Разработан материал, который является теплоизоляционным и
Недавно разработанный материал хорошо проводит тепло вдоль слоев, в то же время обеспечивая теплоизоляцию по вертикали.
Пенопласт или медь — оба материала имеют очень разные свойства в отношении их способности проводить тепло. Ученые из Института исследований полимеров Макса Планка (MPI-P) в Майнце и Университета Байройта совместно разработали и охарактеризовали новый, чрезвычайно тонкий и прозрачный материал, который имеет различные свойства теплопроводности в зависимости от направления. Хотя он может очень хорошо проводить тепло в одном направлении, он показывает хорошую теплоизоляцию в другом направлении.
Материал с противоположными свойствами
Теплоизоляция и теплопроводность играют решающую роль в нашей повседневной жизни — от компьютерных процессоров, где важно максимально быстро рассеивать тепло, до домов, где хорошая теплоизоляция необходима для уменьшения затрат на электроэнергию. Часто чрезвычайно легкие, пористые материалы, такие как полистирол, используются для изоляции, в то время как тяжелые материалы, такие как металлы, используются для отвода тепла. Недавно разработанный материал, который ученые из MPI-P разработали и охарактеризовали совместно с Университетом Байройта, теперь может сочетать оба свойства.
Материал состоит из чередующихся слоев тонких пластин из стекла, между которыми вставлены отдельные полимерные цепи. «В принципе, наш материал, изготовленный таким образом, соответствует принципу двойного остекления», — говорит Маркус Реч, профессор Университета Байройта. «Это показывает только то, что у нас есть не только два слоя, а сотни».
Хорошая теплоизоляция наблюдается перпендикулярно слоям. В микроскопических терминах тепло — это движение или колебание отдельных молекул в материале, которое передается соседним молекулам. Создавая много слоев друг над другом, этот перенос уменьшается: каждый новый пограничный слой блокирует часть тепла. Напротив, тепло в слое может проводиться хорошо — нет ограничений, которые блокировали бы тепловой поток. В целом теплообмен внутри слоя в 40 раз выше, чем перпендикулярно ему.
Теплопроводности вдоль слоев сравнимы с теплопроводностью термопасты, которая используется, помимо прочего, для применения теплоотвода с компьютерных процессоров. Для электроизоляционных материалов на основе полимера/стекла эта величина исключительно высока — она превышает таковую у имеющихся в продаже пластиков в шесть раз.
Чтобы материал функционировал эффективно, а также был прозрачным, слои должны были быть изготовлены с очень высокой точностью — любая неоднородность могла бы нарушить прозрачность, подобную царапине на куске оргстекла. Каждый слой имеет высоту всего лишь одну миллионную часть миллиметра, т.е. один нанометр. Чтобы исследовать однородность последовательности слоев, материал был охарактеризован группой Йозефа Бреу, профессора неорганической химии в Университете Байройта.
«Мы используем рентгеновские лучи для освещения материала», — говорит Бреу. «Наложив эти лучи, которые отражаются отдельными слоями, мы смогли показать, что слои можно получать очень точно».
Профессор Фитас, сотрудник отдела профессора Ханса-Юргена Бутта, смог дать ответ на вопрос, почему эта слоистая структура обладает такими необычайно разными свойствами вдоль или перпендикулярно отдельным стеклянным пластинам. Используя специальное лазерное измерение, его группа смогла охарактеризовать распространение звуковых волн, которое подобно теплу также связано с движением молекул материала. «Этот структурированный, но прозрачный материал отлично подходит для понимания того, как звук распространяется в разных направлениях», — говорит Фитас. Различные скорости звука позволяют сделать прямые выводы о механических свойствах, зависящих от направления, которые недоступны никаким другим методам.
В своей дальнейшей работе исследователи надеются получить лучшее понимание того, как на распространение звука и тепла может влиять структура стеклянной пластины и полимерная композиция. Исследователи видят возможное применение в области высокоэффективных светодиодов, в которых стекло-полимерный слой служит, с одной стороны, в качестве прозрачной оболочки, а с другой стороны, может рассеивать выделяемое тепло в боковом направлении. опубликовано econet.ru по материалам phys.org
Подписывайтесь на наш youtube канал!
Подписывайтесь на наш канал Яндекс Дзен!
P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! © econet
Теплоизоляция — это… Что такое Теплоизоляция?
Разрушенная теплоизоляция на магистральной теплотрассеТеплоизоляция — это элементы конструкции, уменьшающие передачу тепла. Также термин может означать материалы для выполнения таких элементов или комплекс мероприятий по их устройству.
Основные типы теплоизоляции
Теплоизоляцию можно разделить по следующим типам, соответствующим разным способам теплопередачи:
- отражающая, которая предотвращает потери за счёт отражения инфракрасного «теплового» излучения
- предотвращающая потери за счёт теплопроводности, водопоглощения, паропроницаемости, то есть за счет кондуктивного и конвективного теплообмена (сочетания передачи тепла через сам материал и воздух или газ, находящийся в нем)
На практике теплоизоляционные материалы принято делить на три вида (по виду основного исходного сырья):
- Органические — получаемые с использованием органических веществ. Это, прежде всего, разнообразные пенопласты (например, пенополистирол). Такие теплоизоляционные материалы изготавливают с объёмной массой от 10 до 100 кг/м3. Главный их недостаток — низкая огнестойкость, поэтому их применяют обычно при температурах не выше 90°C, а также при дополнительной конструктивной защите негорючими материалами (штукатурные фасады, трехслойные панели, стены с облицовкой, облицовки с ГКЛ и т. п.). Также в качестве органических изолирующих материалов используют переработанную неделовую древесину и отходы деревообработки (древесно-волокнистые плиты, ДВП, и древесностружечные плиты, ДСП), сельскохозяйственные отходы (соломит, камышит и др.), торф (торфоплиты) и т. д. Эти теплоизоляционные материалы, как правило, отличаются низкой водо-, биостойкостью, а также подвержены разложению и используются в строительстве реже.
- Неорганические — минеральная вата и изделия из неё (например, минераловатные плиты), лёгкий и ячеистый бетон (газобетон и газосиликат), пеностекло, стеклянное волокно, изделия из вспученного перлита, вермикулита, сотопласты и др. Изделия из минеральной ваты получают переработкой расплавов горных пород или металлургических шлаков в стекловидное волокно. Объёмная масса изделий из минеральной ваты 35—350 кг/м
- Смешанные — используемые в качестве монтажных, изготовляют на основе асбеста (асбестовый картон, асбестовая бумага, асбестовый войлок), смесей асбеста и минеральных вяжущих веществ (асбестодиатомовые, асбестотрепельные, асбестоизвестковокремнезёмистые, асбестоцементные изделия) и на основе вспученных горных пород (вермикулита, перлита).
Показатели теплопроводимости пенобетона плотностью 150 кг/м3, изготовленного на цементе марки М500Д0, песка 5-ой фракции, пенообразователя Foamin C и воды в сравнении с ППУ изоляцией, указаны в таблице №1:
Теплопотери теплоизолированных труб, Кал/час на 1 п.м.
Диаметр, мм | Пенополиуретан | Пенобетон |
---|---|---|
57 | 27,7 | 23,5 |
89 | 35,9 | 28,5 |
108 | 41,5 | 30,7 |
159 | 46,9 | 44,9 |
219 | 59,9 | 46,9 |
Основные виды применяемой теплоизоляции:
Применение теплоизоляции
Теплоизоляция применяется для уменьшения теплопередачи всюду, где необходимо поддерживать заданную температуру, например:
Теплоизоляция стен
Теплоизоляция наружных стен выполняется в основном тремя способами:
- Навесной вентилируемый фасад с применением теплоизоляции (каменная или стеклянная вата)
- Тонкослойная штукатурка фасадов по теплоизоляционному материалу (пенополистирол или минеральная вата)
- Трехслойная конструкция стен (трехслойная, слоистая или колодцевая кладка, сэндвич-панели клееные или сборные, трехслойные ж/б стеновые панели).
С точки зрения теплофизики наиболее эффективно применять теплоизоляцию снаружи, так как в этом случае несущая конструкция стены находится всегда в зоне положительных температур и оптимальной влажности. Возможно применение теплоизоляции изнутри здания, но при этом варианте необходимо проводить расчет по влажностному режиму на необходимость слоя пароизоляции и только в исключительных случаях, когда невозможно изменить фасад здания по тем или иным соображениям (здание имеет высокую архитектурную и художественную ценность и т. д.).
Для теплоизоляции стен традиционно применяют следующие виды теплоизоляционных материалов: пенополистирол, Минеральная вата или Стекловата (стекловолокно). Также применяются утеплители из полиэфирного волокна с пониженной горючестью, среднее значение коэффициента теплопроводности которого составляет приблизительно 0,02 Вт/(м•K).
Утепление деревянного дома имеет несколько значительных особенностей, а именно теплоизоляция стыков несущих элементов (брус, сруб и т. д.). Традиционно для этой цели использовались такие естественные материалы как пакля и мох. В современном мире им на смену пришел столь же натуральный и экологичный, но более практичный утеплитель деревянного дома — им стал лен или джут.
Материалы для изготовления теплоизоляции
Для изготовления теплоизоляции, препятствующей теплопроводности, используют материалы, имеющие очень низкий коэффициент теплопроводности, — теплоизоляторы. В случаях, когда теплоизоляция применяется для удержания тепла внутри изолируемого объекта, такие материалы могут называться утеплителями. Теплоизоляторы отличаются неоднородной структурой и высокой пористостью.
См. также
Теплопроводность
Примечания
Ссылки
- Аблесимов Н.Е., Земцов А.Н. Релаксационные эффекты в неравновесных конденсированных системах. Базальты: от извержения до волокна. Москва, ИТиГ ДВО РАН, 2010. 400 с.
Теплоизоляционный материал. Виды и применение. Особенности
Теплоизоляционный материал применяется для утепления различных конструкций. Он имеет свойство низкой теплопередачи, поэтому его использование позволяет повысить термическое сопротивление объектов.
Какие задачи решает теплоизоляционный материал
Теплоизоляция является одним из приоритетных направлений при строительстве, поскольку ее применение позволяет многократно повысить эксплуатационные характеристики зданий. Постройка с достаточным количеством утеплителя гораздо меньше промерзает зимой, что снижает затраты на его отопление. Также она менее склонна к перегреву летом, сохраняя внутри комфортную температуру, что экономит ресурс кондиционерного оборудования.
Наличие теплоизоляции дает возможность избежать резких скачков температуры в помещении. Это очень важно, если внутри помещений применяется чувствительный к этому параметру отделочный материал, к примеру, древесина или отдельные виды пластика, в том числе и ПВХ используемый для производства натяжных потолков. Отсутствие существенных колебаний температуры дает возможность убрать благоприятные условия для образования конденсата. Именно применение теплоизоляции исключает появление сырости и развития плесени. Конечно при условии, что влага не образовывается внутри помещения слишком интенсивно от других факторов или накапливается в результате отсутствия гидроизоляции между фундаментом и фасадными стенами.
Сырость на стенах приводит к отслаиванию отделочных материалов. Как следствие наблюдается срывание обоев, а также тяжелой керамической плитки. Переизбыток влаги от отсутствия достаточной теплоизоляции также приводит к расширению изделий из дерева. Как следствие наблюдается коробление напольного покрытия, деформация дверей, от чего они неплотно входят в дверную коробку, и так далее.
Стоит также отметить, что теплоизоляционные материалы помимо своего прямого предназначения обладают звукоизоляционными свойствами. Конечно, их эффективность не столь высока как у специализированных для этой цели покрытий, но вполне достаточная, чтобы уменьшить передачу громких звуков.
Применяемые теплоизоляционные материалы
Существует довольно широкий ассортимент предлагаемых на рынке материалов, которые могут применяться в качестве удачного утеплителя. Среди них оптимальный баланс между стоимостью и эффективностью имеют:
- Минеральная вата.
- Пенопласт.
- Пенополистирол.
- Пеноплекс.
- Вспененный пенополиэтилен.
- Пенополиуретан.
Минеральная вата
Это дешевый, при этом довольно качественный теплоизоляционный материал, который может применяться для утепления потолков, крыш, полов и стен. Минеральная вата при нажатии сжимается, поэтому при работе с ней необходимо предварительно создать обрешетку, после чего уложить ее между лагами. Сверху нее применяется облицовочный, кровельный или напольный материал. Безусловным преимуществом ваты помимо теплоизоляционных свойств является и звукоостанавливающий эффект. Минеральная вата не горит, поэтому ее использование позволяет повысить пожарную безопасность.
Крупным недостатком минеральной ваты является склонность к слеживанию. Если она используется на потолке или полу, то служит действительно долго, но вот плиты закрепленные на стенах начинают постепенно усаживаться. Как следствие вверху образовываются открытые зазоры, так называемые мостики холода. В связи с этим производители минеральной ваты зачастую рекомендуют ее менять буквально каждые 7 лет, в противном случае теплоизоляция будет постепенно работать все хуже и хуже.
Пенопласт
Это также бюджетный теплоизоляционный материал, который можно использовать в любом утеплении. Стоит отметить, что пенопласт может монтироваться мокрым и сухим способом. Поскольку он склонен к сжатию при давлении, то в случае его использования для теплоизоляции стен лучше всего работать с фасадом. Оштукатуренный пенопласт, армированный стекловолоконной сеткой, вполне справится с нагрузками, которые на него могут оказываться на фасаде. Но вот внутри помещения такая стена долго не прослужит, поскольку на нее постоянно будут опираться, навешивать шкафчики, полки, картины, фотографии и так далее.
Плотность пенопласта довольно низкая, поэтому при проведении теплоизоляции обычно используются листы с толщиной 5-10 см. К неоспоримым достоинствам применения этого материала является возможность обрезки обыкновенным монтажным ножом без необходимости использования пилы. Главным недостатком пенопласта является его склонность к разрушению. При механическом воздействии из него с легкостью выпадают вспененные пузырьки.
Пенополистирол и пеноплекс
Эти два материала практически идентичны по своим свойствам. Их можно сравнить с пенопластом, но имеющим очень плотную структуру. Пенополистирол и пеноплекс можно использовать для мокрого утепления пола. Их листы раскладываются, после чего сверху заливается бетонная стяжка. Эти материалы легко режутся с помощью монтажного ножа, ручной ножовки, электрического лобзика или циркулярной пилы.
Пенополистирол и пеноплекс лучше пенопласта благодаря более высокой плотности, поэтому они менее склонны к разрушению при механическом воздействии. Кроме того они эффективнее останавливают теплообмен, поэтому такой теплоизоляционный материал может применяться с использованием листов меньшей толщины. Работая с пеноплексом нужно учитывать, что он имеет очень низкую адгезию. В связи с этим, если его применять для утепления стен, то сделать дальнейшую штукатурку будет сложно. Чтобы повысить адгезию листов их придется обработать грунтовкой бетоноконтакт. Штукатурные работы придется проводить с применением стекловолоконной сетки по всему периметру, а не только по линиям стыков.
Данные материалы обладают низкой огнестойкостью, а также при возгорании выделяют токсические продукты сгорания. Они требуют аккуратного обращения при работе, поскольку весьма хрупки.
Вспененный пенополиэтилен
Это современный материал, который представляет собой пористую структуру из полиэтилена. Зачастую одна его сторона покрыта алюминиевой фольгой. Часто он используется в качестве подложки при укладывании напольных покрытий, в частности ламината и линолеума. Этот материал имеет малую толщину при действительно отличных теплоизолирующих свойствах. Его эффективности в 20 раз выше, чем у минеральной ваты. Таким образом, при толщине в 1 см он будет обладать такими же свойствами как 20 см ваты.
Неоспоримым достоинством вспененного пенополиэтилена является хорошая пароизоляция. Такой материал раскладывается по поверхности, а его стыки склеиваются специальным армированным скотчем с отражающей поверхностью. Вспененный пенополиэтилен может использоваться для проведения любых теплоизоляционных работ, а также наматываться на трубы для их утепления.
Пенополиуретан
Этот теплоизоляционный материал в отличие от предыдущих видов предлагается не в виде рулонов или плит, а в жидком состоянии. Он выдувается на поверхность, после чего быстро увеличивается в объеме и застывает. Благодаря этим свойствам его можно наносить на любые поверхности даже в труднодоступные места. Полиуретановый утеплитель обычно распыляется между лагами пола, крыши и так далее. После этого сверху закрепляются отделочные материалы.
Пенополиуретан имеет огромный ресурс, обладает шумоизоляционными свойствами и высокой адгезией к любым поверхностям. Бесстыковая технология нанесения предотвращает образование мостиков холода. Такое решение при точном соблюдении технологии монтажа можно назвать самым эффективным. К сожалению, для работы с пенополиуретаном требуется применение специализированного оборудования, стоимость которого очень высока. Как следствие работать самостоятельно с ним не удастся. Потребуется обращаться в компании, предоставляющие подобные услуги теплоизоляции.
Где применяется теплоизоляция
Теплоизоляционный материал используется для обеспечения утепление различных поверхностей:
- Стен.
- Кровли.
- Подвала и пола.
- Потолка.
Утепление стен
Довольно часто применяемые материалы для строительства стен имеют недостаток в виде склонности к промерзанию зимой, а также передачи нагрева внутрь помещения летом. Для устранения данной проблемы применяется теплоизоляция. Она может проводиться как внутри помещения, так и снаружи. Естественно, намного эффективней делать ее на фасадной стене. Большинство материалов обычно имеют толщину как минимум в 4-5 см, поэтому закрепляя их на внутренней стене, помещение будет уменьшаться. Вопрос утепление стен весьма важен, поскольку именно через них происходит потеря до 40% тепла уходящего из здания.
На стенах утеплительный материал может фиксироваться мокрым или сухим способом. Мокрый предусматривает приклеивание с применением специализированных растворов в виде клеев или цементных смесей. Сухой способ еще называют вентилируемый. На поверхность стены монтируется обрешетка, а теплоизоляционный материал укладывается между ней, после чего осуществляется облицовка закрывающими материалами. Внутри помещение применяется гипсокартон, а на фасадах металлопрофиль и так далее.
Утепление кровли
Через кровлю может улетучиваться до 20% тепла. Утепление особенно важно при устройстве мансардной крыши, когда подкровельное пространство используется в качестве эксплуатируемого помещения. Применив теплоизоляционный материал на кровле, можно уменьшить перегрев здания летом. Это особенно актуально, если в качестве кровельного материала применяются металлические листы в виде профлиста, металлочерепицы и так далее. При устройстве крыш утеплитель фиксируется между лагами.
Утепление подвала и пола
Это в первую очередь актуально для одноэтажных построек, а также помещений на первых этажах многоярусных домов. Применяемые в этом случае теплоизоляционные материалы укладываются между бетонной стяжкой и облицовочным напольным покрытием. Отдельные виды теплоизоляционных решений могут применяться перед заливкой стяжки. Если осуществляется укладка напольной доски по лагам, то утеплитель распространяется между ними.
Утепление потолков
В одноэтажных зданиях, а также на последних этажах многоэтажных построек осуществляется теплоизоляция потолков. В большинстве случаев ее проще проводить на чердаке, используя такой же способ, как применяется при утеплении пола. Таким образом удастся сэкономить на материалах и обойтись более простой технологией. Также, когда нужно работать именно с потолком, то закреплять теплоизоляционный материал можно мокрым способом или зафиксировать его на обрешетке, в дальнейшем скрыв навесным или натяжным потолком.
В отдельных случаях проводить теплоизоляцию именно потолка, а не пола чердака, даже лучше, особенно если высота помещения чрезмерно большая. Уложенный теплоизоляционный материал позволит забрать немного высоты потолков, тем самым уменьшив фактический объем помещения для отопления.
Похожие темы:
Теплоизоляционные материалы
Теплоизоляционные материалы — это изделия и строительные материалы, которые предназначены для тепловой изоляции конструкций зданий и сооружений. Основной особенностью теплоизоляционных материалов является их высокая пористость и, следовательно, малая плотность и низкая теплопроводность.
Главной целью применения теплоизоляционных материалов является сокращение расхода энергии на отопление здания. Кроме того, использование теплоизоляции в строительстве зданий позволяет существенно снизить массу конструкций, уменьшить расход основных строительных материалов, таких как кирпич, древесина, бетон и др.
На сегодняшний день в конструкциях зданий и сооружений применяются разнообразные теплоизоляционные материалы. Мы перечислим лишь те, которые получили наибольшее распространение. Это теплоизоляционные материалы на основе стекловаты, минеральной ваты, пенополистирола (пенополистирола экструзионного) и пенополиуретана. Крупнейшими производителями теплоизоляции является PAROC (минеральная вата), IZOVER (стекловата) и ROCKWOOL.
Теплоизоляционные материалы широко используются в конструкциях современных зданий. С их помощью утепляют кровли, наружные, внутренние и подвальные стены, полы и перекрытия. В каждом случае к теплоизоляционному материалу предъявляются особые требования, зависящие от условий его эксплуатации. Выбор того или иного материала осуществляется в соответствии с требованиями к материалу и его техническими характеристиками.
Главной технической характеристикой теплоизоляционных материалов является теплопроводность — способность материала передавать теплоту. Для количественного определения этой характеристики используется коэффициент теплопроводности λ, который равен количеству тепла, проходящему за 1 час через образец материала толщиной 1 м и площадью 1 м2 при разности температур на противоположных поверхностях 1°С. Отметим, что величина теплопроводности теплоизоляционных материалов зависит от плотности материала, вида, размера, расположения пор и т.д. Также сильное влияние на теплопроводность оказывает температура и влажность материала. В различных странах методики измерения теплопроводности значительно отличаются, поэтому при сравнении теплопроводностей различных материалов важно учитывать, при каких условиях проводились измерения.
К дополнительным параметрам, характеризующим теплоизоляционные материалы, можно отнести плотность, прочность на сжатие, сжимаемость, водопоглощение, сорбционная влажность, морозостойкость, паропроницаемость и огнестойкость.
Знание значений этих параметров и использование их в расчетах систем теплоизоляции позволяет добиться желаемых результатов — существенной экономии строительных материалов и минимального расхода энергии для отопления здания.
Характеристики теплоизоляционных материалов
Теплоизоляционные материалы обладают рядом теплотехнических свойств, знание которых необходимо для правильного выбора материала конструкции и проведения теплотехнических расчетов. Точность последних в значительной степени зависит от правильного выбора значений теплотехнических показателей. Какие же это показатели?
1 Современные эффективные теплоизоляционные материалы и изделия.
За последние годы на российском строительном рынке появились десятки новых теплоизоляционных материалов, благодаря чему произошел значительный прорыв в первую очередь в сфере энергосбережения. С развитием новых технологий, современные изоляционные материалы стали более эффективными, экологически безопасными и разнообразными, и отвечающими конкретным техническим задачам строительства — возможность строительства высотных зданий, уменьшение толщины ограждающих конструкций, снижение массы зданий, расхода строительных материалов, а также экономии топливно-энергетических ресурсов при обеспечении в помещениях нормального микроклимата. К теплоизоляционным материалам относятся строительные материалы и изделия, предназначенные для тепловой изоляции ограждающих конструкций зданий и сооружений, технологического оборудования и трубопроводов. Такие материалы имеют низкую теплопроводность (при температуре 25°С коэффициент теплопроводности не более 0,175 Вт/(м°С)) и плотность (не выше 500кг/м³). Основная техническая характеристика теплоизоляционных материалов — это теплопроводность, т.е. способность материала передавать тепло. Для количественного определения этой характеристики используется коэффициент теплопроводности, который равен количеству тепла, проходящему за 1 час через образец материала толщиной 1 м и площадью 1 м² при разности температур на противоположных поверхностях 1°С. Теплопроводность выражается в Вт/(мК) или Вт/(м°C). При этом величина теплопроводности теплоизоляционных материалов зависит от плотности материала, вида, размера, расположения пор и т.д. Также сильное влияние на теплопроводность оказывает температура и влажность материала. Кроме этого, важными дополнительными свойствами теплоизоляционных материалов являются — прочность на сжатие, сжимаемость, водопоглощение, сорбционная влажность, морозостойкость, паропроницаемость и огнестойкость.
Использование современных теплоизоляционных материалов позволяет значительно удешевить строительство, сократить его сроки и создать довольно легкую конструкцию. Однако самое важное тут – правильно устроить теплоизоляцию, ведь это целая наука, согласно которой следует, что универсального решения быть не может. Все зависит от конкретных условий: где расположен дом, из чего построен, какие у него конструктивные особенности и т.д.
Для каждой конструкции предписан определенный алгоритм работы согласно специфике материала. Кроме этого, существуют некоторые особенности, обусловленные климатической зоной, в которой ведется строительство: где холоднее, там теплоизоляционный слой должен быть толще. Так, например, в конструкциях наружного утепления зданий из бруса толщиной 150 мм толщина теплоизоляционного слоя минеральной ваты (марки КТ-11 TWIN от Isover) составляет для Москвы 115 мм, Санкт-Петербурга – 111 мм, Новосибирска – 148 мм. Материалы маркируются коэффициентом теплопроводности (обозначается символом λ). Чем он меньше, тем лучше. Оптимальным показателем специалисты называют цифру 0,03–0,04 Вт/мК, ниже 0,024 Вт/мК у теплоизоляционных материалов он быть просто не может, поскольку именно такой коэффициент теплопроводности имеет воздух.
Существуют, впрочем, предложения, которые учитывают среднестатистические российские условия, – это готовые решения от компаний-производителей для тех, кто строит свои дома. Что же представляют собой теплоизоляционные материалы XXI века?
Теплоизоляционные материалы классифицируют по форме, внешнему виду, структуре, исходному сырью, жесткости (относительной деформации при сжатии), теплопроводности и горючести – в общем, по многим параметрам. Но, по большому счету, можно выделить две основные группы: минеральные волокнистые (типа стекловолокна, каменной ваты) и органические пенопласты (блочные, экструдированные). У каждого из этих материалов есть свои достоинства, соответствующие сфере применения, и свои недостатки, эту сферу ограничивающие. К достоинствам минеральных материалов относятся химическая стойкость, стабильность размеров, низкое влагопоглощение и хорошие звукопоглощающие свойства. Благодаря своей структуре материал не горит – при высоких температурах он спекается, не выделяя при этом опасных для человека веществ.
На основе минерального сырья производят минераловатные маты, полужесткие и жесткие плиты, а также скорлупы, сегменты, цилиндры и другие изделия. Теплоизоляционные маты на основе минерального волокна предназначены для тепловой изоляции строительных конструкций, промышленного оборудования и трубопроводов тепловых сетей. Отечественная промышленность производит несколько видов минераловатных матов. Минераловатные прошивные маты применяют для теплоизоляции ограждающих конструкций зданий и поверхностей промышленного оборудования и трубопроводов, работающих при температуре до +400°С. Изготавливают их следующим образом: слои минеральной ваты из камеры осаждения сначала подают транспортером в камеру охлаждения, где минераловатный ковер уплотняется до заданной толщины и одновременно через него просасывается холодный воздух. Охлажденный ковер затем направляют на прошивочную машину, прошивают нитями с помощью специальных игл. На этом же станке при помощи дисковых ножей осуществляют продольную разрезку ковра, после чего разрезанные на заданные размеры маты поступают на рулоноукладчик, а затем на упаковку.
Пенополистирол (он же пенопласт) производится либо традиционным для нашей страны беспрессовым методом, либо методом экструзии, разработанным более 30 лет назад. К его достоинствам следует отнести более низкую, чем у минераловатных утеплителей, теплопроводность и высокую механическую прочность, что позволяет эффективно использовать его там, где изоляция подвергается высокой механической нагрузке, а также там, где невозможно (или нецелесообразно) использовать традиционные теплоизоляционные материалы из минерального волокна. Например, для инверсионных («перевернутых») плоских крыш, внешнего утепления стен подвалов, утепления нагружаемых полов, изоляции фундаментов, защиты дорожного полотна от морозной деформации. Недостатком можно назвать его горючесть с последующим выделением вредных для человека веществ и более высокую цену, хотя подсчитать его оптимальную стоимость с учетом сроков службы и прочих характеристик достаточно сложно…
Существует несколько способов утепления фасада, которые применяются в современном строительстве в зависимости от особенностей конкретного объекта и тех задач, которые утеплитель призван решить. Производители предлагают сегодня огромный ассортимент теплоизоляционных материалов. Здесь важно понимать, что один и тот же материал может использоваться при решении разных задач, но в каждом конкретном случае нужно найти оптимальный вариант. Выбор непрост: необходимо учитывать технологические, конструктивные и эксплуатационные свойства, а каждый материал обладает своим набором этих свойств, соразмерить их со стоимостью и только после этого, взвесив все «за» и «против», принять решение. Можно, конечно, свести вопрос теплоизоляции фасада к одному тезису: идеальным материалом для этих целей является минеральная вата, что в принципе вполне соответствует действительности. Однако купить какое-то количество этого материала, обшить им дом и жить в тепле не получится. Все дело в деталях – от них зависит, будут ли изоляционные свойства того или другого материала задействованы в полной мере. Производители в зависимости от использованных строительных и отделочных материалов, их толщины и прочих свойств рекомендуют не просто теплоизоляционный материал определенной марки, а целую систему материалов и технологий, необходимых для оптимального утепления, куда входят, например, гидро- и пароизоляционные материалы, создание вентиляционного зазора и прочие тонкости.
По большому счету существует всего три способа теплоизоляции фасада. Внутри стены (так называемые многослойные конструкции), снаружи (когда теплоизоляция контактирует с воздухом – вентилируемый фасад – или не контактирует, когда теплоизоляция находится под слоем штукатурки – мокрый фасад) и изнутри. Утепление снаружи считается наиболее эффективным, к внутренней теплоизоляции прибегают в исключительных случаях, поскольку велика вероятность того, что вода начнет скапливаться на границе «холодная стена – утеплитель» или в толще стены, не говоря уже о том, что утеплитель отбирает на себя полезную площадь дома. Размещение внутри стены (многослойные конструкции) – популярное на сегодняшний день решение для строительства. Утеплитель размещается с наружной стороны стены и закрывается облицовочным кирпичом или сайдингом. Все это, безусловно, только общие принципы – готовых решений, подходящих для поточного использования в коттеджном строительстве, не существует.
Изолировать можно не только стены, но и коммуникации, которые подвергаются воздействию холода. Хотя здесь есть маленький нюанс. Систему холодного водоснабжения, например, важно защищать от замерзания, а вот утепление системы с горячей водой позволяет уменьшить теплопотери и оказывается полезным в любое время года. Для предотвращения столь неприятных последствий производители предлагают специальные «трубные» утеплители – минеральную вату, стекловату, пенополиуретан, вспененный синтетический каучук и т.д. У всех этих материалов своя область применения, свои преимущества и недостатки. Наиболее распространенный утеплитель, защищающий от холода и перепадов температуры, – минеральная вата.
Трубопроводы изолируют минераловатными плитами с последующим покрытием алюминиевой фольгой или бумагой. Эффективность такого утепления во многом зависит от аккуратности исполнителей, а вот эстетическая ценность – крайне сомнительная.
Более прогрессивный материал – минераловатные цилиндры, благодаря которым удается значительно снизить трудоемкость изоляционных работ при очень высоком качестве исполнения. У полых цилиндров имеется надрез по всей длине, они легко защелкиваются на трубе и закрепляются либо клипсами, если цилиндр не каширован, либо алюминиевым скотчем, когда цилиндр каширован (покрыт алюминиевой фольгой). Цилиндры легко нарезать на сегменты для изоляции трубных отводов. Их используют для тепловой изоляции трубопроводов при надземной (на открытом воздухе, в подвалах, помещениях) и подземной (в каналах, тоннелях) прокладках. Температурный диапазон применения минераловатных цилиндров находится в пределах от – 180 до +600°С, то есть они подойдут для любых коммуникаций, которые используются в «домашнем» хозяйстве.
Для изоляции так называемых «холодных» объектов (системы вентиляции и кондиционирования, холодильных установок и прочего) применяют вспененный синтетический каучук, напоминающий резину. К достоинствам этого материала можно отнести прекрасные теплоизоляционные качества, надежность в работе, полную герметичность изоляционного слоя.
При склеивании вспененного синтетического каучука происходит так называемое взаимное проникновение поверхностей – «эффект холодной сварки», поэтому клееные швы получаются крепче, чем сам материал. К недостаткам относят довольно высокую стоимость.
Еще один теплоизоляционный материал – пенополиэтилен – более дешевый, но область его применения ограничена его свойствами. Низкое сопротивление диффузии водяного пара не позволяет использовать его для изоляции «холодных» объектов. Пенополиэтилен плохо поддается склеиванию, а через некоторое время дает значительную усадку. Клееные соединения нередко расклеиваются в течение первого года. Избежать указанных недостатков позволяет использование теплоизоляционных труб из пенополиэтилена, которые вместе с листовыми материалами и необходимыми аксессуарами образуют единую универсальную систему изоляции любых инженерных сетей. Трубы снабжены защелкой, что особенно удобно в местах, где требуется постоянный демонтаж изоляции. Монтаж ведут путем предварительного разрезания изоляции по технологическому шву с последующим склеиванием вдоль разреза.
Инновации в теплоизоляционных материалах
Мы уже привыкли использовать для утепления дома минеральную вату или пенопласт. Однако, утепляющих материалов существует гораздо большее количество, среди которых современные инновационные и уникальные разработки. Такие средства изоляции отвечают современным требованиям качества и являются альтернативой традиционным решениям.
Каждый год строительный рынок пополняется новыми утеплительными материалами. Некоторые из них являются просто усовершенствованием традиционных изоляционных материалов, таких как минеральная вата с лучшими теплоизолирующими свойствами и пенопласт более высокого качества. Появляются также материалы, изготовленные из совершенно новых видов сырья. Некоторым из них свойственна нетипичная форма и способ укладки. Эти новые средства разработаны не для вытеснения на рынке надежных позиций пенопласта и минеральной ваты, а как дополнение к ним, хотя во многих случаях могут оказаться очевидной альтернативой.
Жесткие PIR-панели
Новые теплоизоляционные материалы. Большинство производителей выпускают новые утеплительные плиты из все той же полиуретановой пены, которая обычно применяется для уплотнения окон и дверей. Это такие же пористые изоляционные плиты, которые изготовляются из улучшенного полиуретана, который принято обозначать аббревиатурой PIR.
Своей формой PIR-панели похожи на пенопластовые пластины с профилированными краями. Разница между ними заключается собственно в их структуре. Полиуретановые панели, как правило, обклеены с двух сторон алюминиевой фольгой или укреплены толстой специальной бумагой.
Полиуретан PIR в настоящее время является одним из лучших теплоизоляционных материалов. Его теплопроводность крайне низка и может доходить до 0,020 Вт/(мК), но обычно составляет около 0,023-0,028 Вт/(мК). Плиты устойчивы к воздействию влаги и воды. Их влагопоглощение достигает максимум 9%. Также этот материал способен полностью заменить пароизоляцию. Плиты из PIR-полиуретана гораздо прочней стандартных сортов пенопласта и минеральной ваты.
Теплоизоляция с фольгой
Тепловое излучение отражается от блестящей глянцевой поверхности, что обеспечивает удерживание тепла в доме. Для отражения теплового излучения используется металлическая фольга, которая производится и хранится в виде тонких рулонов. Их структура является слоистой. Между двумя слоями усиленной алюминиевой фольги расположены прокладки из полиэстера или пузырчатой пленки. Крепится такая пленка наподобие пароизоляции, скобами к деревянному основанию или двусторонним приклеиванием к стальным конструкциям.
Низкий вес, небольшая стоимость и отличная теплоизоляция (коэффициент теплопроводности может достигать 0,019 Вт/(мК)) являются отличительной чертой этого вида теплоизоляции. Блестящая поверхность покрытия в состоянии отражать до 92% лучистого тепла.
Напыляемая изоляция PIR
Используется полиуретан PIR в полужидком состоянии при высоком давлении распыления. Такой полиуретан производится на заводах, но он также может быть произведен на месте произведения строительно-ремонтных работ, например, непосредственно на строительной площадке. Для этого используются специальные агрегаты для распыления изоляции.
Распыляемая изоляция PIR обладает множеством преимуществ, но главными и самыми важными являются сплошная однородность изолирующего покрытия, не имеющая трещин и мест соединения (состыковки). Такая технология также обеспечивает быстрое выполнение утепления. Теплопроводность PIR составляет от 0,049 до 0,024 Вт/(мК). Одни разновидности такой пены способны полностью защищать от пара, а другие обеспечивают полную паропроницаемость.
Аэрогель – изоляция из оксида кремния
Он имеет хорошие показатели теплопроводности, может быть прозрачным, и его пористость порой достигает 99%. Этот тип изоляции используется в строительстве железнодорожного пассажирского транспорта и космических скафандров, но популярность его на мировом строительном рынке не менее высока.
Силикатный аэрозоль конденсируется и преобразуется в гель, а после затвердения поступает в продажу под видом плит, гранул или рулонов. Аэрогель очень пористый, а его плотность достигает до 143 кг/м3.
Кроме этого он чрезвычайно устойчив к сжатию. Его теплопроводность составляет от 0,012 до 0,030 Вт/(мК).
Теплоизоляционный материал: какие материалы являются самыми востребованными? Где применяются эти материалы? — Теплоизоляция — Применение стеклотканей
На протяжении всей истории своего существования человечество стремилось сделать свое жилье максимально комфортным. Непосредственно на комфорт могут оказывать влияние самые разнообразные факторы. Одним из важнейших является микроклимат. Поэтому достаточное утепление помещения – это задача, которую село можно назвать первоочередной. Поэтому необходимо подобрать наиболее подходящий теплоизоляционный материал. Можно догадаться, для каждого типа домов нужны материалы для теплоизоляции, которые будут полностью сочетаться с домовой конструкцией.
В настоящее время было разработано масса разнообразных материалов, пришедших на заемну традиционным. Все современные теплоизоляционные материалы являются высокотехнологичными и практически универсальными, поскольку кроме основной функции утеплителя они способны выполнять еще и целый ряд других функций, например, шумоизоляцию или защиту от вибрации. При выборе материала необходимо, в первую очередь, определиться с собственными целями и с результатами, которые мы ожидаем получить в итоге. Главные различия между теплоизоляционными материалами заключаются не только в их теплопроводности, но и в прочности, долговечности, безопасности, а также способности к воспламенению.
Сегодня очень сложно представить себе какое-либо строительство без теплоизоляции. Инновации и новые технологии производства позволяют нам заниматься утеплением всех без исключения конструкций – от крыши до фундамента. Для любого помещения в доме, для любого строительного элемента подходит определенный вид термоизоляционных материалов, которые больше всего будут соответствовать характеристикам. Термоизоляционный материал предназначен для того, чтобы на отопление помещения приходилось как можно меньше энергетических затрат. Это позволит вам сэкономить значительные средства. Современные средства позволяют платить за отопление примерно вполовину меньше.
Какие бывают виды современных теплоизоляционных материалов.
Как мы уже говорили ранее, теплоизоляционных материалов довольно много. Мы же хотим вкратце рассказать о самых востребованных из них. Перед тем, как описывать каждый из материалов, перечислим их:
- Термоизоляционные материалы из базальтовых горных пород
- Вермикулит
- Теплоизоляция на основе вспененного полиэтилена
- Теплоизоляционный материал на основе древесного волокна
- Жидкая теплоизоляция
- Комбинированные теплоизоляционные материалы
- Кремнеземные материалы для теплоизоляции
- Теплоизоляция на основе минеральной ваты
- Изоляция из пористого пенопласта
- Термоизоляционный материал из пеностекла
- Теплоизоляция перлит
- Материалы на основе полиэфирных волокон
- Резольные материалы для теплоизоляции
- Материал для теплоизоляции совелит
- Стеклоткань, стеклосетка, стеклохолст
- Конопляные утеплители
- Льняные утеплители
- Штапельное стекловолокно
Перед тем, как приступить к повествованию, мы хотели бы уточнить, что перечислили теплоизоляционные материалы в произвольном порядке, а ни в коем случае не в степени убывания их теплоизоляционных характеристик.
Теплоизоляция из базальтовых горных пород и вермикулит.
Базальтовые термоизоляционные материалы производят из базальтовых волокон. Получаются волокна посредством плавления базальтовых горных пород, а также добавления специального связующего элемента, который придает форму. Базальтовая теплоизоляция способна превосходно сберечь тепло, оставаясь при этом отличным вариантом шумоизоляции. Кроме того, этот материал выступает в роли огнезащиты. Можно выделить два основных типа волокна:
- Непрерывное базальтовое волокно
- Штапельное базальтовое волокно
Вермикулит является превосходной основой для производства теплоизоляционного материала. Этот материал имеет структуры в виде слоев. Внешне это выглядит как сочетание кристаллов золотисто-желтого или бурого цвета. Во время нагрева образуются нити золотистого или серебряного цвета с делением на тонкие чешуйки. Используется вермикулит в бытовой теплоизоляции. Материал не способен разлагаться, а также не подвержен гниению. Главное преимущество – эластичность.
Термоизоляционные материалы из вспененного полипропилена.
Очень часто этот превосходный материал применяется для упаковывания. Структура состава представляет собой гранулы в форме цилиндра. Гранулы состоят из большого количества закрытых ячеек, которые заполнены воздухом. Это эластичный экологически чистый продукт , идеально подходящий для теплоизоляции помещений. Основным компонентом является полиэтилен, вспененный бутан-пропановой смеси. Поры материала закрыты и очень упруги. Основными преимуществами являются:
- Очень низкий коэффициент водопоглощения
- Превосходные теплоизоляционные показатели материала
Материалы для теплоизоляции из древесных волокон.
Теплоизоляционный материал из волокон древесины является в высшей степени чистым с экологической точки зрения. Плиты из древесного волокна создаются из древесины хвойных пород. Синтетика в производстве не применяется. Материал очень широко применяется в жилищном строительстве и является высокоэффективным утеплителем. Плиты выполняются в виде листов, изготовленных путем переработки. В состав не входит ни одно из известных токсичных веществ. В процессе производства регулируются пористость и прочность плит. Показатели плотности начинаются от 160 и заканчиваются 280 кг/м3. Удобство заключается в возможности использования разных размеров плит. Основными преимуществами материала являются:
- Превосходные показатели теплоизоляции
- Высокий уровень шумоизоляции
- Отсутствие токсичности
- Легкая утилизация
Жидкая теплоизоляция помещений
Жидкие термоизоляционные материалы, как и твердые, обладают превосходными теплоизоляционными свойствами. Главным структурным элементом являются керамические или
силиконовые сферы, имеющие разный диаметр. Внутри них расположен разреженный воздух. Основой же является латексная смесь с различными акриловыми переплетениями. Некоторые материалы содержат разнообразные добавки, которые в значительной степени препятствуют образованию коррозии. Удобство применения заключается в том, что материал наносится подобно краске. После застывания материал образует отличный теплоизоляционный слой. Такие теплоизоляционные материалы не только не уступают по своим характеристикам стандартным утеплителям, но и абсолютно превосходят очень многие из них. Например, один миллиметр жидкой теплоизоляции эквивалентен пяти-шести сантиметрам минеральной ваты. Основные преимущества жидкого утеплителя:
- Отличная теплоизоляция
- Очень хорошая звукоизоляция
- Легкость нанесения
- Легкость ремонта
- Очень продолжительный эксплуатационный срок
- Экологическая чистота
- Негорючесть
Комбинированные материалы для теплоизоляции.
К комбинированным термоизоляционным материалам относится съемная теплоизоляция. Изоляторы такого типа обладают очень высокой температурной переносимостью и используются для люков, фланцев, фитингов, теплообменников, арматур, турбин, компрессоров. Диапазон температур эксплуатации от -40 до +700оС. У разных производителей эти материалы обладают различными характеристиками состава, а также они различаются областями применения. В большинстве случаев изоляторы такого типа являются действительно узкоспециальными.
Как правило, комбинированные материалы состоят из двух слоев. Внутренний слой – это непосредственный утеплитель. В его роли может выступать минеральная вата, стекловата или же вспененный каучук. Внешний слой изготавливается обычно из армированной стеклоткани с различными полимерными добавками. Такая конструкция позволяет добиться следующих преимуществ:
- Быстрая окупаемость за счет снижения потерь тепла до 90%
- Срок эксплуатации свыше 30 лет
- Легкость монтажа
- Возможность многоразового использования
- Отличная звукоизоляция
Кремнеземные материалы для тепловой изоляции.
Эти теплоизоляционные материалы относятся к категории одних из самых стойких к высоким температурам. Их можно использовать при температуре свыше 1000оС. Собственно, плавиться он начинают при температуре свыше 1700оС. Волокна материала – это превосходный материал для теплоизоляции. Выпускается он, как правило, в форме матов, а вот производятся в виде волокна, покрытого оболочкой из кремнеземной ткани. Эти маты используются для изоляции участков, находящихся под воздействием высоких температур. Они способны исполнять роль, как утеплителя, так и теплозащиты. Очень часто кремнеземные маты используются на атомных электростанциях, заводах по переработке нефти, а также на военных производствах. Все уникальные свойства материала позволяют нам выделить основные преимущества:
- Высокая инертность материалов
- Превосходная теплоизоляция
- Превосходная теплозащита
- Переносимость высоких температур
Утеплители на основе минеральной ваты.
Применение плит и матов из минеральной ваты – это дешевый и одновременно надежный способ утепления. Такие материалы производятся путем расправления горных пород с добавлением синтетического связующего элемента для создания однородности и формы. Существует масса добавок, которые позволяют придать материалу определенные свойства и характеристики. По сути, минераловатные теплоизоляционные материалы являются универсальными утеплителями, обладающими широчайшей сферой применения. Маты из минеральной ваты отличаются от таких же плит только формой выпуска, а следовательно – только внешним обликом.
Существует несколько категорий минераловатных утеплителей. К каждой из категорий могут применяться различного рода обкладки, прилагаемые с одной или с двух сторон. Таким образом, проводится усиление необходимых качеств. Маты и плиты относятся к негорючим материалам. Чтобы защитить материал от влаги, необходимо применять гидрофобные добавки. Основными преимуществами минераловатных утеплителей являются:
- Превосходные теплоизоляционные свойства
- Негорючесть
- Хорошие звукоизоляционные свойства
- Долгий срок эксплуатации
Что собой представляют пеноизол и пеностекло.
Пеноизол, используемый в качестве изолятора, относится к категории самых современных теплоизоляционных материалов. Если быть более конкретными, то это изоляционный пенопласт, обладающий отличными свойствами теплоизоляции. Материал обладает не очень большой плотностью, которая колеблется в пределах от 8 до 25 кг/м3. Материал оказывает сильное сопротивление огню, а грызунам он вообще неинтересен. Срок эксплуатации материала составляет около 35 лет. Несмотря на высокое сопротивление огню, в качестве огнезащиты материал лучше не использовать. Но все же пеноизол относят к группе с нормальными показателями горючести. Основная сфера применения – это теплоизоляция в малоэтажном строительстве, при сооружении складов, ангаров, боксов, гаражей. Пеноизол обладает следующими преимуществами:
- Защита помещения от влаги
- Быстрота и удобство монтажа
- Низкая степень теплопроводности.
Что касается пеностекла, то о нем можно смело сказать, что эти материалы для теплоизоляции обладают превосходными тепло- и звукоизоляционными характеристиками. Пеностекло производится разными способами. Например, первый способ – это спекание стеклянного порошка, полученного из битого стекла, с газообразователями – известняк или антрацит. Второй способ – спекание определенных вулканических пород с теми же газообразователями. Газы, выделяющиеся в процессе спекания, образуют структурные поры, благодаря чему достигается пористость в 80-95%. Плотность пеностекла располагается от 150 до 250 кг/м3. Применяется пеностекло в гражданском и промышленном строительстве, а также в качестве изолятора промышленного оборудования. Купить этот изолятор можно в форме плит или блоков. Он обладает следующими преимуществами:
- Высокие теплоизоляционные свойства
- Стойкость к влажности
- Безопасность с точки зрения экологии и гигиены
- Негорючесть
Перлит и полиэфирные волокна, как теплоизоляционные материалы.
Перлит получается путем обжига зерен вулканических пород, таких как перелит, обсидиан или аналогичных. Перелит содержит в себе от 1 до 3% воды. Под воздействием высоких температур вода начинает превращаться в пар и высвобождаться. В результате получается пористый изолятор. Высокое водопоглощение отличает этот материал от остальных теплоизоляторов.
Основное применение в качестве тепл
оизоляционного материала перлит нашел в металлургии, а также в жилом и промышленном строительстве. Перлит применяется еще и в качестве основы для создания высо
котехнологичных изоляторов. Благодаря ему, свойства теплоизоляции различных материалов можно увеличить на 50%. Вес также может быть значительно снижен. Основными преимуществами перлита являются следующие:
- Хороший тепловой изолятор
- Легкость
- Высокая прочность
Полиэфирные волокна – полиэстер – представляют собой материал из синтетических волокон, которые получаются за счет формирования расплавов полиэтилентерефталата или его производных. Производство происходит путем переработки отработанной пластиковой тары. Материал не способен поглощать воду, которая скапливается только на поверхности. Отличная паропроницаемость и теплоизоляция позволяют воде очень быстро выветриваться. Срок службы при действующих рабочих характеристиках составляет более пяти десятков лет.
Теплоизоляция на основе стекловолокна, стеклоткани или стеклосетки.
Теплоизолирующие материалы на основе стеклоткани, стекловолокна или стеклохолста представляют собой волокно из необычайно тонких стекляных нитей. В данной форте стекло приобретает совершенно новые характеристики, оно не ломается, не бьется, становится гибким. Плотность материалов составляет от 200 до 500 г/м3. С точки зрения экологии они являются абсолютно надежными. Свойства и характеристики таких теплоизоляционных материалов не будут теряться даже при очень высоких температурах. Верхними температурным порогом является показатель в 350оС. Стеклоткань, стеклосетку или стеколоволокно можно считать идеальными материалами для изготовления лучших изоляторов. Также эти составляющие используются в качестве обкладочных элементов. Основными преимуществами являются:
- Высочайшая прочность
- Отличная жесткость
- Сохранение формы материала
- Негорючесть
- Сопротивление гниению
Резольные теплоизоляционные материалы.
Эти материалы производятся из пенопласта с добавлением феноло-формальдегидных смол. Высокая эффективность теплоизоляции достигается за счет того, что основой является лучший природный изолятор – воздух, которого в материале больше 95%. Такая теплоизоляция превосходно взаимодействует с различными смесями и клеевыми растворами. Простота монтажа заслуживает отдельного внимания. Из-за особенностей конструкции, резольные материалы можно очень просто разрезать ножом. Чаще всего материал применяется для утепления различных помещений, в том числе и промышленных, а также для утепления трубопроводных отопительных систем. Основными преимуществами этих теплоизоляционных материалов являются:
- Низкая теплопроводность
- Слабая горючесть
- Материал позволяет дышать утепляемой контрукции