резиновый компенсатор

Сильфонные компенсаторы

Основным местом применения сильфонных компенсаторов являются системы с жидкими и парообразными средами, работающие при высоких давлениях и высоких температурах. Сильфонные компенсаторы предназначены для компенсации температурных расширений, несоосностей трубопроводов и вибрационных воздействий. Широко применяются в энергетике, химической, нефтехимической, нефтеперерабатывающей, газовой и других отраслях промышленности. Основной элемент сильфонного компенсатора — сильфон — упругая асимметричная гофрированная металлическая оболочка. Конструкция сильфона позволяет компенсатору под действием продольных (ход), поперечных (сдвиг) и угловых (поворот) моментов растягиваться, сжиматься, деформироваться в поперечном направлении и изгибаться со значительными перемещениями (до десятков сантиметров и градусов), сохраняя герметичность[1]. Вид деформации сильфона в процессе эксплуатации определяется конструктивным исполнением компенсатора.

Сальниковые компенсаторы

Сальниковые компенсаторы предназначены для компенсации температурных деформаций трубопроводов водяных и паровых теплосетей, с параметрами воды и пара: рабочем давлении до 2,5 МПа (25 кгс/см2), температуре воды до 200˚С, температуре пара до 300˚С. Сальниковые компенсаторы односторонние изготавливаются для условных проходов Ду от 100 до 1400 мм, а сальниковые компенсаторы двухсторонние — для Ду от 100 до 800 мм. Сальниковые компенсаторы применяются при строительстве тепловых сетей в районах с расчетной температурой наружного воздуха не ниже минус 40˚С. Компенсирующая способность компенсаторов сальниковых варьируется в зависимости от условного прохода: от 200 до 450 мм — для односторонних компенсаторов и от 400 до 800 мм для двухсторонних компенсаторов.

Сальниковые компенсаторы изготавливаются по серии 4.903-10 выпуск 7 и по серии 5.903-13 выпуск 4

Линзовые компенсаторы

Компенсаторы линзовые ПГВУ круглые и прямоугольные предназначены для компенсации температурных удлинений круглых и прямоугольных газовоздуховодов (ПГВУ) котельных установок. Компенсаторы линзовые ПГВУ применяется в неагрессивных и малоагрессивных средах с избыточным давлением до 1500 мм вод. ст. (0.015МПа) и температурой среды от −20 до 425°С. Компенсаторы круглые линзовые ПГВУ изготавливаются на Ду от 150 до 6000 мм, одно-, двух-, трех- и четырехлинзовыми, в соответствии с требуемой компенсирующей способностью: Компенсаторы прямоугольные линзовые ПГВУ изготавливаются размерами от 300х400 до 7850×8000 мм, одно-, двух-, трех- и четырехлинзовыми, в соответствии с требуемой компенсирующей способностью: Компенсаторы круглые осевые линзовые изготовленные по ГОСТ 34-10-569-93 предназначены для компенсации температурных изменений длины трубопроводов на которые распространяются требования «Правил устройства и безопасной эксплуатации трубопроводов пара и горячей воды», работающих в условиях неагрессивных и малоагрессивных сред, с условным давлением до 1,6МПа (16кгс/см2) и температурой до 300˚С и для Ду ≤ 400 мм температурой до 425˚С. Компенсаторы изготавливаются на Ду от 100 до 2200 мм, условные давления Ру 0,6МПа, 1,0МПа и 1,6МПа, одно-, двух-, трех- и четырехлинзовыми, в соответствии с компенсирующей способностью.

Видео по теме

Примечания

  1. ↑ Справочник «Промышленное газовое оборудование» / Под ред. Е. А. Карякина. — 5-е. — Саратов: Научно-исследовательский центр промышленного газового оборудования «Газовик», 2010. — 990 с. — ISBN 978-5-9758-1209-4.

См. также

wiki2.red

Компенсаторы тепловых сетей, расчет

Компенсаторы тепловых сетей. В данной статье речь пойдет о выборе и расчете компенсаторов тепловых сетей.

Для чего же нужны компенсаторы. Начнем с того, что при нагревании любой материал расширяется, а, значит трубопроводы тепловых сетей, удлиняются при повышении температуры теплоносителя проходящего в них. Для безаварийной работы тепловой сети используются компенсаторы, которые компенсируют удлинение трубопроводов при их сжатии и растяжении, во избежание защемления трубопроводов и их последующей разгерметизации.

Стоит отметить, что для возможности расширения и сжатия трубопроводов проектируются не только компенсаторы, но и система опор, которые, в свою очередь, могут быть как «скользящими» так и «мертвыми». Как правило,в России регулирование тепловой нагрузки качественное — то есть, при изменении температуры окружающей среды, температура на выходе из источника теплоснабжения изменяется. За счет качественного регулирования подачи тепла — количество циклов расширения- сжатия трубопроводов увеличивается. Ресурс трубопроводов снижается, опасность защемления — возрастает. Количественное регулирование нагрузки заключается в следующем — температура на выходе из источника теплоснабжения постоянна. При необходимости изменения тепловой нагрузки — изменяется расход теплоносителя. В этом случае, металл трубопроводов тепловой сети работает в более легких условиях, циклов расширения- сжатия минимальное количество, тем самым увеличивается ресурс трубопроводов тепловой сети. Следовательно, прежде чем выбирать компенсаторы, их характеристики и количество нужно определиться с величиной расширения трубопровода.

Формула 1:

δL=L1*a*(T2-T1)где

δL — величина удлинения трубопровода,

мL1 — длина прямого участка трубопровода (расстояние между неподвижными опорами),

мa — коэффициент линейного расширения (для железа равен 0,000012), м/град.

Т1 — максимальная температура трубопровода (принимается максимальная температура теплоносителя),

Т2 — минимальная температура трубопровода (можно принять минимальная температура окружающей среды), °С

Для примера рассмотрим решение элементарной задачи по определению величины удлинения трубопровода.

Задача 1. Определить на сколько увеличится длина прямого участка трубопровода длиной 150 метров, при условии что температура теплоносителя 150 °С, а температура окружающей среды в отопительный период -40 °С.

δL=L1*a*(T2-T1)=150*0,000012*(150-(-40))=150*0,000012*190=150*0,00228=0,342 метра

Ответ: на 0,342 метра увеличится длина трубопровода.

После определения величины удлинения, следует четко понимать когда нужен а когда не нужен компенсатор. Для однозначного ответа на данный вопрос нужно иметь четкую схему трубопровода, с ее линейными размерами и нанесенными на нее опорами. Следует четко понимать, изменение направления трубопровода способно компенсировать удлинения, другими словами поворот с габаритными размерами не менее размеров компенсатора, при правильной расстановке опор, способен компенсировать тоже удлинение,что и компенсатор.

И так, после того, как мы определии величину удлинения трубопровода можно переходить к подбору компенсаторов, необходимо знать, что каждый компенсатор имеет основную характеристику — это величину компенсации. Фактически выбор количества компенсаторов сводится к выбору типа и конструктивных особенностей компенсаторов.Для выбора типа компенсатора необходимо определить диаметр трубы тепловой сети исходя из пропускной способности труби необходимой мощности потребителя тепла.

Таблица 1. Соотношение П- образных компенсаторов изготовленных из отводов.


Таблица 2. Выбор количества П- образных компенсаторов из расчета их компенсирующей способности.


Задача 2 Определение количества и размеры компенсаторов.

Для трубопровода диаметром Ду 100 с длиной прямого участка 150 метров, при условии, что температура носителя 150 °С, а температура окружающей среды в отопительный период -40 °С определить количество компенсаторов .бL=0,342 м (см. Задача 1).По Таблице 1 и Таблице 2 определяемся с размерами п образных компенсаторов (с размерами 2х2 м может компенсировать 0,134 метра удлинения трубопровода) , нам нужно компенсировать 0,342 метра, следовательно Nкомп=бL/∂х=0,342/0,134=2,55 , округляем до ближайшего целого числа в сторону увеличения и того — требуется 3 компенсатора размерами 2х4 метра.

В настоящее время все большее распространение получают линзовые компенсаторы, они значительно компактнее п — образных, однако, ряд ограничений не всегда позволяет их использование. Ресурс п- образного компенсатора  значительно выше чем линзового, из-за плохого качество теплоносителя. Нижняя часть линзового компенсатора как правило «забивается» шламом, что способствует развитию стояночной коррозии металла компенсатора.

teplo-energetika.ru

назначение, виды, материалы изготовления и особенности врезки

Содержание статьи:

Канализационный компенсатор предназначен для ремонта трубопровода без разбора всей магистрали. Это устройство относится к переходникам и используется для разных нужд – от компенсации линейного температурного изменения до состыковки трубных отрезков с разными диаметрами.

Предназначение и технические характеристики

Основное назначение компенсационного патрубка в регулировании линейных удлинений трубопровода. При перепадах давления или температуры трубные отрезки начинают расширяться и удлиняться. Из-за невозможности трансформироваться в полной мере появляются механические повреждения. Этот момент особенно актуален, если часть коммуникаций зашита в стену или утоплена в бетонной стяжке. С помощью компенсатора значительно увеличивается ее прочность и защита от разрывов.

Есть у фитинга и другое назначение. Он придает нужный наклон горизонтальным участкам при унификации сточных веток из разных материалов.

Обустройство фитинга зачастую требуется в санузлах или ваннах, когда во время ремонтных работ уровень пола меняется. В результате требуется опустить или приподнять крестовину на стояке, чтобы создать верный угол отведения стоков. Также фитинги используют, чтобы соединить трубы с разными сечениями.

Устройство позволяет заменить поврежденный участок без полного демонтажа системы коммуникаций. Оно поможет, если необходимо «врезаться» в существующую канализационную сеть, либо заменить ее фрагмент. Фитинг снижает шумовые эффекты, вибрацию, силу гидроударов и риск развития электролитической коррозии.

Компенсационные устройства могут быть разной формы – прямоугольной или изогнутой. Стандартное изделие имеет следующие технические показатели:

  • длина – 280 мм;
  • диаметр (снаружи/изнутри) – 115/110 мм;
  • толщина стен – 3,2 мм;
  • максимальный температурный режим при длительном воздействии – 95 градусов тепла.

Эти характеристики могут меняться в зависимости от предназначения фитинга. Гарантийный срок изделий обычно два года, но производители декларируют, что фитинговый элемент способен прослужить полвека.

Не рекомендовано использовать устройство под напором. Устанавливается оно только на внутренних магистралях канализации либо на «горячих» водопроводных трубах. Необходимость установки либо отсутствие компенсирующей муфты на канализационных стояках указывается в инженерном проекте здания.

Виды компенсаторов и материалы изготовления

Компенсатор для канализации ПВХ

Конструктивно устройство – это патрубок на одном торце которого расположен раструб с кольцевым уплотнителем из резины. Другой торец предполагает муфтовое соединение.

Иногда устройства оснащают фланцами или резьбой. В первом случае компенсаторы подходят для магистралей сечением от 63 до 110 мм, во втором – менее 63 мм. Для соединения элементов канализационной сети из различных материалов выбираются резьбовые компенсаторы в комплекте с полимерной муфтой.

Современные канализационные системы чаще всего исполняют из полимеров. Компенсационные фитинги бывают:

  • полипропиленовые;
  • полиэтиленовые;
  • поливинилхлоридные.

Пользуются спросом изделия из полиэтилена и полипропилена. Они дают возможность решить большинство инженерных проблем, связанных с монтажом и использованием канализационных сетей. Однако ПВХ-устройства бывают гофрированными, что повышает их компенсационные качества.

Есть гибкие изделия и модели изогнутой конфигурации, их область применения – монтаж или ремонт поворотных участков канализации.

Полимерные компенсаторы устойчивы к коррозии и просты в монтаже. Однако пластиковое устройство абсолютно не подходит для чугунного трубопровода. Здесь используют изделия также из чугуна. Они хоть и весят больше, но намного прочнее полимера.

Для систем, проводящих химически активные стоки, используют устройства из особой резины. Чтобы придать им еще большую устойчивость, покрывают тефлоновым напылением. Основным способом подсоединения к трубопроводу является фланцевое соединение.

Выбирая компенсационный патрубок, нужно учесть толщину стенок магистральных труб, их сечение, а перед установкой – вычислить длину трубопровода, чтобы рассчитать величину давления на участках сочленения.

Особенности врезки

Перед тем как ремонтировать канализацию в квартире, нужно предупредить соседей по стояку, чтобы они не пользовались сантехническими приборами. После этого собрать все нужные инструменты и материалы (компенсатор, герметик, ножовку, напильник, а при сварочной методике – паяльный аппарат). Затем отключают водопровод и расчищают техническую зону от ненужных предметов.

Врезка фитинга из полимеров доступна и непрофессионалу, если действовать последовательно:

  1. Подрезается часть трубы, к которой будет присоединен канализационный патрубок. Срез обрабатывается напильником или крупной наждачкой от заусенцев.
  2. Верхняя часть трубы покрывается силиконом.
  3. Надевается компенсатор до упора.
  4. Покрывается герметиком нижняя часть стояка.
  5. Закрепляется устройство с заводом в раструб трубопровода, где проверяется наличие резинового уплотнения.
  6. Подключается система и закрепляется стояк.

Надежное крепление патрубка исполняется путем жесткой фиксации к стене разъемным хомутом на шпильке. Крепеж ставится на трубу выше компенсационного устройства вплотную к нему.

Присоединение при помощи пайки

Пайка пластиковых труб

Чтобы повысить прочность соединения полимерных трубных отрезков с толстыми стенками, используется сварная методика врезки.

Для качественного соединения потребуется сварочный аппарат для пайки полипропилена. Процесс происходит следующим образом:

  1. Торец компенсационного устройства, входящий в пластиковую трубу, тщательно зачищают от заусенцев и неровностей.
  2. Паяльный аппарат подключают к электросети и нагревают до температуры примерно 260 градусов. Когда прибор готов к сварке, его индикатор погаснет.
  3. На насадки сварочного аппарата, подходящие по сечению, надевают подготовленный конец трубы и торец компенсатора. Когда они размягчатся, их соединяют.

Пластиковые детали объединяются настолько крепко, что их молекулы проникают в слои друг друга. Это называется методом диффузии. Во время застывания обе детали должны быть жестко зафиксированы. Не следует вращать или передвигать их, иначе шов утратит герметичность.

Нюансы монтажных работ

Чтобы установить компенсатор правильно на канализационную трубу, следует учесть определенные нюансы монтажа:

  • распил труб производят мелкозубчатой ножовкой по металлу, так на разрезах будет меньше заусенцев;
  • шлифовку и герметизацию проводят только после очистки и высушивания деталей;
  • все образовавшиеся полости закрывают силиконовым герметиком.

Силиконовый состав для герметизации обладает повышенной эластичностью и не станет мешать компенсационным подвижкам, а также сохранит целостность конструкции при перепадах температур.

Компенсатор позволяет сделать ремонт канализационной системы без полного демонтажа. Установка полимерных моделей не составит труда. Для монтажа устройства не потребуется даже сантехнический опыт.

strojdvor.ru

Правила по монтажу компенсаторов

Правила по монтажу и установке компенсаторов.

1. Сильфонные, линзовые и сальниковые компенсаторы следует монтировать в собранном виде.
2. Осевые сильфонные, линзовые и сальниковые компенсаторы следует устанавливать соосно с трубопроводами.

Допускаемые отклонения от проектного положения присоединительных патрубков компенсаторов при их установке и сварке должны быть не более указанных в технических условиях на изготовление и поставку компенсаторов.

3. При установке линзовых, волнистых и сальниковых компенсаторов, а также арматуры направление стрелки на их корпусе должно совпадать с направлением движения вещества в трубопроводе.

4. При монтаже сильфонных и линзовых компенсаторов следует исключить скручивающие нагрузки относительно продольной оси и провисание под действием собственной массы и массы примыкающих трубопроводов, а также обеспечить защиту гибкого элемента от механических повреждений и попадания искр при сварке.

5. Монтажная длина сильфонных, линзовых и сальниковых компенсаторов должна быть принята по рабочим чертежам с учетом поправки на температуру наружного воздуха при монтаже.

6. Для компенсации температурных деформаций трубопроводов при монтаже П-образные, сильфонные, линзовые и сальниковые компенсаторы должны устанавливаться с растяжением (сжатием) на указанную в проекте величину. Если температура воздуха в момент монтажа отличается от принятой в проекте, то величину растяжения (сжатия) компенсатора следует увеличить (если в проекте указано растяжение) или уменьшить (если указано сжатие) на значение (мм):

в=aL(tп+tм)

а- температурный коэффициент линейного расширения металла трубопровода,°С-1, принимаемый для углеродистых и низколегированных сталей 0,012 и высоколегированных — 0,017;
L- расчетная длина участка трубопровода, м;
tп — принятая в проекте температура воздуха в момент монтажа,°С;
tм— фактическая температура воздуха в момент монтажа,°С.

7. При монтаже сальниковых компенсаторов должны быть обеспечены свободное перемещение подвижных частей и сохранность набивки.
8. Монтаж односекционных осевых сильфонных, линзовых, сальниковых и П-образных компенсаторов с приспособлениями для растяжения производят в такой последовательности (черт.1,а):

Растяжение компенсаторов до монтажной длины следует производить с помощью приспособлений, предусмотренных конструкцией компенсатора или натяжными монтажными устройствами.

Черт.1. Последовательность операций (1-5) при монтаже компенсаторов:

а — П-образных, осевых сильфонных односекционных, линзовых и сальниковых с приспособлением для растяжки;
б — то же без приспособления для растяжки;
в — П-образного компенсатора при групповой прокладке.

а) компенсатор одной стороной присоединяется сваркой или на фланце к трубопроводу;
б) участок трубопровода с присоединенным компенсатором устанавливается в направляющих и скользящих опорах и закрепляется в неподвижной опоре.

Примечание.

В зависимости от условий монтажа (например, для П-образных компенсаторов) могут производиться сначала установка трубопровода в направляющих и скользящих опорах и закрепление его в неподвижной опоре, а затем присоединение к этому участку компенсатора;

в) с помощью распорных приспособлений компенсатор подвергается растяжению на проектную величину. Допускается производить предварительную растяжку компенсатора до его присоединения к трубопроводу;

г) участок трубопровода с другой стороны, свободно лежащий в направляющих и скользящих опорах, подтягивается к свободному стыку компенсатора и присоединяется к нему сваркой или на фланце;

д) присоединяемый участок трубопровода закрепляется в другой неподвижной опоре;

е) с компенсатора снимается устройство для предварительной растяжки.

11. Монтаж осевых сильфонных компенсаторов без приспособления для растяжения производят в такой последовательности (см. черт.15,б):

а) участок трубопровода с одной стороны от компенсатора устанавливается в направляющих и скользящих опорах и закрепляется в неподвижной опоре;

б) участок трубопровода с другой стороны от компенсатора устанавливается так, чтобы расстояние между торцами участков трубопровода равнялось монтажной длине компенсатора, и закрепляется в другой неподвижной опоре. Монтажная длина компенсатора должна быть равна его строительной длине (компенсатор разгружен) плюс предварительное натяжение (сжатие)

в) компенсатор присоединяется к одному из участков трубопровода;

г) с помощью монтажных приспособлений компенсатор подвергается растяжке и присоединяется к другому участку трубопровода;

д) монтажные приспособления снимаются.

12. При групповом расположении П-образных компенсаторов (см. черт.15,в) параллельно прокладываемых трубопроводов растяжку компенсаторов следует производить натяжением трубопровода в холодном состоянии. В этом случае растяжку П-образного компенсатора следует выполнять после окончания монтажа трубопровода, контроля качества сварных стыков (кроме замыкающего, используемого для натяжения) и закрепления трубопровода в неподвижных опорах.

  1. Сварной стык, у которого следует производить растяжку компенсатора, указывают в проекте. Если такого указания нет, то во избежание снижения компенсационной способности компенсатора и его перекоса следует использовать стык, расположенный на расстоянии не менее 20 Дн от оси компенсатора
  2. В качестве стяжного устройства для натяжения используют съемные или приварные хомуты с монтажными удлиненными шпильками и гайками.
  3. При групповом расположении П-образных компенсаторов последовательность монтажа следующая:

а) участки трубопровода и П-образный компенсатор устанавливают на опоры. В зазор, оставленный для натяжения стыка, вставляется деревянная проставка шириной, равной величине растяжения;

б) компенсатор с помощью сварки обеими сторонами присоединяется к соответствующим участкам трубопровода;

в) участок трубопровода закрепляется в неподвижных опорах;

г) проставка удаляется, осуществляется предварительное натяжение компенсатора, стык соединяется сваркой;

д) монтажные приспособления удаляются.

  1. Для трубопроводов тепловых сетей согласно требованиям СНиП 3.05.03-85 растяжение компенсатора натяжением следует выполнять одновременно с двух сторон в стыках, расположенных на расстоянии не менее 20 Дн и не более 40 Дн от оси симметрии компенсатора
  2. О растяжении (сжатии) компенсатора должен быть составлен акт по форме приложения 6 СНиП 3.01.01-85.
  3. П-образные компенсаторы следует устанавливать с соблюдением общего уклона трубопровода, указанного в проекте.
  4. Линзовые, волнистые и сальниковые компенсаторы рекомендуется устанавливать в узлах и блоках трубопроводов при их сборке, применяя при этом дополнительные жесткости для предохранения компенсаторов от деформации и повреждения во время транспортирования, подъема и установки. По окончании монтажа временно установленные жесткости удаляют.
  5. При монтаже вертикальных участков трубопроводов следует исключить возможность сжатия компенсаторов под действием массы вертикального участка трубопровода. Для этого параллельно компенсаторам на трубопроводах следует приваривать по три скобы, которые срезают по окончании монтажа.
  6. Для определения правильного положения арматуры, устанавливаемой на трубопроводе, необходимо руководствоваться указаниями каталогов, технических условий и рабочих чертежей. Положение осей штурвалов определяется проектом.
  7. Трубопроводную арматуру надлежит монтировать в закрытом состоянии. Фланцевые и приварные соединения арматуры должны быть выполнены без натяжения трубопровода. Во время сварки приварной арматуры ее затвор следует открыть до отказа, чтобы предотвратить заклинивание его при нагревании корпуса.

 

gkter71.ru

Компенсатор сильфонный для систем отопления (теплосистем) BKB, КСОТ, КСОТМ


СИЛЬФОННЫЙ КОМПЕНСАТОР (ДЛЯ СИСТЕМ ОТОПЛЕНИЯ И ВОДОСНАБЖЕНИЯ)

Данный вид сильфонных компенсаторов используются в трубопроводных линиях горячей и холодной воды многоэтажных зданий, с целью поглощения движений расширения и сжатия, происходящих от перепадов температур. Посредством открытия и закрытия сильфона компенсатора, подсоединяемого к трубам в вертикальном виде, обеспечивается поглощение расширения и сжатия и тем самым – безопасная работа. В линиях нагревательных установок 90/70 c, на каждом этаже образуются расширения приблизительно на 3 мм. Расширения в линиях 7-этажных зданий (21 м) устраняются посредством вентиляционных отверстий и колен основной линии. В зданиях, состоящих более чем из 7 этажей, необходимо применение трубных компенсаторов, которые устанавливаются через каждые 30 метров (10 этажей).

Виды соединений: Резьбовые соединения и приварные патрубки

Номинальные диаметры: Резьбовые соединения 1/2’’ — 2’’ и приварные патрубки: от DN15 до DN200
Значения давления и температуры: Давление: PN 16, температура: от -80 до 110 С.

Компенсаторы для труб отопления (Трубные компенсаторы) новой серии, разработаны для трубопроводных линий горячей и холодной воды многоэтажных зданий. Устройство предназначено для поглощения осевых движений трубопровода (расширения и сжатия), происходящих в результате перепада температур как внешней, так и проводимой среды, а также изменения величины давления в эксплуатируемой системе. Компенсация изменения длинны происходит посредством сжатия или растяжения металлического сильфона из нержавеющей стали, который поглощает возникающие изменения (в пределах расчетной компенсирующей способности), предохраняя трубопровод от разрушения и деформации.

При разработке изделий учтены требования международных стандартов для устройств данного типа, а также специфика их применения и особенности эксплуатации. Современные методы производства и проектирования, позволили создать компенсаторы для систем отопления, обладающие большим ресурсом, компактными размерами, надежной и функциональной конструкцией. Так как установка зачастую производится на трубах отопления в жилых и офисных помещениях, особое внимание было уделено дизайну изделия, а также качеству обработки патрубков и кожуха. Благодаря этому трубные компенсаторы не портят внешний вид помещений, и не требуют установки декоративных коробов, позволяющих скрыть установленные устройства. Кроме того, тщательно проработанная конструкция и применение оптимальных типов материалов, в соответствии с современными требованиями и технологиями, позволили значительно снизить цену трубных компенсаторов, по сравнению с аналогичными по назначению устройствами, устаревших конструкций, распространенными на рынке России, на сегодняшний день. Благодаря тому, что основная масса продукции находится в наличии на складе, цена на компенсаторы отопления сохраняется стабильной, даже при неблагоприятных экономических условиях.

Применение компенсаторов в трубопроводных системах многоэтажных домов.


Необходимость применения компенсаторов для труб отопления многоэтажных домов обусловлена тем, что в линиях отопительной системы, с температурой проводимой среды 60С-90С, на каждом этаже могут происходить изменения длинны трубы, приблизительно на 3 мм. Соответственно расширения, возникающие в линиях 7-этажных зданий (приблизительно 21м) могут достигать величин более 20мм, что неминуемо приведет к деформации трубы. В зданиях, этажность которых не превышает 7 этажей эту проблему можно устранить, предусмотрев возможность свободного осевого перемещения трубы, и наличие колен в верхней и нижней точках, которые и будут выполнять роль компенсационного устройства. Но для многоэтажных зданий (более 7 этажей, или 21 метра) такое решение не подходит. Поэтому в высотных домах применяются сильфонные компенсаторы для систем отопления, устанавливаемые через каждые 30 метров (10 этажей).

Пример деформации трубы системы теплоснабжения, в зависимости от величины воздействующих температур

Длина трубы, m

60°C

70°C

80°C

90°C

100°C

20

13.2 mm

15.6 mm

17.8 mm

20.2 mm

22.6 mm

25

16.5 mm

19.5 mm

22.3 mm

25.3 mm

28.3 mm

30

19.8 mm

23.4 mm

26.7 mm

30.3 mm

33.9 mm

35

23.1 mm

27.3 mm

31.2 mm

35.4 mm

39.6 mm

40

26.4 mm

31.2 mm

35.6 mm

40.4 mm

45.2 mm

45

29.7 mm

35.1 mm

40.1 mm

45.5 mm

50.9 mm

50

33.0 mm

39.0 mm

44.5 mm

50.5 mm

56.5 mm

55

36.3 mm

42.9 mm

49.0 mm

55.6 mm

62.2 mm

60

39.6 mm

46.8 mm

53.4 mm

60.6 mm

67.8 mm

65

42.9 mm

50.7 mm

57.9 mm

65.7 mm

73.5 mm

70

46.2 mm

54.6 mm

62.3 mm

70.7 mm

79.1 mm

75

49.5 mm

58.5 mm

66.8 mm

75.8 mm

84.8 mm

80

52.8 mm

62.4 mm

71.2 mm

80.8 mm

90.4 mm

85

56.1 mm

66.3 mm

75.7 mm

85.9 mm

96.1 mm

90

59.4 mm

70.2 mm

80.1 mm

90.9 mm

101.7 mm

95

62.7 mm

74.1 mm

84.6 mm

96.0 mm

107.4 mm

100

66.0 mm

78.0 mm

89.0 mm

101.0 mm

113.0 mm

 

В большинстве проектов отопительных систем многоэтажных домов предполагается вертикальная установка таких устройств на трубах. Однако особенности конструкции позволяют устанавливать сильфонный компенсатор для труб отопления в любом пространственном положении, без потери рабочих характеристик, при условии соблюдения рекомендаций завода производителя.

Одними из важнейших конструктивных элементов тепловой сети, включающей в себя компенсаторы на стояках отопления, являются неподвижные опоры. Они необходимы для фиксации положения и разделения трубопровода на участки, в пределах которых будет функционировать каждый из компенсаторов.

Неподвижные опоры необходимо устанавливать на трубопроводах при всех способах прокладки. От правильного размещения опор, во многом зависит величина температурных деформаций и напряжений, которые будут возникать в трубах. Неподвижная фиксация трубопровода в определенных точках, предотвращает изменение длинны сильфона компенсаторов, сверх допустимых значений.

В подавляющем большинстве случаев неподвижные опоры являются узлами, на которые приходятся самые большие нагрузки. Наибольшее значение имеют силы внутреннего давления. Поэтому для облегчения конструкции, опоры стараются расположить на трассе таким образом, чтобы внутренние давления в трубопроводе были уравновешены и не передавались на опору. Те опоры, на которые не передаются реакции внутреннего давления, называются разгруженными неподвижными опорами. Те же опоры, которые должны воспринимать неуравновешенные силы внутреннего давления, называются неразгруженными опорами.

Конструкция неподвижных опор рассчитывается с учетом воспринимаемых усилий: реакции подвижных и направляющих опор; реакции компенсаторов на возникающие деформации; неуравновешенных сил внутреннего давления; гравитационных нагрузок.

В зависимости от конструкции, неподвижные опоры разделяются на: лобовые, щитовые и хомутовые. Кроме того существуют промежуточные и концевые опоры. На промежуточную опору действуют усилия с обеих сторон, на концевую — с одной. Тип неподвижной опоры и ее конструкцию определяют на основании усилий, действующих на нее.

Направляющие опоры, регулируют перемещения теплопроводов в тепловых сетях при их температурных деформациях. Такие опоры необходимы для того, чтобы обеспечить свободное осевое перемещение трубы, при ее расширении или сжатии. Возникающие изменения будет поглощать компенсатор для труб отопления, установленный на данном участке.

Направляющие опоры должны соответствовать проектной документации и требованиям, предъявляемым к трубопроводу, на котором они установлены, так как неправильно выбранный тип опор, может вызывать защемление и излишние напряжения, и перекосы в трубе.

gk-vega.ru

Компенсатор П-образный: описание, характеристики и размеры

На сегодняшний день применение компенсаторов П-образного типа или любого другого осуществляется в том случае, если вещество, проходящее через трубопровод, характеризуется температурой 200 градусов по Цельсию или выше, а также высоким давлением.

Общее описание компенсаторов

Металлические компенсаторы — это устройства, которые предназначены для того, чтобы скомпенсировать либо уравновесить влияние разнообразных факторов на работу трубопроводных систем. Другими словами, основное предназначение этого изделия — это обеспечить отсутствие повреждений трубы при транспортировке веществ по ней. Такие сети, обеспечивающие транспортировку рабочей среды, практически постоянно подвергаются таким негативным влияниям, как температурное расширение и давление, вибрации, а также оседание фундамента.

Именно для того, чтобы устранить эти дефекты, необходимо устанавливать гибкие элементы, которые стали называть компенсаторами. П-образный тип — это лишь один из многих видов, который применяется в этих целях.

компенсатор п образный

Что представляют собой П-образные элементы

Сразу стоит отметить, что П-образный тип деталей — это наиболее простой вариант, который помогает решить проблему компенсации. Эта категория устройств имеет наиболее широкий диапазон применения по температурным показателям, а также по показателям давления. Для изготовления П-образных компенсаторов используется либо одна длинная труба, которую сгибают в нужных местах, либо прибегают к свариванию нескольких гнутых, крутоизогнутых или сварных отводов. Тут стоит отметить, что некоторые из трубопроводов необходимо периодически разбирать для очистки. Для таких случаев компенсаторы этого типа изготавливаются с присоединительными концами на фланцах.

п образные компенсаторы

Так как компенсатор П-образного типа является наиболее простой конструкцией, он имеет ряд определенных недостатков. К ним можно отнести большой расход труб для создания элемента, большие габариты, необходимость в монтаже дополнительных опор, а также наличие сварных соединений.

Требования компенсаторов и стоимость

Если рассматривать установку компенсаторов П-образного типа с точки зрения материальных средств, то наиболее невыгодным будет их монтаж в системах, имеющих большой диаметр. Расход труб и материальных средств на создание компенсатора будет слишком велик. Здесь можно сравнить данное оборудование с сильфонным компенсатором. Действие и параметры этих элементов примерно одинаковые, а вот стоимость монтажа у П-образного примерно в два раза больше. Основная причина такого расхода денежных средств в том, что необходимо множество материалов для постройки, а также монтаж дополнительных опор.

Для того чтобы П-образный компенсатор смог полностью нейтрализовать давление на трубопровод, откуда бы оно ни исходило, необходимо монтировать такие приспособления в одной точке с разницей в 15-30 градусов. Данные параметры подходят лишь в том случае, если температура рабочего вещества внутри сети не будет превышать 180 градусов по Цельсию и не будет опускаться ниже 0. Только в этом случае и при таком монтаже устройство сможет компенсировать напряжение на трубопровод от подвижек грунта с любой точки.

расчет п образного компенсатора

Расчеты для установки

Расчет П-образного компенсатора заключается в том, чтобы выяснить, каких минимальных размеров устройства хватит на то, чтобы скомпенсировать давление на трубопровод. Для того чтобы проводить расчет, используют определенные программы, однако эту операцию можно выполнить даже через онлайн-приложения. Здесь главное — придерживаться определенных рекомендаций.

  • Максимальное напряжение, которое рекомендуется принимать для спинки компенсатора, находится в пределах от 80 до 110 МПа.
  • Также имеется такой показатель, как вылет компенсатора к наружному диаметру. Данный параметр рекомендуется принимать в пределах H/Dn=(10 — 40). При таких значениях необходимо учитывать, что 10Dn будет соответствовать трубопроводу с показателем 350DN, а 40Dn — трубопроводу с параметрами 15DN.
  • Также при расчете П-образного компенсатора необходимо учитывать ширину устройства к его вылету. Оптимальными значениями считаются L/H=(1 — 1,5). Однако здесь допускается введение и других числовых параметров.
  • Если при проведении расчета выходит так, что для данного трубопровода необходимо создавать слишком большой компенсатор этого типа, то рекомендуется подобрать другой вид устройства.
компенсатор п образный труб

Ограничения при расчетах

Если расчеты проводит не опытный специалист, то лучше ознакомиться с некоторыми ограничениями, которые нельзя превышать при вычислениях или введении данных в программу. Для П-образного компенсатора из труб имеются следующие ограничения:

  • Рабочее вещество может быть либо водой, либо паром.
  • Сам по себе трубопровод должен быть выполнен только из стальной трубы.
  • Максимальный температурный показатель для рабочей среды — 200 градусов по Цельсию.
  • Максимальное давление, которое наблюдается в сети, не должно превышать 1,6 МПа (16 бар).
  • Установка компенсатора может осуществляться лишь на горизонтальный тип трубопровода.
  • Размеры П-образного компенсатора должны быть симметричными, а его плечи одинаковыми.
  • Сеть трубопровода не должна испытывать дополнительных нагрузок (ветровых или любых других).
размер п образного компенсатора

Установка устройств

Кроме рекомендаций, касающихся расчетов, имеются также советы по монтажу компенсаторов.

Во-первых, располагать неподвижные опоры далее чем на 10DN от самого компенсатора не рекомендуется. Это обусловлено тем, что передача момента защемления опоры будет сильно снижать гибкость конструкции.

Во-вторых, настоятельно рекомендуется разбивать участки от неподвижной опоры до П-образного компенсатора одинаковой длины, на протяжении всей сети. Также здесь важно отметить, что смещение места установки приспособления от центра трубопровода к одному из его краев увеличит силу упругой деформации, а также напряжения примерно на 20-40% от тех значений, которые можно получить, если монтировать конструкцию посредине.

растяжка п образных компенсаторов

В-третьих, для того чтобы сильнее увеличить компенсирующую способность, используется растяжка П-образных компенсаторов. В момент установки конструкция будет испытывать изгибающуюся нагрузку, а при нагреве будет принимать ненапряженное состояние. Когда температура достигнет максимального значения, то и устройство придет снова в напряжение. На основе этого, был предложен способ растягивания. Предварительная работа заключается в том, чтобы растянуть компенсатор на величину, которая будет равна половине теплового удлинения трубопровода.

Плюсы и минусы конструкции

Если говорить в общем об этой конструкции, то можно с уверенностью сказать, что она обладает такими положительными качествами, как простота в производстве, высокая способность компенсации, отсутствие необходимости в обслуживании, усилия, которые передаются на опоры, незначительные. Однако среди явных недостатков выделяются следующие: большой расход материала и большое количество пространства, занимаемого конструкцией, высокий показатель гидравлического сопротивления.

fb.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *