14.04.2021

Задвижка электроприводная – Задвижка электроприводная, купить в Санкт-Петербурге, задвижка электроприводная доставка в регионы

Содержание

Схема подключения и управления задвижки с электроприводом

Задвижка с электроприводом – это трубопроводная арматура, в которой запор перемещается под углом 900 по отношению к оси потока рабочей среды.

Задвижка BETRO с электроприводом

Задвижка BETRO с электроприводом

Электрический привод в этом устройстве приводит в действие запорный механизм.

Cодержание статьи

Применение арматуры

Стальная задвижка с электроприводом (диаметр ДУ50) используется в системах водоснабжения. Электропневматическую задвижку ВВ 32 монтируют в насосы, смесители и канализационные системы. Шкаф управления осуществляет контроль входящего электричества и работу затворного устройства.

Электроприводное запорное устройство ДУ100 широко используется в системах переработки сточных вод и магистралях, транспортирующих питьевую воду.

Реечные стальные задвижки с электроприводом устанавливают в том случае, когда необходима полная автоматизация погружных насосов. В этом случае задвижка с пневмоприводом обеспечивает точную регулировку скорости потока рабочей среды и ее давление.

Клиновая задвижка с электроприводом

Клиновая задвижка с электроприводом

Шкаф управления создает предельно точные сигналы для корректной работы арматуры. Помимо этого, реечные устройства с электроприводом, используемые постоянно, осуществляют регулирование количества потребляемой воды. На затворный механизм может устанавливаться дистанционная колонка, которая будет выполнять управление потоком рабочей среды.

Реечные задвижки имеют стальной прямоугольный корпус с перемещающимся по направляющим шибером. Внизу шибера прикреплена зубчатая рейка, сопряженная с шестерней. Приводной вал соединен с редуктором.

Разновидности электроприводных задвижек

Электроприводная стальная клиновая задвижка 30с941нж в системах орошения или пожаротушения с высокой степенью точности контролирует уровень подачи среды в соответствии с заданным первоначально режимом.

Может использоваться в системах транспортировки жидкости и газа – пар, газ, нефть и нефтепродукты. Клиновая задвижка может эксплуатироваться в трубопроводах с температурой рабочей среды до +4250С.

Стальная задвижка с условным ДУ80 позволяет распределять нагрузку в автоматическом режиме во время использования скважины. После установки в систему перекачки или добычи воды задвижки ДУ50, в накопительную емкость можно стабильно подавать фиксированный объем воды.

Колонка ДУ значительно упрощает управление арматурой. Устройство стальной арматуры подразумевает минимальное количество энергопотерь.

Колонка – это специальное устройство, которое предназначено для дистанционного управления операциями закрывания или открывания задвижки, установленной на глубине. В зависимости от того, каким типом привода оснащена колонка, бывают два типа устройства:

  1. Колонка с ручным управлением.
  2. Колонка с электроприводом.

Клиновая задвижка 30с941нж помимо отличных технических характеристик, еще и стоит недорого – средняя цена на такую арматуру колеблется в диапазоне 4-5$.

Колонка управления задвижкой

Колонка управления задвижкой

Стальная задвижка 30ч906бр – это автоматизированный запорно-регулирующий узел, который осуществляет открытие или закрытие арматуры посредством электропривода. Стандартные задвижки ДУ200 подают два вида команд – «закрыть/открыть».

Широкое распространение этой модели электроприводных задвижек

обеспечила простота управления механизмом. Стоит электроприводная стальная арматура 30ч906бр с условным ДУ50, ДУ80 – ДУ200 несколько дороже, чем клиновая задвижка 30с941нж – 25-35$.

Клиновая задвижка 30с964нж предназначена для установки в системы транспортировки воды, газа, нефти, масла с температурой рабочей среды до +3000С. Управляется клиновая арматура при помощи электропривода. Также есть возможность ручного управления.

Стальная клиновая задвижка 30с964нж монтируется на трубопровод посредством фланцевого способа соединения. Исключение составляет вентиль с условным ДУ 1000/800, которая снабжается патрубками под приварку. Клиновая арматура устанавливается на горизонтальном трубопроводе электроприводом вверх.

Особенности задвижек с электроприводом

Технические характеристики электроприводной арматуры, в зависимости от того, какая электрическая принципиальная схема используется, позволяют иметь три варианта управления:

  1. Дистанционный режим (используется колонка для управления вручную).
  2. Автоматический режим (используется шкаф управления электроприводом).
  3. Режим наладки.
Схема-чертеж электрической колонки управления задвижкой

Схема-чертеж электрической колонки управления задвижкой

Схема различий изделий определяется исходя из следующих параметров:

  1. Тип управления – дистанционный или местный вид привода.
  2. Способ крепления на задвижке – штепсельный разъем или сальниковый ввод.
  3. Конструкция, тип и размер привода.

Задвижки ДУ50, ДУ 80, ДУ 100 – полнопроходные, то есть диаметр самой арматуры совпадает с диаметром трубопровода. Это соответствие обеспечивает максимально надежное соединение и герметичность перекрытия потока рабочей среды.

Однако эта особенность создает достаточно узкую сферу применения устройства: его устанавливают только в тех трубопроводах, в которых требуется полное перекрытие рабочего вещества. Если выполнить операцию «открыть», то проход будет открыт полностью.

Нельзя использовать запорные устройства для регулировки напора или скорости течения потока воды, поскольку могут сформироваться гидравлические удары, которые выведут оборудование из строя.

Шкаф управления приводом обеспечивает управление устройством в режиме «автомат» или «ручной», контролирует уровень напряжения в сети, а также формирует пакеты данных о состоянии задвижки.

Узел задвижки и электро колонки, готовый к монтажу

Узел задвижки и электро колонки, готовый к монтажу

Шкаф управления используется в самых разных системах: водозаборах, пожарных установках или насосных станциях.

Достоинства и недостатки арматуры с электроприводом

Запорные устройства с электрическим приводом имеют ряд положительных качеств:


  • они устойчивы к воздействию коррозийных процессов;
  • арматура обладает малым гидравлическим сопротивлением;
  • стальные задвижки имеют высокий класс прочности и надежности, а также высокую частоту вращения электропривода;
  • схема подключения требует небольшое количество расходного материала: нужны всего два кабеля;
  • для работы может использоваться колонка ДУ50;
  • шкаф управления приводом отвечает за несанкционированные перепады напряжения;
  • простота в эксплуатации и обслуживании.

Из недостатков можно выделить следующие пункты:

  • для подключения необходим шкаф, поскольку электропривод должен подключаться к постоянному источнику питания;
  • некоторые модели имеют слабую сопротивляемость потоку рабочего вещества;
  • если в качестве уплотнителей используются материалы низкого качества, то не исключена разгерметизация устройства.

Особенности выбора и монтажа арматуры с электрическим приводом

При выборе арматуры учитывают ее эксплуатационные характеристики и условия эксплуатации. К ним относится температура рабочей среды и схема уровня давления в трубопроводе. Необходимо также обратить внимание на пропускную способность устройства, а также на то, что потребуется шкаф управления электроприводом.

Задвижка шиберная ножевая с электроприводом типа открыть/закрыть

Задвижка шиберная ножевая с электроприводом типа открыть/закрыть

Так, например, для бытового применения, этот параметр может быть минимальным. Диаметр запорной арматуры (ДУ 50, ДУ 80 и т. д.) должен соответствовать диаметру трубопровода.

При установке нельзя допускать, чтобы трубопровод оказывал на запор изгибающее или растягивающее усилие. Под задвижкой оборудуют платформу, которая избавит входные патрубки устройства от нагрузок.

Процедуру подключения арматуры необходимо осуществлять, строго придерживаясь инструкции к изделию, ориентиром также должна служить схема трубопроводной магистрали.

Также вы можете подробнее прочитать про шиберные ножевые задвижки.

Установка электропривода на арматуру (видео)

Автоматизация электропривода задвижки — Строительство дома своими руками

Ни одна трубопроводная система немыслима без использования такого регулирующего органа, как задвижка. Этот тип запорной арматуры предназначен для перекрытия потока жидкости, пара или газа по трубе.

Схема привода различных задвижек

Схема привода различных задвижек

Все задвижки бывают 3 типов: конические, клинкетные и кольцевые. Наибольшее практическое применение получили клинкетные задвижки, которые перекрывают поток жидкости в трубе с помощью плоского затвора, входящего в этот поток перпендикулярно течению жидкости.

Общие сведения об автоматизации электропривода задвижки

У любой задвижки существует две функции: открытие и закрытие трубопровода. Команды на это выполняются в ходе изменения каких-либо контролируемых параметров: давления, температуры, расхода жидкости. Если задвижка включена в систему управления комплексом, то команда на открытие или закрытие может подаваться в зависимости от состояния насосов и вентиляторов.

Схема электропривода задвижки с электромеханической муфтой

Схема электропривода задвижки с электромеханической муфтой

Для осуществления дистанционного управления задвижкой используют различные типы приводов: гидравлический, пневматический, электрический. В целях автоматического управления используют электропривод, так как это наиболее удобно и рационально. Асинхронный двигатель чаще всего является электроприводом для задвижки. Его выходной вал соединен с червячным редуктором, выходная шестерня которого входит в зацепление с винтом на выходе задвижки.

В процессе работы электродвигателя перекрывающий ток жидкости затвор вместе с винтом опускается либо поднимается, осуществляя закрытие или открытие задвижки. Шестерня на выходе редуктора через промежуточные шестерни передает вращение нескольким дискам с особыми кулачками. В момент открытия задвижки эти кулачки поворачиваются в правую сторону и переключают электрические контакты выключателя КВО. В момент же закрытия задвижки напротив кулачки поворачиваются в левую сторону и замыкают контакты выключателя КВЗ. Все диски с кулачками установлены таким образом, что при полном открытии задвижки срабатывает выключатель КВО, а при полном закрытии — выключатель КВЗ.

Принципиальная электрическая схема управления электрическим приводом задвижки предполагает 3 режима управления: автоматический, дистанционный и наладочный.

Дистанционный режим применяют при управлении электрическим приводом на расстоянии, например, с диспетчерского пульта. Для перевода автоматики в данный режим переключатель управления 1ПУ устанавливается в состояние “Дистанционный”, тумблер 1ВБ в состояние “выключен”, тумблер 2ВБ в состояние “включен”. Питание на диспетчерский пульт управления подается через выключатель В.

Схема функционирования электропривода в дистанционном режиме

Для осуществления команды “открыть задвижку”, необходимо нажать кнопку 1КУ. В этом случае произойдет включение реле 1РП, которое замыкает свой открытый контакт в цепи электропитания катушки пускателя ПО. Пускатель включается и инициирует начало работы электродвигателя, который и открывает задвижку через описанный выше механизм.

Электрическая схема электропривода

Электрическая схема электропривода

При достижении задвижкой крайнего положения, тотчас происходит нажатие концевого выключателя КВО. При этом его замкнутый контакт КВО1 размыкается и производит выключение пускателя ПО. Это инициирует выключение электродвигателя задвижки. Одновременно с этим разомкнутый контакт КВО2 замыкается и производит включение лампочки ЛО, которая сигнализирует о том, что задвижка в данный момент открыта.

Аналогично изложенному сценарию происходит обратная команда “закрыть задвижку” при помощи уже кнопки 2КУ. При этом, после полного закрытия задвижки загорается лампочка ЛЗ.

Для обеспечения работы цепи сигнализации использован полярный принцип образования сигналов. Он заключается в том, что полупроводниковые диоды чувствительны к направлению течения электрического тока. Это позволяет сделать всю аппаратуру чувствительной к этому параметру. Для обеспечения того или иного направления тока на пульте управления и на объекте устанавливают по два полупроводниковых диода. Они производят однополупериодное выпрямление и полное избирание. Это обеспечивает передачу по одному проводу 2-х сигналов. В случае полностью открытой задвижки, протечка тока осуществляется через диоды 1Д и 2Д при горящей лампочке ЛО. Когда задвижка полностью закрыта, ток течет через диоды 3Д и 4Д с горящей лампочкой ЛЗ.

Схема автоматического режима

Отличие автоматического режима управления электроприводом задвижки заключается в отсутствии какого-либо участия оператора. Автоматизация электропривода задвижки достигается установкой переключателя 1ПУ в положение “Автомат”. При этом выключатель ВК должен находиться в положении «включен», тумблер 1ВБ в позиции “выключен”, а тумблер 2ВБ в состоянии “включен”.

Таблица существующих модификаций задвижек с электроприводом

Таблица существующих модификаций задвижек с электроприводом

Датчики, осуществляющие контроль величины таких параметров, как расход жидкости или газа, уровень температуры или давления, подают сигнал при достижении заданного уровня на схему контроля, где происходит замыкание контактов 1РК или 2РК. Это заставляет включаться реле 1РП или 2РП. В свою очередь магнитные пускатели ПО или ПЗ выполняют команды открыть или закрыть задвижку соответственно. Контроль исполнения команд осуществляется по наличию загорания одной из лампочек ЛО и ЛЗ.

Особенности наладочного режима

Наладочный режим необходим для апробации работы задвижки с электроприводом после ремонта или первоначального монтажа. Для установки системы в данный режим необходимо переключить тумблер 1ВБ в позицию “включено”. Электропитание в схему управления направляется включением выключателя АВ. Для выполнения команды “открыть задвижку”, нужно нажать кнопку 4КУ. Это действие обеспечивает поступление питания к магнитному пускателю открытия задвижки ПО.

Так устроена клиновая задвижка

Так устроена клиновая задвижка

Когда происходит включение ПО, то в схеме случаются следующие изменения:

  1. Контакт ПО1 в самоблокировочной цепи замыкается и происходит запоминание команды.
  2. Контакт ПО2 в цепи взаимной блокировки размыкается, чтобы исключить подачу ложной команды.
  3. Замыкается цепь электродвигателя через 3 силовых контакта ПО3 и происходит его включение, задвижка перемещается вверх.

В момент полного открытия задвижки кулачок диска производит нажатие на выключатель КВО. Его замкнутый контакт размыкается, включая пускатель ПО. При этом его контакты возвращаются в свое начальное состояние и электродвигатель отключается, задвижка останавливается.

Для выполнения обратной команды “закрыть задвижку”, нужно нажать кнопку 5КУ, которая подает питание на магнитный пускатель закрытия задвижки ПЗ. Аналогично изложенной выше команде осуществляется схема выключения питания электродвигателя. При этом изменяется направление вращения ротора (режим реверса). Тем самым происходит полное закрытие задвижки. Выключение электродвигателя происходит после размыкания контакта выключателя КВЗ.

Виды защиты схемы управления

Как и любой сложный электромеханический прибор, автоматическая задвижка имеет несколько видов защиты схемы управления от различного рода перегрузок.

Схема щитка управления

Схема щитка управления

В щитке управления имеется кнопка ЗКУ, которая служит для мгновенного аварийного выключения электродвигателя. При этом существуют и автоматические элементы защиты:

  1. Защита от минимального напряжения, которую еще называют нулевой защитой. Ее срабатывание происходит в момент полного исчезновения напряжения внутри сети или его критическом понижении. Цель — исключить возможность самостоятельного запуска электродвигателя при внезапном восстановлении напряжения. Эта защита осуществляется при помощи магнитных пускателей и электромагнитных реле напряжения.
  2. Электрическая самоблокировка. Данный вид защиты достигается путем включения размыкающего контакта на пускателе ПО в цепи электропитания пускателя ПЗ и обратно. То есть, пока пускатель ПО находится во включенном положении, цепь питания пускателя ПЗ однозначно будет разомкнутой, а принудительно запустить пускатель ПЗ вместе с магнитным пускателем ПО ни при каких обстоятельствах нельзя.
  3. Защита электрического двигателя от перегрузки при аварийном заклинивании задвижки осуществляется путем размыкания контактов выключателя муфты конечного момента ВМ, который введен в общую цепь электропитания обеих индукционных катушек пускателей.
  4. Максимальная защита гарантирует полную безопасность электродвигателя при возникновении кратковременной перегрузки и короткого замыкания. Осуществляется она в результате использования плавких предохранителей либо электромагнитных автоматических выключателей.

Защита электропривода при помощи устройства ПКП1

Для осуществления защиты электропривода задвижек на насосных станциях часто устанавливается специальный прибор ПКП1:

  • ПКП1Т — контролирует текущие положения задвижки по току, который потребляется электроприводом, и времени ее движения.
  • ПКП1И – контролирует текущие положения задвижки с помощью измерения периодов импульсов, поступающих с датчика. Он расположен на валу задвижки. При этом учитывается и число оборотов вала.

Прибор ПКП1 необходим для управления затворами и задвижками в больших насосных станциях и городской системе «Водоканал», а также для обеспечения защиты их механизмов и электроприводов в случае внезапного заклинивания без применения концевых выключателей.

Схема насосной станции с установленной защитой

Схема насосной станции с установленной защитой

Главные защитные функции прибора:

  • Автоматическое отключение электропривода при достижении крайнего положения задвижкой без применения концевых выключателей.
  • Осуществление индикации и контроля текущего положения задвижек в %.
  • Аварийная остановка управления и подача сигнала «Авария» в момент проскальзывания механизмов электропривода либо заклинивания задвижки.
  • ПКП1 снабжен двумя выходными реле, управляющими задвижкой, двумя реле для имитации срабатывания концевых выключателей и реле для подачи аварийного сигнала.

Кроме того, по желанию потребителя в ПКП1 может быть установлен модуль интерфейса взаимодействия с ЭВМ RS-485 либо модуль, который создает унифицированный токовый сигнал (4-20 мА), который пропорционален степени открытия створки задвижки.

Для настройки этого прибора непосредственно на объекте, с помощью чертежа задают временные параметры движения задвижки и варианты определения ее концевых положений.

Если нам известен рабочий ток электродвигателя, то необходимо просто задать параметры защитного выключения. Эти параметры будут на долго сохранены в энергонезависимой памяти прибора и останутся неизменными даже при отключении питания. Программирование прибора осуществляется кнопками, которые располагаются на передней панели. Чтобы предотвратить несанкционированный доступ к изменениям установленных параметров, имеется специальная защита.

Автоматизация электропривода задвижки может использоваться не только на крупных промышленных предприятиях и в городских сетях водоснабжения, но и в больших по площади домохозяйствах. Эта система обеспечит качественный контроль различных параметров в системе отопления или водоснабжения. Если на вашем участке есть несколько строений, объединенных единой водопроводной сетью, то автоматизация вам не повредит.

Иртыш Арматура | Трубопроводная арматура

17

Стальные

Задвижка электроприводная стальная 30с941нж с выдвижным шпинделем  предназначена для перекрытия потока жидкой или газообразной рабочей среды, используется только в качестве запорного устройства. Выпускается в диапазоне условных проходов от Ду50 до Ду1200. Корпусные детали задвижек изготавливаются из стали марок: 25Л, 20ГЛ, 12Х18Н9ТЛ.

Основные технические характеристики задвижки 30с541нж:
 

Рабочая среда вода, пар, масло, нефть, природный газ, жидкие неагрессивные нефтепродукты, неагрессивные жидкие и газообразные среды, по отношению к которым материалы, применяемые в задвижке, коррозионностойки
Температура рабочей среды

от -40°С до +425°С

Минимальная температура окружающей среды

-40 С

Климатическое исполнение

У1 (умеренное)

Тип присоединения фланцевое по ГОСТ 12815-80
Класс герметичности

класс «А» по ГОСТ 9544-2005

Тип управления электропривод
Установочное положение

приводом (электроприводом) вверх. Допускается отклонение от вертикали до 90°

 

Направление подачи рабочей среды с любой стороны магистральных фланцев
Уплотнение по шпинделю сальниковое
Уплотнение между корпусом и крышкой паронит

 

DN

PN

ТИП присоединения
к приводу

Длина
L (мм)

Высота
H (мм)

Вес
(кг)

50

16

А

180

280

17,0

80

16

А

210

350

29,0

100

16

А

230

380

39,0

150

16

А, Б

280

550

83,0

200

16

Б

330

680

124,0

250

16

Б

450

850

242,0

300

16

Б, В

500

985

315,0

400

16

В

600

1425

640,0

500

16

В

700

1545

1233,0

600

16

Г

800

1665

1400,0

700

16

Г

900

2070

1980,0

800

16

Г

1000

2625

2300,0

1000

16

Д

1242

3230

4200,0

1200

16

Д

1400

3835

6300,0

 

 

Управление задвижками: маховик, редуктор, электропривод

Задвижки – популярная запорная арматура, которая применяется на трубопроводах, транспортирующих разнообразные газы и жидкости. Рабочий орган такого устройства (клин, шибер) движется перпендикулярно потоку, перекрывая просвет трубы. Задача управления задвижкой – максимально быстро, но плавно опустить или поднять этот элемент. А как она решается, мы рассмотрим ниже.

Главные требования к управлению задвижкой

Управляя работой такой арматуры, важно соблюсти следующие условия:

  1. Клин задвижки должен находиться в положении «открыто» или «закрыто». Такая арматура не может использоваться для регуляции силы потока. Если ее рабочий элемент слишком долго будет пребывать в полузакрытом состоянии, сила потока его деформирует. После этого задвижку невозможно будет ни герметично закрыть, ни полностью открыть. Поэтому процесс открывания и закрывания устройства должен быть по возможности быстрым.
  2. Слишком резкое перекрывание или открывание задвижки также нежелательно. Это может привести к гидроудару в системе, особенно если речь идет о трубе большого диаметра, по которой поток движется с высокой скоростью. Чтобы избежать проблем, рабочий элемент задвижки необходимо перемещать плавно.
  3. На трубах больших диаметров и с высокими скоростями потока для управления задвижкой требуются серьезные усилия. Это трудно, а иногда и просто невозможно сделать вручную, при помощи обычного маховика. Чтобы облегчить и упростить задачу, в таких случаях для управления арматурой приходится использовать механические редукторы или разнообразные приводные механизмы. Ниже мы рассмотрим механизм действия этих устройств.

Задвижка с ручным управлением маховиком

Ручное управление при помощи маховика. Механический редуктор

Классическим управляющим элементом задвижки является маховик. При его вращении усилие передается на шпиндель арматуры, который поднимается или опускается и, соответственно, поднимает или опускает затвор. Шпиндель у задвижки может быть выдвижным или невыдвижным. В первом случае он поднимается над маховиком настолько, насколько поднят клин. У задвижек с невыдвижным шпинделем эти перемещения происходят внутри корпуса.

Если из-за большого диаметра трубы вращать обычный маховик становится трудно, на задвижку устанавливают механический редуктор. Он преобразует усилие так, что управляющий маховик можно легко повернуть без больших затрат энергии. Такое устройство позволяет облегчить работу с арматурой, не применяя приводов.

Приводные механизмы для управления задвижкой

Для открывания и закрывания арматуры используются:

  • электроприводы;
  • гидроприводы;
  • пневматические приводы.

Эти механизмы не только облегчают управление задвижками больших диаметров, которые требуют существенных усилий для перемещения рабочего элемента. Они нередко используются и с арматурой небольшого Ду. Дело в том, что приводные механизмы позволяют организовать дистанционное управление задвижкой или автоматизировать процесс открывания и закрывания устройства, связав его с любыми рабочими параметрами системы (давлением, температурой, расходом среды, состоянием насосов и пр.). Чаще всего при автоматизации задвижек используют электропривод, так как он проще в установке и управлении.

Задвижка с электроприводным управлением

Электропривод задвижки: принцип работы и автоматизация

Основным элементом электроприводного механизма является асинхронный двигатель. Его усилие при работе передается по цепи от выходного вала на червячный редуктор и далее на выходной винт задвижки. Этот винт опускается или поднимается, а вместе с ним опускается или поднимается затвор арматуры.

Чтобы вовремя остановить работу двигателя, в электроприводе разработан механизм микровыключателей КВО и КВЗ. От выходной шестерни редуктора вращение передается дискам с кулачками. При открывании задвижки кулачки поворачиваются вправо и переключают контакты КВО, при закрывании арматуры – наоборот, кулачки движутся влево и переключают КВЗ. Диски с кулачками размещены так, что микровыключатели срабатывают в момент, когда затвор достигает крайнего положения. КВО переключается при полном открытии задвижки, КВЗ – при полном закрытии. Таким образом, двигатель не может остановиться, если затвор находится в полуоткрытом состоянии, что предупреждает деформацию рабочего элемента потоком.

Режимы управления

Электроприводом задвижки можно управлять в трех режимах:

  • дистанционном;
  • автоматическом;
  • наладочном.

Если необходимо управлять работой задвижки на расстоянии, например, с диспетчерского пульта, выбирают дистанционный режим работы. Чтобы перевести привод в этот режим, нужно:

  • переключатель 1ПУ установить в положение «Дистанционный»;
  • тумблер 2ВБ переключить в положение «Включен»;
  • тумблер 1ВБ установить в положение «Выключен».

Управление питанием осуществляется через выключатель В.

Схема управления задвижкой с электроприводом

Электрическая схема работы привода в дистанционном режиме

Управление задвижкой с электроприводом происходит следующим образом (на примере открытия арматуры):

  1. Оператор нажимает кнопку 1КУ.
  2. Включается реле 1РП.
  3. Замыкается цепь питания катушки пускателя ПО.
  4. Пускатель включается и запускает электродвигатель.
  5. Во время работы двигателя затвор поднимается и задвижка открывается.
  6. При достижении затвором крайнего верхнего положения поворачиваются диски с кулачками и срабатывает микровыключатель КВО.
  7. На КВО размыкается контакт КВО1, и пускатель ПО выключается. Вместе с ним останавливается и двигатель привода.
  8. Одновременно с размыканием КВО1 происходит замыкание КВО2, который включает сигнальную лампочку ЛО. Она сообщает оператору, что задвижка открыта.

На этом процесс открытия арматуры завершается. Закрытие задвижки происходит аналогично, после нажатия кнопки 2КУ. В конце движения затвора срабатывают контакты КВЗ и загорается лампочка ЛЗ.

Кроме описанных цепей, в электроприводе задвижки существует и простейшая система сигнализации. Она основана на полупроводниковых диодах и сообщает о полном открытии или закрытии затвора посредством лампочек ЛО и ЛЗ.

Автоматический режим работы электропривода

Управление задвижкой может осуществляться автоматически, без участия оператора. Для перевода электропривода в автоматический режим нужно:

  1. Переключатель 1ПУ установить в положение «Автомат»;
  2. Выключатель ВК переключить в положение «Включен»;
  3. Тумблер 1ВБ установить в положение «Выключен»;
  4. Тумблер 2ВБ переключить в положение «Включен».

Механизм работы электропривода в автоматическом режиме похож на таковой при дистанционном управлении. Только замыкание контактов 1РК и 2РК происходит не при нажатии кнопки, а через подачу соответствующей команды со схемы контроля. Далее включается пускатель ПО (при открытии задвижки) или ПЗ (при закрытии) и запускается работа электродвигателя. Результат выполнения команды отображается загоранием сигнальных лампочек ЛО или ЛЗ.

Наладочный режим работы электропривода

Данный режим используется не для управления задвижкой, а для наладки работы электропривода после монтажа или ремонта устройств. Для перевода механизма в наладочный режим нужно:

  1. Тумблер 1ВБ установить в положение «Включено»;
  2. Автоматический выключатель АВ включить (он подает в схему управления питание).

Для открывания задвижки нажимается кнопка 4КУ. После ее нажатия питание подается на пускатель ПО. Он осуществляет следующее:

  • Замыкает контакт ПО1 (он находится в цепи самоблокировки). Замыкание способствует запоминанию команды.
  • Размыкает контакт ПО2 (расположен в цепи взаимной блокировки). Это предотвращает подачу ложной команды.
  • Замыкает три контакта ПО3, в результате чего включается двигатель. Он поднимает рабочий элемент задвижки.

При полном открытии задвижки кулачок диска размыкает контакт КВО, что отключает пускатель ПО. Двигатель останавливается, и затвор прекращает движение. Закрытие задвижки происходит аналогично, но после нажатия кнопки 5КУ.

Защита в схеме электропривода задвижки

При управлении задвижкой могут возникать нештатные ситуации. Чтобы предупредить аварии на трубопроводе и поломки электроприводного механизма, в его схеме предусмотрена защита нескольких типов:

  • Кнопка 3КУ – аварийное ручное выключение двигателя.
  • Нулевая защита (минимального напряжения). Срабатывает при отключении или критическом снижении напряжения в сети. Предупреждает самозапуск двигателя при внезапном восстановлении напряжения.
  • Электрическая блокировка. Не допускает одновременного срабатывания пускателей ПО и ПЗ. Осуществляется простым включением размыкающего контакта ПЗ в цепь питания ПО и наоборот.
  • Защита от перегрузок. Предупреждает перегрузку двигателя в случае заклинивания задвижки. При возникновении проблемы размыкаются контакты микровыключателя ВМ (это выключатель муфты предельного момента). Микровыключатель, находящийся в общей цепи питания ПО и ПЗ, отключает оба пускателя и прекращает работу двигателя.
  • Максимальная защита – от высоких кратковременных нагрузок и тока коротких замыканий. Срабатывает благодаря плавким предохранителям или электромагнитным расцепителям.

Кроме того, в схеме электропривода задвижки предусмотрены устройства защиты и управления ПКП1Т, ПКП1И и др. Они позволяют останавливать электропривод без задействования концевых выключателей, следить за текущим положением затвора, прекращать работу привода в аварийных ситуациях. Также в ПКП1 можно вмонтировать модуль интерфейса для осуществления электронного управления. В этом случае появляется возможность запрограммировать электропривод на работу с нужными параметрами в различных условиях или в разное время.

Таким образом, управлять задвижками можно по-разному, но электроприводной механизм позволяет осуществлять управление наиболее легко и точно. Если вы хотите купить задвижку с электроприводом, обращайтесь в «Компанию Север». Наши специалисты проконсультируют вас по всем вопросам относительно управления арматурой и помогут подобрать устройство с нужным приводным механизмом.

 

Электроприводная задвижка — Большая Энциклопедия Нефти и Газа, статья, страница 1

Электроприводная задвижка

Cтраница 1

Электроприводные задвижки на подводящих линиях к устройству Аркрон — 1000 с датчиком верхнего аварийного уровня нефти в безнапорной емкости и цепями автоматического герметичного перекрытия указанных линий в случаях аварийного состояния устройства ( например, при разрыве манжеты клапана, отказе системы откачки утечек нефти) не допускают переполнение безнапорной емкости. Фактически указанные устройства представляют собой средства аварийного блокирования ( отключения) системы гашения ударной волны от технологических линий, с целью предотвращения перелива емкости.  [1]

Электроприводные задвижки и вентили для взрывоопасных помещений выполняются с электродвигаталем во взрывонепроницаемом исполнении. Приводные байпасные вентили, применяемые для регулирования производительности перепуском части газа, имеют профилированный запорный орган и могут быть дистанционно открыты на заданную величину. Среди запорных клапанов дистанционного действия встречаются также управляемые пневматически, посредством сервопривода с диафрагмой.  [2]

Электроприводная задвижка, управляемая микропроцессором, размещенным в блоке управления, дает возможность блокировать ГРБ от газопровода высокого давления в случае необходимости.  [4]

Электроприводная задвижка и параллельно с ней регулирующий клапан с пневмоприводом, устанавливаемые на всасывающем трубопроводе перед насосами и служащие исполнительными органами системы автоматического регулирования максимального давления на всасывании насосной станции.  [6]

Электроприводная задвижка и клапан с пневмоприводом работают совместно, причем задвижкой осуществляется основное регулирование при малых величинах дросселирования, а клапаном — при более значительном дросселировании, когда задвижка прикрыта уже настолько, что дальнейшее плавное регулирование ею практически невозможно.  [7]

Электроприводная задвижка и параллельно с ней регулирующий клапан с пневмоприводом, устанавливаемые на нагнетательном трубопроводе за насосами и служащие для автоматиче — SKoro регулирования максимального давления на нагнетании я минимального давления на всасывании в тех случаях, когда саморегулирующей способности центробежных насосов для этой цели недостаточно.  [8]

При наличии электроприводных задвижек с местным или дистанционным управлением следует предусматривать сигнализацию, указывающую положение запорного устройства задвижки. Сведения о перекачке должны заноситься в журнал распоряжений ( указаний) по подготовке и перекачке нефтепродуктов. Форма и пример заполнения журнала приведены в прил.  [9]

При наличии электроприводных задвижек с местным или дистанционным управлением должна быть предусмотрена сигнализация, указывающая положение запорного устройства задвижки.  [10]

При наличии электроприводных задвижек с местным или дистанционным управлением должна быть предусмотрена сигнализация, указывающая положение запорного устройства задвижки ( см. пп.  [11]

В помещении с электроприводными задвижками постом № 4 фиксируется время с момента подачи сигнала Пожар на пульт до открытия соответствующих задвижек.  [12]

В помещении с электроприводными задвижками фиксируется время с момента подачи сигнала Пожар на пульт до открытия электроприводных задвижек на направлении к нефтенасосной.  [13]

На рис. 92 изображена электроприводная задвижка диаметром 500 мм на давление до 75 кГ / см2, сконструированная конструкторским бюро по проектированию промышленной арматуры Московского областного совнархоза. Электропривод основной задвижки осуществлен при помощи электромотора трехфазного тока мощностью 6 кет при 970 об / мин, а вспомогательной задвижки — при помощи электромотора мощностью 0 9 кет при 1425 об / мин.  [14]

Весь технологический комплекс оборудуется электроприводными задвижками и системой автоматических клапанов, отключающих отдельные звенья технологического комплекса при обнаружении приборами утечки газа в трубах, понижении давления или нарушении условий движения продуктов.  [15]

Страницы:      1    2    3    4

Электрический привод арматуры — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 23 мая 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 23 мая 2019; проверки требует 1 правка.

Электрический привод арматуры — это устройство, являющееся видом электрических приводов, служащее для механизации и автоматизации трубопроводной арматуры, и широко применяющееся во всех отраслях промышленности, играя важнейшую роль практически во всех технологических процессах. Чаще всего электропривода используются для дистанционного управления арматурой, её открытия и закрытия, постоянного регулирования, а также для диагностики и определения положения арматуры. Кроме электрических приводов, существуют пневматические, гидравлические и электромагнитные арматурные привода[1]. Является исполнительным механизмом.[2]

В зависимости от рода тока приводы изготовляются с двигателями переменного тока и, реже, с двигателями постоянного тока. Они могут содержать ограничительное силовое устройство или быть без него. По принципу действия этого устройства приводы подразделяются на фрикционные, фрикционно-кулачковые, электромеханические, электромагнитные, электрические, электронные.

По конструкции редуктора приводы делят на:

В зависимости от величины и вида перемещения выходного элемента различают приводы:

  • многооборотные
  • неполноповоротные
  • прямоходные[1]
Разрез электрического привода арматуры.

Электродвигатель (1)[править | править код]

Источник движения. Чаще всего в приводах используются двигатели переменного тока.

Силовое ограничительное устройство и путевые выключатели (2)[править | править код]

Первое предназначено для предупреждения поломки или перегрузки арматуры. Иногда сочетается с тормозным (депфирующим) устройством, для исключения влияния на арматуру инерции движущихся деталей. Путевые выключатели служат для сигнализации положения рабочего органа, отключения двигателя от источника энергии, блокировки работы двигателя с работой других механизмов.

Редуктор (3)[править | править код]

Служит для преобразования вида и скорости движения выходного элемента двигателя в соответствии с назначением управляемой арматуры.

Крепление к арматуре (4)[править | править код]

Обычно состоит из фланцевого соединения, жестко скрепляющего корпуса привода и арматуры, и муфты, соединяющей валы привода и арматуры.

Ручной дублер (5)[править | править код]

Необходим для управления арматурой при наладочных работах, а также при отсутствии энергии для двигателя. Снабжается переключателем в ручное положение для исключения травмирования обслуживающего персонала, если во время ручного управления привод будет подключен к сети.

Указатель положения и датчики привода (6)[править | править код]

Указатель положения предназначен для местного указания степени открытия арматуры в любой момент времени. Датчик положения рабочего органа используется на запорной арматуре для дистанционного указания степени открытия арматуры в данный момент времени, на регулирующей — как элемент обратной связи (по положению регулирующего органа арматуры).

Электрические соединения (7)[править | править код]

К ним подключаются кабель питания арматуры и кабель, по которому поступают сигналы от устройств и датчиков арматуры.

Подключение промышленной сети (8)[править | править код]

Многие современные приводы снабжаются входами для коннекторов промышленных сетей, что играет важную роль для предприятий с развитой АСУ ТП.

Достоинства[править | править код]

Широкое применение электропривода для управления арматурой объясняется рядом его достоинств и преимуществ по сравнению с другими видами приводов:

  • он может обеспечить централизованное управление любыми типами и классами арматуры;
  • не требуется внутренний подогрев при температурах окружающей среды до -50С и до -60С;
  • способен обслуживать арматуру разных размеров условного прохода, от минимального до максимального;
  • к электроприводу требуется подвод только одного вида энергии, а при монтаже схемы управления приводом имеется мало вынесенных и при этом несложных электрических соединений;
  • в отличие от большинства других приводов он может монтироваться не только непосредственно на арматуре, но и на расстоянии от неё;
  • может быть снятым с действующей арматуры (для ремонта), не создавая опасности самопроизвольного изменения положения рабочего органа;
  • возможно его использование для механизации действующей арматуры, снабженной маховиком ручного управления, без переделки последней;
  • при наличии встроенного блока суперконденсаторов, привод может возращаться в крайние положения «нормально закрыто» или «нормально открыто»
  • может использоваться для постоянного регулирования трубопроводной арматуры
  • электросеть свободна от недостатков, свойственных другим сетям (засорение, обмерзание и т. д.).

Не существует других приводов, использующих один вид энергии, которые были бы в состоянии обеспечить местную и дистанционную сигнализацию как крайних положений рабочего органа арматуры, так и промежуточных; подачу сигнала на пульт в случае заедания подвижных частей арматуры или попадания посторонних предметов в её полости; блокировку работы арматуры; остановку рабочего органа арматуры в промежуточном положении без опасности его самопроизвольного перемещения[1].

Недостатки[править | править код]

Электрические приводы имеют и ряд недостатков:

  • детали электроприводов подвержены износу в большей степени, чем детали некоторых других, поэтому они нуждаются в регулярном обслуживании, уходе;
  • контакты привода являются источниками радиопомех;

Не рекомендуется использовать электропривод для управления быстродействующей (отсечной) арматурой, что связано с трудностью уменьшения влияния на арматуру инерционных масс привода. Нецелесообразно применение электропривода в случаях, когда его питание должно осуществляться от автономного источника энергии (наиболее целесообразная форма хранения энергии — сжатый воздух). Не используется электропривод для работы на объектах особой взрывоопасности[1].

  1. 1 2 3 4 Трубопроводная арматура с автоматическим управлением. Справочник. Под общей редакцией С. И. Косых. Л.: Машиностроение, 1982.
  2. ↑ ГОСТ 14691-69 УСТРОЙСТВА ИСПОЛНИТЕЛЬНЫЕ ДЛЯ СИСТЕМ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ. Термины. п. 4

Трубопроводная арматура с электроприводом

Электропривод трубопроводной арматуры ─ устройство, предназначенное для управления арматурой и использующее для этого электрическую энергию. Слово «управление» в данном случае означает перемещение связанного с приводом запорного элемента, являющего подвижной частью затвора арматуры. Если речь идет о перемещении регулирующего элемента (регулирующая арматура с электроприводом), то обеспечивающее реализацию этого процесса устройство называют электрическим исполнительным механизмом (ЭИМ).

Электропривод трубопроводной арматуры может не только управлять запорным элементом, но и при необходимости фиксировать его в нужном положении, обеспечивая требуемую герметичность затвора.

В зависимости от того, как движется выходное звено, различают следующие виды электроприводов:

  • поступательные (другое название ─ прямоходные)
  • вращательные.

В свою очередь, вращательные приводы могут быть многооборотными, т. е. обеспечивающими свыше одного оборота выходного кинематического звена, и неполнооборотными (однооборотными) ─ когда выходное кинематическое звено совершает не более одного оборота.

Электроприводом с линейно перемещающимся выходным звеном управляется фактически любой клапан с электроприводом.

Многооборотным электроприводом с вращающимся рабочим звеном снаряжены задвижки, например, клиновая или шиберная задвижка с электроприводом.

Неполноповоротные электроприводы, рабочее звено которых поворачивается на 1/4 оборота (90O), управляют такой трубопроводной арматурой, как шаровой кран с электроприводом или дисковый затвор с электроприводом.

Устройство электропривода

Электропривод трубопроводной арматуры представляет собой управляемую электромеханическую систему или, другими словами, мехатронный модуль, в котором объединены взаимодействующие между собой преобразователи, система управления и устройства, обеспечивающие взаимодействие электропривода с внешними коммуникациями.  Преобразователи (электрической энергии, механические и электромеханические) ─ это электродвигатель и редуктор. Внешние коммуникации ─ механические, электрические, управляющие и информационные системы.

Результатом совместной работы всех составляющих электропривода трубопроводной арматуры является управление движением подвижных частей затвора, а, значит, управление работой укомплектованной электроприводом единицы трубопроводной арматуры.

Электродвигатель

В электроприводе трубопроводной арматуры электродвигатель выполняет функцию электромеханического преобразователя, конвертирующего электрическую энергию в механическую. Для этого используют электродвигатели, рассчитанные на различное напряжение и вид электрического тока (электропривод постоянного тока, электропривод переменного тока).

Номинальные параметры питания электроприводов переменного тока, составляющих большинство среди электроприводов трубопроводной арматуры, ─ частота тока 50 Гц и напряжение 220в однофазной сети и 380 В ─ в трехфазной.

Соединение корпуса арматуры и электропривода в большинстве случаев осуществляется при помощи фланцевого устройства – т. н. фланцевый электропривод.

Крутящий момент. Редукторы. Безредукторный электропривод

Крутящий момент ─ это передаваемый через вал и приложенный к ведущему кинематическому звену момент вращения, требуемый для перемещения запирающего или регулирующего элемента и обеспечения заданной степени герметичности затвора. Максимальный крутящий момент (усилие) на выходном валу (штоке) ─ один из основных параметров электропривода. В зависимости от вида его ограничения различают электроприводы с односторонним и двусторонним ограничением крутящего момента.

Поскольку частота вращения электродвигателей, как правило, существенно выше, чем требуется трубопроводной арматуре, в состав электропривода включают редуктор, позволяющий обеспечить уменьшение частоты вращения привода и увеличение крутящего момента.

В электроприводах применяют редукторы с различными типами передач: волновые, кулисно-винтовые, планетарные, спироидные, цилиндрические, червячные и другие.

Волновой редуктор содержит цилиндрическую передачу с деформируемыми зубчатыми колесами. Планетарный редуктор снаряжен передачами с подвижными осями. Цилиндрический редуктор использует только цилиндрические зубчатые передачи. Червячный редуктор наиболее широко применяется для управления трубопроводной арматурой благодаря его способности к самоторможению.

Объединенные в одном корпусе электродвигатель и редуктор, носящие название мотор-редуктор, также используют для управления трубопроводной арматурой.

Редуктор в электроприводе означает увеличение стоимости, габаритов и массы электропривода, а также некоторое снижение КПД. Поэтому вполне объяснимо стремление исключить его из состава электропривода, сделав тот безредукторным. Реализовать эту идею можно, используя тихоходные электродвигатели или регулирующие частоту вращения т. н. вентильно-индукторные двигатели.

Система управления электроприводом

Потенциал технических возможностей современных электроприводов определяется не только параметрами электродвигателя, но и возможностями системы управления.

Система управления электроприводом отвечает за надежную и бесперебойную работу привода, регулируя все происходящие в нем процессы. В их числе: максимально эффективное преобразование электрической энергии в механическую, определение текущих значений скорости вала и крутящего момента, формирование защиты всех составляющих электропривода, поддержание коммуникаций с внешними системами, обеспечение точности позиционирования движущихся частей затвора арматуры.

Различают электроприводы с электромеханической и электронной системами управления. Появление электронного управления сделало возможным программирование работы электропривода. Программы могут храниться непосредственно в его памяти или транслироваться с центрального пункта АСУ ТП (автоматической системы управления технологическими процессами).

Наличие электронного блока не только позволяет обеспечить высокую точность работы электропривода, но и вести ее учет в форме специального архива. Например, фиксировать время открытия и закрытия затвора и подсчитывать число циклов срабатывания.

В т. ч. благодаря такому архиву возможно осуществление диагностики текущего состояния всех узлов электропривода, а при необходимости ─ подача сигнала не только об аварийной ситуации, но даже о появлении ее предпосылок.

Оснащение систем управления электроприводом

Важную функцию выполняют датчики положения ─ контактные электромеханические или бесконтактные электронные энергонезависимые.

Концевые переключатели обеспечивают отключение электродвигателя, когда движущаяся часть затвора арматуры занимает заданное положение, как правило, «закрыто» или «открыто».

Путевые переключатели при необходимости могут срабатывать в течение всего рабочего хода. В соответствии с «ГОСТ Р 55511-2013 Арматура трубопроводная. Электроприводы. Общие технические условия» погрешность их срабатывания не должна превышать 2,5% полного хода конкретного исполнения привода.

Защита электропривода от перегрузок ─ задача чрезвычайно ответственная, поскольку их последствия могут быть для конструкции привода разрушительными в буквальном смысле слова. Для предупреждения перегрузок применяют различные устройства: электромеханические ─ муфты предельного момента; биметаллические, встраиваемые в обмотку статора электродвигателя, термореле; тепловые реле.

Электроприводы обычно укомплектовывают двусторонними ограничителями крутящего момента. Но при наличии технического обоснования по согласованию с заказчиком допустимо остановиться на односторонних ограничителях. Использование ограничителей обеспечивает отключение двигателя при достижении пороговых величин крутящих моментов на выходном валу. Ограничители снаряжены блокировкой, делающей невозможным самопроизвольный повторный запуск электродвигателя.

Электропривод трубопроводной арматуры оснащается ручным дублером, задача которого ─ обеспечить управление трубопроводной арматурой при временном отсутствии электроэнергии или проведении наладочных работ. При пуске электродвигателя (подаче напряжения на электропривод) ручной дублер должен автоматически отключаться.

Переход из ручного режима в режим работы от электродвигателя может осуществляться полуавтоматически или полностью автоматически (в этом случае рычаг переключения режима не предусмотрен). Если электропривод оснащен переключателем управления «ручной/электрический», при переходе с электрического управления на ручное вал маховика должен надежно удерживаться во включенном состоянии с помощью специального устройства.

Преимущества электропривода трубопроводной арматуры

Во многом они обусловлены доступностью электрической энергии ─ самого распространенного, очень удобного в использовании и хранении вида энергии, которую отличают простота и гибкость доставки к месту потребления (электрическая сеть сравнительно мало зависит от влияния внешних факторов).

Очень важно и то, что электроприводы обладают широкой гаммой функциональных возможностей. Их можно использовать для управления всеми типами арматуры, а при монтаже допустимо устанавливать в любом рабочем положении.

Наличие огромного количества конструкций и модификаций, широкий диапазон размеров, мощности и цен всех составных частей электроприводов ─ электродвигателей, редукторов и других устройств ─ дает возможность выбрать оптимальный вариант для трубопроводных систем любого назначения и размеров.

Электропривод позволяет организовывать высокоэффективные автоматизированные системы управления технологическими процессами.

Электроприводом легко управлять дистанционно, поэтому он хорошо подходит для использования в самых протяженных и сложных по конфигурации трубопроводных системах.

Системы управления электроприводом оперативны: электрический сигнал передается мгновенно, и промежуток между получением команды и началом ее реализации сведен к минимуму.

На экономические показатели использования электропривода положительно влияют высокий коэффициент полезного действия электродвигателей и то, что в электроприводе электроэнергия используется только в процессе выполнения работы.

Экономическая целесообразность использования электроприводов тем выше, чем больше площадь, на которой установлена трубопроводная арматура, и чем больше расстояние от пульта управления до управляемой арматуры.

Установка электропривода возможна непосредственно на трубопровод или на некотором отдалении от него.  Монтаж  электропривода на арматуру с ручным приводом в большинстве случаев не требует проведения работ по ее модификации.

 

Электропривод (а сегодня все чаще ─ автоматизированный электропривод) уже долгое время остается энергетической основой механизации и автоматизации большинства производственно-технологических процессов, потребляя более половины всей используемой в народном хозяйстве электроэнергии. Именно электропривод в значительной степени определяет производительность и технические возможности основной части промышленного оборудования.

Доступность электроэнергии и удобство обращения с ней предопределили повсеместное широкое использование электропривода для механизации и автоматизации управления всеми типами трубопроводной арматуры, включая задвижки, затворы, краны, клапаны.

Интересно, что если в общемировом производстве приводов трубопроводной арматуры доля электроприводов оценивается примерно в 50%, то в России она как минимум в полтора раза выше.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *