08.05.2024

Водород получение – www.calc.ru | 525: SSL handshake failed

Содержание

Получение водорода — Основы химии на Ида Тен

История открытия водорода История водорода начинается с XVI века, когда было замечено, что при действии кислот на железо и другие металлы выделяется некий неизвестный газ. Первоначально его назвали «горючим воздухом». Такое название газ получил из-за способности гореть. Во второй половине XVIII века английский ученый Генри Кавендиш получил водород при действии соляной кислоты HCl на цинк:

Zn + 2HCl = ZnCl2 + h3­

Что же такое кислота с точки зрения химии? Кислота – это сложное вещество, в состав которого всегда входят атомы водорода. В формулах кислот атомы водорода принято писать на первом месте. Атомы, следующие в формуле за водородом, называют кислотным остатком. Так, в соляной кислоте HCl кислотный остаток – Cl.

Например, в серной кислоте h3SO4, кислотный остаток – SO4. Кислота – сложное вещество, в состав которого входят атомы водорода и кислотный остаток

Генри Кавендиш изучил свойства «горючего воздуха». Он установил, что этот газ намного легче воздуха, а при сгорании на воздухе образует прозрачные капли жидкости. Этой жидкостью оказалась вода.

Генри Кавендиша считают первооткрывателем водорода. Вывод о том, что «горючий воздух» представляет собой простое вещество, был сделан в 1784 году французским химиком Антуаном Лораном Лавуазье. Антуан Лоран Лавуазье дал этому веществу латинское название (Hydrogenium), которое происходило от греческих слов «хюдор» – вода и «геннао» – рождаю. В те годы под элементами подразумевали простые вещества, которые нельзя далее разложить на составные части. Поэтому у химического элемента водорода такое же название, как и у просто вещества h3. Русское слово водород – это точный перевод латинского названи

я Hydrogenium.

Получение водорода в лаборатории

Современный лабораторный способ получения водорода не отличается от того, которым его получал Генри Кавендиш. Это реакции металлов с кислотами. В лаборатории водород получают в аппарате Киппа (рисунок 152).

Аппарат Киппа изготовляется из стекла и состоит из нескольких частей:

  1. реакционная колба с резервуаром;
  2. воронка с длинной трубкой;
  3. газоотводная трубка.

Реакционная колба имеет верхнюю шарообразную часть с отверстием, в которое вставляется газоотводная трубка, снабженная краном или зажимом, и нижний резервуар в виде полусферы. Нижний резервуар и реакционная колба разделены резиновой или пластиковой прокладкой с отверстием, через которое проходит в нижний резервуар длинная трубка воронки, доходящая почти до дна. На прокладку через боковое отверстие шпателем насыпают твёрдые вещества (мрамор, цинк). Отверстие закрывается пробкой с газоотводной трубкой. Затем при открытом кране или зажиме в верхнюю воронку заливается раствор кислоты. Когда уровень жидкости достигает вещества на прокладке, начинается химическая реакция с выделением газа. При закрытии крана давление выделяющегося газа выдавливает жидкость из реактора в верхнюю часть воронки. Реакция прекращается. Открытие крана приводит к возобновлению реакции. Поместим в реакционную колбу кусочки цинка. В качестве кислоты воспользуемся серной кислотой. При контакте цинка и серной кислоты протекает реакция:

Zn + h3SO4 = ZnSO4 + h3­

Водородом можно заполнить мыльный пузырь.

Для этого необходимо опустить газоотводную трубку в мыльный раствор. На конце трубки начнется формирование мыльного пузыря, заполненного водородом; со временем пузырь отрывается и улетает вверх, что доказывает легкость водорода. Соберем выделяющийся водород. С учетом того, что водород намного легче воздуха, для сбора водорода сосуд, в котором собирается газ, необходимо располагать вверх дном, или производить собирание методом вытеснения воды.

Как обнаружить водород? Заполним пробирку водородом, держа ее вверх дном, по отношению к газоотводной трубке. Поднесем пробирку отверстием к пламени спиртовки – слышится характерный хлопок.

Хлопок – это признак того, что в пробирке содержится водород. При поднесении пробирки к пламени водород вступает в реакцию с кислородом, содержащимся в воздухе. При малых количествах реакция кислорода и водорода сопровождается хлопком. Более подробно об этой реакции будет рассказано в следующем параграфе.

Получение водорода в промышленности

Одним из промышленных способов получения водорода является реакция разложения воды под действием электрического тока:

2h3O эл.ток → 2h3­ + O2­.

Данный метод позволяет получить чистый водород и кислород. Процесс превращения химических веществ в другие вещества под действием электричества называется электролизом.

Электролиз – химическая реакция, протекающая под действием электрического тока Проведем электролиз воды. В стакан наполненный водой, опустим металлические электроды. Поверх электродов опустим в стакан пробирки, заполненные водой. Подсоединим электроды к источнику тока – батарейке. В пробирках наблюдается выделение газов – водорода и кислорода, которые вытесняют воду. Наблюдая за процессом электролиза, можно заметить, что в одной из пробирок газа собирается в два раза больше, чем в другой. Проанализировав уравнение реакции электролиза воды, можно сделать вывод, в какой пробирке выделяется водород, а в какой – кислород.

Попробуйте это сделать самостоятельно.

Существуют и другие способы получения водорода. Железо-паровой метод долгое время широко применялся в промышленности. Через электрическую трубчатую печь проходит трубка из нержавеющей стали, заполненная железными стружками. Через трубку с железными стружками пропускают водяной пар. При температуре около 800°С пары воды взаимодействуют с железом, образуя оксид

Fe3O4 (железную окалину) и газообразный водород:

3Fe + 4Н2О = 4Н2­ + Fe3O4.

Можно получить Н2, пропуская Н2О через слой раскаленного угля. При этом образуется смесь двух газов – СО и Н2 (водяной газ):

Н2О + С = CO­ + Н2­

В настоящее время водород получают взаимодействием углеводородов (в основном метана, СН4) с водяным паром или неполным окислением метана кислородом:

СН4 + Н2О = СО + 3Н2

2СН4 + О2 = 2СО + 4Н2

Итог статьи:

  • В лаборатории водород получают в аппарате Киппа
  • Исходными веществами для получения водорода в лаборатории являются некоторые металлы и кислоты
  • Собирать водород нужно методом вытеснения воды, или методом вытеснения воздуха, расположив пробирку вверх дном по отношению к газоотводной трубке
  • Кислота – сложное вещество, в состав которого входят атомы водорода и кислотный остаток
  • Обнаружить водород можно по характерному хлопку при поднесении пробирки с водородом к пламени
  • Одним из промышленных способов получения водорода является электролиз воды
  • Электролиз – химическая реакция, протекающая под действием электрического тока

idaten.ru

Водород. Физические и химические свойства, получение » HimEge.ru

Водород H — самый распространённый элемент во Вселенной (около 75 % по массе), на Земле — девятый по распространенности. Наиболее важным природным соединением водорода является вода.
Водород занимает первое место в периодической системе (Z = 1). Он имеет простейшее строение атома: ядро атома – 1 протон, окружено электронным облаком, состоящим из 1 электрона.
В одних условиях водород проявляет металлические свойства (отдает электрон), в других — неметаллические (принимает электрон).

В природе встречаются изотопы водорода:  1Н — протий (ядро состоит из одного протона), 2Н — дейтерий (D — ядро состоит из одного протона и одного нейтрона), 3Н — тритий (Т — ядро состоит из одного протона и двух нейтронов).

Простое вещество водород

Молекула водорода состоит из двух атомов, связанных  между собой ковалентной неполярной связью.
Физические свойства. Водород — бесцветный нетоксичный газ без запаха и вкуса. Молекула водорода не полярна. Поэтому силы межмолекулярного взаимодействия в газообразном водороде малы. Это проявляется в низких температурах кипения (-252,6 0С) и плавления (-259,2 0С).
Водород легче воздуха, D (по воздуху) = 0,069;  незначительно растворяется в воде (в 100 объемах h3O растворяется 2 объема  h3).  Поэтому водород при его получении в лаборатории можно собирать методами вытеснения воздуха или воды.

Получение водорода

В лаборатории:

1.Действие разбавленных кислот на металлы:
Zn +2HCl → ZnCl2 +H2

2.Взаимодействие щелочных и щ-з металлов с водой:
Ca +2H2O → Ca(OH)2 +H2

3.Гидролиз гидридов: гидриды металлов легко разлагаются водой с образованием соответствующей щелочи и водорода:
NaH +H2O → NaOH +H2
СаH2 + 2Н2О = Са(ОН)2 + 2Н2

4.Действие щелочей на цинк  или алюминий или кремний:

2Al +2NaOH +6H2O → 2Na[Al(OH)4] +3H2
Zn +2KOH +2H2O → K2[Zn(OH)4] +H2
Si + 2NaOH + H2O → Na2SiO3 + 2H2

5. Электролиз воды. Для увеличения электрической проводимости воды к ней добавляют электролит, например NаОН, Н2SO4 или Na2SO4. На катоде образуется 2 объема водорода, на аноде — 1 объем кислорода.
2H2O → 2H22

Промышленное получение водорода

1. Конверсия метана с водяным паром, Ni 800 °С (самый дешевый):
CH4 + H2O → CO + 3 H2   
CO + H2O → CO2 + H2

В сумме:
CH4 + 2 H2O → 4 H2 + CO2

2. Пары воды через раскаленный кокс при 1000оС:
С + H2O → CO + H2
CO +H2O → CO2 + H2

Образующийся оксид углерода (IV) поглощается водой, этим способом получают 50 % промышленного водорода.

3. Нагреванием метана до 350°С в присутствии железного или нике­левого катализатора:
СH4 → С + 2Н2

4. Электролизом водных растворов KCl или NaCl, как побочный продукт:
2О + 2NaCl→ Cl2↑ + H2↑ + 2NaOH

Химические свойства водорода

  • В соединениях водород всегда одновалентен. Для него характерна степень окисления +1, но в гидридах металлов она равна -1.
  • Молекула водорода состоит из двух атомов. Возникновение связи между ними объясняется образованием обобщен­ной пары электронов Н:Н или Н2
  • Благодаря этому обобщению электронов молекула Н2 более энергети­чески устойчива, чем его отдельные атомы. Чтобы разорвать в 1 моль водорода молекулы на атомы, необходимо затратить энергию 436 кДж: Н2 = 2Н, ∆H° = 436 кДж/моль
  • Этим объясняется сравнительно небольшая активность молекулярного водорода при обычной температуре.
  • Со многими неметаллами водород образует газообразные соедине­ния типа RН4, RН3, RН2, RН.

1) С галогенами  образует галогеноводороды:
Н2 + Cl2 → 2НСl.
При этом с фтором — взрывается, с хлором и бромом реагирует лишь при освещении или нагревании, а с йодом только при нагревании.

2) С кислородом:
2 + О2 → 2Н2О
с выделением тепла. При обычных температурах реакция протекает медленно, выше 550°С — со взрывом. Смесь 2 объемов Н2 и 1 объема О2 называется гремучим газом.

3) При нагревании энергично реагирует с серойь(значительно труднее с селеном и теллуром):
Н2 + S → H2S (сероводород),

4) С азотом  с образованием аммиака лишь на катализаторе и при повышенных температурах и давлениях:
ЗН2 + N2 → 2NН3

5) С углеродом при высоких температурах:
2 + С → СН4 (метан)

6) С  щелочными и щелочноземельными металлами  образует гидриды (водород – окислитель):
Н2 + 2Li → 2LiH
в гидридах металлов ион водорода заряжен отрицательно (степень окисления -1), то есть гидрид Na+H построен подобно хлориду Na+Cl

Со сложными веществами:

7) С оксидами металлов (используется для восстановления металлов):
CuO + H2 → Cu + H2O
Fe3O4 + 4H2 → 3Fe + 4Н2О

8) с оксидом углерода (II):
CO + 2H2 → CH3OH
Синтез — газ (смесь водорода и угарного газа) имеет важное практическое значение, тк в зависимости от температуры, давления и катализатора образуются различные органические соединения, например НСНО, СН3ОН и другие.

9)Ненасыщенные углеводороды реагируют с водородом, переходя в насыщенные:
СnН2n + Н2 → СnН2n+2.

himege.ru

История открытия водорода. Получение и физические свойства водорода

С древних времен людям были известны вещества, способные растворять некоторые металлы. Слабые растворы этих веществ имеют кислый вкус, поэтому их назвали «кислоты». Например, лимонная кислота содержится в лимоне, яблочная кислота – в яблоке. Вещество с химической формулой H2SO4 называется серной кислотой.

Многие исследователи проводили опыты с кислотами. Было замечено, что при действии кислот на некоторые металлы выделяются пузырьки газа. Полученный газ легко воспламенялся, и его назвали «горючим воздухом».

Подробно свойства этого газа были изучены английским ученым Г. Кавендишем в 1766г. Он помещал металлы в растворы серной и соляной кислот и во всех случаях получал одно и то же легкое газообразное вещество, которое позже назвали водородом.

Приведем примеры уравнений реакций взаимодействия металла с кислотой, в ходе которых образуется водород. При взаимодействии железа с соляной кислотой образуется хлорид железа (II) и водород. При взаимодействии железа с раствором серной кислоты образуется сульфат железа (II) FeSO4 и водород. Обратите внимание, в обеих реакциях водород выделяется из раствора, что показано с помощью стрелки.

Взаимодействие железа с соляной кислотой

Рис. 1. Взаимодействие железа с соляной кислотой

Взаимодействие железа с раствором серной кислоты

Рис. 2. Взаимодействие железа с раствором серной кислоты

Приведенные реакции относятся к типу замещения. В каждую из этих реакций вступает одно простое вещество и одно сложное вещество, и образуется новое простое и новое сложное. Такие реакции и называются реакциями замещения.

Некоторые металлы могут замещать водород в кислотах.

Поэтому, кислотами называют вещества, в состав которых входит водород, способный замещаться металлами.

Название «водород» происходит от греч. слов «гидор» — вода и «генао» — рождаю, т.е. «рождающий воду». Действительно, при горении водорода образуется вода. Это название предложил А. Лавуазье в 1779 г.

Водород является самым распространенным химическим элементом Вселенной, из него в основном состоят звезды. Химический элемент водород входит в состав всех растений и животных, а также в состав самого распространенного вещества на Земле – воды.

Простое вещество водород имеет формулу Н2. Это газообразное вещество, без вкуса и запаха, малорастворимое в воде. Температура кипения водорода -253°С. Водород – самый легкий из всех газообразных веществ, он в 14,5 раз легче воздуха.

Способы получения водорода в лаборатории и промышленности различны. В промышленности водород нужно получать в больших объемах из дешевого сырья. Обычно его получают в результате электролитического разложения воды или при восстановлении углем водяного пара.

В результате электролиза воды образуются газообразные вещества – водород и кислород. При восстановлении углем водяного пара образуются водород и угарный газ СО.

В лаборатории водород получают при взаимодействии металлов (например, цинка) с кислотами.

Чаще всего проводят реакцию цинка с соляной кислотой в аппарате Киппа.

Получение водорода взаимодействием цинка с соляной кислотой в аппарате Киппа

Рис. 3. Получение водорода взаимодействием цинка с соляной кислотой в аппарате Киппа

В небольших количествах водород можно получить и в обычной пробирке при взаимодействии цинка с соляной кислотой.

Проведем опыт. Поместим в пробирку несколько гранул цинка, прильем немного соляной кислоты, закроем пробирку пробкой с газоотводной трубкой. Наденем на трубку пустую пробирку. Выделяющийся в ходе реакции водород будет подниматься вверх, т.к. он значительно легче воздуха, и заполнит пустую пробирку. Этот метод собирания водорода называется вытеснение воздуха. Чтобы доказать, что образовавшийся газ является водородом, поднесем пробирку, заполненную газом к пламени спиртовки. Мы услышим хлопок или свистящий звук.

Водород можно собрать и методом вытеснения воды, т.к. он практически не растворяется в воде.

 

Список рекомендованной литературы

1. Сборник задач и упражнений по химии: 8-й кл.: к учеб. П.А. Оржековского и др. «Химия. 8 класс» / П.А. Оржековский, Н.А. Титов, Ф.Ф. Гегеле. – М.: АСТ: Астрель, 2006. (с.85-88)

2. Ушакова О.В. Рабочая тетрадь по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского — М.: АСТ: Астрель: Профиздат, 2006. (с. 75-78)

3. Химия. 8 класс. Учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. – М.:Астрель, 2013. (§24)

4. Химия: 8-й класс: учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005. (§30)

5. Рудзитис Г.Е., Фельдман Ф.Г. Химия: неорг. химия: учеб. для 8 кл. общеобразоват. учреждений. М.: Просвещение. 2018. § 28-30.

6. Энциклопедия для детей. Том 17. Химия / Глав. ред.В.А. Володин, вед. науч. ред. И. Леенсон. – М.: Аванта+, 2003.

 

Дополнительные веб-ресурсы

1. Нерастворимость водорода в воде (Источник).

2. Получение водорода и проверка его на чистоту (Источник).

 

Домашнее задание

1) с. 76-78 №№ 2,3,5,6,9 из Рабочей тетради по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского — М.: АСТ: Астрель: Профиздат, 2006.

2) с.140-141 №№ 2,6  из учебника П.А. Оржековского, Л.М. Мещеряковой, М.М. Шалашовой «Химия: 8кл.», 2013 г.

interneturok.ru

Получение водорода — Знаешь как

Шарик натрия на поверхности воды

Рис. 56. Шарик натрия на поверхности воды

Атом водорода состоит из ядра и одного электрона. С атомами металлоидов атомы водорода образуют ковалентные связи, более или менее поляризованные. В некоторых из этих соединений (Н2O, НСl и др.) состояние атома водорода приближается к ионизированному Н+.

Главным источником получения водорода служит вода. Для получения из нее водорода можно воспользоваться способностью многих металлов вытеснять из воды водород с одновременным образованием гидроокисей или окисей взятых металлов. Особенно легко уже при обыкновенной температуре взаимодействуют с водой щелочные металлы натрий и калий, а также кальций, барий и др.

Если кусочек натрия бросить в чашку с водой, то происходит энергичная реакция; натрий с шипением начинает двигаться по поверхности воды, вытесняя из нее водород. При этом образуется так много тепла, что натрий плавится и превращается в шарик, который быстро уменьшается в размерах и вскоре исчезает (рис. 56). Иногда разогревание столь сильно, что выделяющийся водород загорается.

Взаимодействие натрия с водой выражается уравнением

 2Na + 2Н2O = 2NaOH + Н2

Сущность этой реакции заключается в отдаче электрона атомом натрия одному иону водорода из молекулы воды. Атомы натрия превращаются при этом в положительно заряженные ионы, в виде которых и входят в состав NaOH, а ионы водорода превращаются в атомы, связывающиеся затем попарно с образованием молекул Н2. Аналогично протекает реакция с калием и кальцием.

Кроме указанных металлов, с водой могут взаимодействовать и другие металлы, но уже при более высоких температурах. Так, магний вытесняет водород из воды при температуре ее кипения, цинк и железо только при накаливании их в струе водяного пара. Во всех этих случаях водород, находящийся в состоянии, близком к ионизированному, получает электроны от атомов металла и превращается в нейтральные атомы.

В промышленности для получения водорода из воды пользуются следующими методами.

Конверсионный метод является наиболее распространенным методом получения водорода, особенно идущего на синтез аммиака. При работе по этому методу сквозь слой раскаленного угля пропускают водяной пар. Образующаяся при этом смесь окиси углерода с водородом носит название водяного

г а з а и может применяться как газообразное топливо . Если процесс ведется с целью получения водорода, то для удаления из полученной смеси окиси углерода водяной газ пропускают вместе с водяным паром над раскаленной окисью железа, служащей катализатором. Окись углерода взаимодействует с водяным паром, образуя водород и углекислый газ. Эта реакция, называемая конверсией окиси углерода, выражается уравнением

2) + СО + Н2О ⇄ СО2 + Н2 + (Н2) + 10 ккал

При низких температурах равновесие сдвинуто вправо, а с повышением температуры смещается в сторону образования исходных веществ.

Так как реакция протекает с достаточной скоростью только при температурах не ниже 450°, то для повышения степени конверсии окиси углерода водяной пар добавляют к водяному газу в количестве, значительно большем, чем это следует из уравнения реакции, благодаря чему равновесие, несмотря на высокую температуру, остается сильно сдвинутым вправо.

Образовавшийся в результате конверсии углекислый газ отделяют от водорода, промывая газовую смесь водой, под давлением 20 ат. Для окончательной очистки водород пропускают еще через ряд растворов, поглощающих все примеси.

При работе по конверсионному методу вместо водяного газа часто пользуются другими газами, содержащими окись углерода, в частности генераторным газом.

Железо-паровой метод является наиболее старым из методов получения водорода, утратившим в настоящее время свое былое значение. Метод основан на взаимодействии железа с водяным паром при пропускании последнего над накаленными железными стружками:

3Fe + 4Н2О ⇄Fe3О4 + 4Н2 + 35,3 ккал

Реакция обратима и в направлении слева направо идет с выделением тепла. Следовательно, в соответствии с принципом Ле-Шателье, чем ниже температура, тем сильнее равновесие должно быть сдвинуто в сторону образования водорода. Однако при низких температурах из-за малой скорости реакции равновесие устанавливается слишком медленно. Поэтому на практике реакцию ведут при температурах не ниже 700°. При 700° равновесная смесь содержит приблизительно равные объемы водорода и водяного пара, т. е. половина пропускаемого пара остается неиспользованной. Так как образующийся водород вместе с избытком водяного пара сейчас же удаляется из сферы реакции, то процесс идет непрерывно до тех пор, пока все железо не превратится в окалину. Образовавшуюся окалину восстанавливают затем водяным газом и снова пускают в реакцию.

Электрохимический метод получения водорода

При наличии дешевой электрической — энергии экономически целесообразно получать водород из воды, разлагая ее электрическим током. Преимуществом этого метода является высокая степень чистоты получаемого водорода, что исключает необходимость в весьма сложных устройствах для его очистки от примесей. Кроме того, с электролизом воды в настоящее время связано и получение тяжелой воды, необходимой для ядерных реакторов.

Электрохимическим методом получают около 18% мировой продукции водорода.

Некоторое количество водорода получается также методом глубокого охлаждения коксового газа. При нагревании каменного угля без доступа воздуха до 900—1200° образуется так называемый коксовый газ — смесь, содержащая около 50—60% водорода; твердый остаток представляет собой кокс. Для выделения водорода из коксового газа последний подвергают глубокому охлаждению. При этом все газы, кроме водорода, переходят в жидкое состояние и таким путем отделяются от водорода.

За последние двадцать лет в качестве источника получения водорода стал широко применяться метан, содержащийся в природных газах и газах переработки нефти. В 1940 году в США из нового вида сырья было получено 5% водорода, идущего на синтез аммиака, в 1945 году — уже 45%, а в 1953 году—-66%.

Получение водорода из метана можно осуществить разными способами:

1) термическим разложением метана:

СН4 = С + 2Н2 + 18 ккал

2) взаимодействием метана с водяным паром:

СН4 + Н2О = СО + 3Н2 — 49 ккал

3) взаимодействием метана с двуокисью углерода или со смесью двуокиси углерода я водяного пара:

 СН4 + СО2 = 2СО + 2Н2 —60,1 ккал

3СН4 + СО2 + 2Н2О = 4СО + 8Н2 — 158,6 ккал

4) неполным окислением метана:

2СН4 + О2 = 2СО + 4Н2 + 16,1 ккал

При всех этих способах, кроме первого, получаются газовые смеси с сравнительно высоким содержанием окиси углерода. Для увеличения выхода водорода эти смеси вместе с водяным паром подвергают конверсии.

Если водород не используют непосредственно на месте получения, то его транспортируют в сжатом состоянии в стальных баллонах, где он находится под большим давлением.

В лабораториях водород обычно получают действием разбавленной серной или соляной кислоты на цинк:

 Zn + H24 = ZnО4 + Н2

Вместо цинка можно взять железо, но в этом случае реакция идет гораздо медленнее.

Водород, получающийся при действии кислот на цинк и другие металлы, всегда содержит пары воды, а также некоторые газообразные примеси. Если нужен сухой водород, то получающийся газ освобождают от водяных паров, пропуская через концентрированную серную кислоту, жадно поглощающую влагу. Для удаления других примесей пользуются растворами различных солей.

65 66 67

Вы читаете, статья на тему Получение водорода

znaesh-kak.com

Получение водорода и кислорода — урок. Химия, 8–9 класс.

Получение кислорода

В лаборатории кислород получают разложением перманганата калия при нагревании или разложением пероксида водорода в присутствии катализатора:

 

2KMnO4=tK2MnO4+MnO2+O2↑.

 

2h3O2=MnO22h3O+O2↑.

 

Собирают кислород вытеснением воды или вытеснением воздуха.

 

Прибор для получения кислорода из перманганата калия

и собирания вытеснением воды

 

Прибор для получения кислорода

из пероксида водорода и собирания

вытеснением воздуха

  

Обнаружить выделившийся кислород можно с помощью тлеющей лучинки. В сосуде с кислородом лучинка разгорается ярким пламенем.

Получение водорода

В лаборатории водород получают действием соляной или разбавленной серной кислоты на металлы (цинк, железо, алюминий).

 

Zn+2HCl=ZnCl2+h3↑,

 

Zn+h3SO4=ZnSO4+h3↑.

 

Собирают водород вытеснением воды или воздуха. Сосуд для водорода при вытеснении воздуха располагают дном вверх.

 

4.jpg

 

 

Доказать наличие водорода в пробирке можно, если поднести её к пламени спиртовки. Водород взрывается, и раздаётся характерный хлопок.

 

www.yaklass.ru

Водород

Водород
Атомный номер 1
Внешний вид простого вещества газ без цвета, вкуса и запаха
Свойства атома
Атомная масса
(молярная масса)
1,00794 а.е.м. (г/моль)
Радиус атома 79 пм
Энергия ионизации
(первый электрон)
1311,3 кДж/моль (эВ)
Электронная конфигурация 1s1
Химические свойства
Ковалентный радиус 32 пм
Радиус иона 54 (−1 e) пм
Электроотрицательность
(по Полингу)
2,20
Электродный потенциал  
Степени окисления 1, −1
Термодинамические свойства простого вещества
Плотность
вещества
0,0000899 (при 273K (0 °C)) г/см³
Молярная теплоёмкость 14,235 Дж/(K·моль)
Теплопроводность 0,1815 Вт/(м·K)
Температура плавления 14,01K
Теплота плавления 0,117 кДж/моль
Температура кипения 20,28K
Теплота испарения 0,904 кДж/моль
Молярный объём 14,1 см³/моль
Кристаллическая решётка простого вещества
Структура решётки гексагональная
Параметры решётки a=3,780 c=6,167 Å
Отношение c/a 1,631
Температура Дебая 110 K
H 1
1,00794
1s1
Водород

Водород является первым элементом периодической системы элементов. Широко распространён в природе. Катион (и ядро) самого распространённого изотопа водорода 1H— протон. Свойства ядра 1H позволяют широко использовать ЯМР-спектроскопию в анализе органических веществ.

Трое из пяти изотопов водорода имеют собственные названия: 1H— протий (Н), 2H— дейтерий (D) и 3H— тритий (радиоактивен) (T).

Простое вещество водород— H2— лёгкий бесцветный газ. В смеси с воздухом или кислородом горюч и взрывоопасен. Нетоксичен. Растворим в этаноле и ряде металлов: железе, никеле, палладии, платине.

История водорода

Выделение горючего газа при взаимодействии кислот и металлов наблюдали в XVI и XVII веках на заре становления химии как науки. Прямо указывал на выделение его и М. В. Ломоносов, но уже определённо сознавая, что это не флогистон. Английский физик и химик Г. Кавендиш в 1766 году исследовал этот газ и назвал его «горючим воздухом». При сжигании «горючий воздух» давал воду, но приверженность Кавендиша теории флогистона помешала ему сделать правильные выводы. Французский химик А. Лавуазье совместно с инженером Ж. Менье, используя специальные газометры, в 1783г. осуществил синтез воды, а затем и её анализ, разложив водяной пар раскалённым железом. Таким образом он установил, что «горючий воздух» входит в состав воды и может быть из неё получен.

Происхождение названия водород

Лавуазье дал водороду название hydrogène (отὕδωρ— «вода» и γενναω— «рождаю»)— «рождающий воду». Русское наименование «водород» предложил химик М.Ф.Соловьев в 1824 году— по аналогии с ломоносовским «кислородом».

Распространённость водорода

Во Вселенной

Водород — самый распространённый элемент во Вселенной. На его долю приходится около 92% всех атомов (8% составляют атомы гелия, доля всех остальных вместе взятых элементов — менее 0,1%). Таким образом, водород — основная составная часть звёзд и межзвёздного газа. В условиях звёздных температур (например, температура поверхности Солнца ~6000 °C) водород существует в виде плазмы, в межзвёздном пространстве этот элемент существует в виде отдельных молекул, атомов и ионов и может образовывать молекулярные облака, значительно различающиеся по размерам, плотности и температуре.

Земная кора и живые организмы

Массовая доля водорода в земной коре составляет 1%— это десятый по распространённости элемент. Однако его роль в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17% (второе место после кислорода, доля атомов которого равна ~52%). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода. В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005% по объёму).

Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках. В живых клетках по числу атомов на водород приходится почти 50%.

Получение Водорода

Промышленные способы получения простых веществ зависят от того, в каком виде соответствующий элемент находится в природе, то есть что может быть сырьём для его получения. Так, кислород, имеющийся в свободном состоянии, получают физическим способом— выделением из жидкого воздуха. Водород же практически весь находится в виде соединений, поэтому для его получения применяют химические методы. В частности, могут быть использованы реакции разложения. Одним из способов получения водорода служит реакция разложения воды электрическим током.

Основной промышленный способ получения водорода— реакция с водой метана, который входит в состав природного газа. Она проводится при высокой температуре (легко убедиться, что при пропускании метана даже через кипящую воду никакой реакции не происходит):

СН4 +2Н2O =CO2↑ +4Н2 −165 кДж

В лаборатории для получения простых веществ используют не обязательно природное сырьё, а выбирают те исходные вещества, из которых легче выделить необходимое вещество. Например, в лаборатории кислород не получают из воздуха. Это же относится и к получению водорода. Один из лабораторных способов получения водорода, который иногда применяется и в промышленности,— разложение воды электротоком.

Обычно в лаборатории водород получают взаимодействием цинка с соляной кислотой.

Получение водорода в промышленности

1.Электролиз водных растворов солей:
2NaCl +2H2O → H2↑ +2NaOH +Cl2

2.Пропускание паров воды над раскаленным коксом при температуре около 1000°C:
H2O +C ⇄ H2↑ +CO↑

3.Из природного газа.

Конверсия с водяным паром:
CH4 +H2O ⇄ CO↑ +3H2↑ (1000°C)
Каталитическое окисление кислородом:
2CH4 +O2 ⇄ 2CO↑ +4H2

4. Крекинг и риформинг углеводородов в процессе переработки нефти.

Получение водорода в лаборатории

1.Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и разбавленную соляную кислоту:
Zn +2HCl → ZnCl2 +H2

2.Взаимодействие кальция с водой:|
Ca +2H2O → Ca(OH)2 +H2

3.Гидролиз гидридов:
NaH +H2O → NaOH +H2

4.Действие щелочей на цинк или алюминий:
2Al +2NaOH +6H2O → 2Na[Al(OH)4] +3H2
Zn +2KOH +2H2O → K2[Zn(OH)4] +H2

5.С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:
2H3O+ +2e → H2↑ +2H2O

Дополнительная информация про Водород

Биореактор для производства водорода

Физические свойства Водорода


Спектр излучения водорода


Эмиссионный спектр водорода


Равновесная мольная концентрация пара-водорода

Разделить модификации водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону последнего. При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25). Без катализатора превращение происходит медленно (в условиях межзвездной среды— с характерными временами вплоть до космологических), что даёт возможность изучить свойства отдельных модификаций.

Водород — самый лёгкий газ, он легче воздуха в 14,5 раз. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха.

Молекула водорода двухатомна — Н2. При нормальных условиях — это газ без цвета, запаха и вкуса. Плотность 0,08987 г/л (н.у.), температура кипения −252,76 °C, удельная теплота сгорания 120.9·106 Дж/кг, малорастворим в воде — 18,8 мл/л. Водород хорошо растворим во многих металлах (Ni, Pt, Pd и др.), особенно в палладии (850 объёмов на 1объём Pd). С растворимостью водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия водорода с углеродом (так называемая декарбонизация). Практически не растворим в серебре.


Фазовая диаграмма водорода

Жидкий водород существует в очень узком интервале температур от −252,76 до −259,2 °C. Это бесцветная жидкость, очень лёгкая (плотность при −253 °C 0,0708 г/см3) и текучая (вязкость при −253 °C 13,8 спуаз). Критические параметры водорода очень низкие: температура −240,2 °C и давление 12,8 атм. Этим объясняются трудности при ожижении водорода. В жидком состоянии равновесный водород состоит из 99,79% пара-Н2, 0,21% орто-Н2.


Твердый водород, температура плавления −259,2 °C, плотность 0,0807 г/см3 (при −262 °C) — снегоподобная масса, кристаллы гексогональной сингонии, пространственная группа P6/mmc, параметры ячейки a=3,75 c=6,12. При высоком давлении водород переходит в металлическое состояние.

Изотопы


Давление пара для различных изотопов водорода

Водород встречается в виде трёх изотопов, которые имеют индивидуальные названия: 1H— протий (Н), 2Н— дейтерий (D), 3Н— тритий (радиоактивный) (T).

Протий и дейтерий являются стабильными изотопами с массовыми числами 1и 2. Содержание их в природе соответственно составляет 99,9885±0,0070% и 0,0115 ± 0,0070%. Это соотношение может незначительно меняться в зависимости от источника и способа получения водорода.

Изотоп водорода 3Н (тритий) нестабилен. Его период полураспада составляет 12,32 лет. Тритий содержится в природе в очень малых количествах.

В литературе также приводятся данные об изотопах водорода с массовыми числами 4— 7и периодами полураспада 10−22— 10−23 с.

Природный водород состоит из молекул H2 и HD (дейтероводород) в соотношении 3200:1. Содержание чистого дейтерийного водорода D2 ещё меньше. Отношение концентраций HD и D2, примерно, 6400:1.

Из всех изотопов химических элементов физические и химические свойства изотопов водорода отличаются друг от друга наиболее сильно. Это связано с наибольшим относительным изменением масс атомов.

  Температура
плавления,
K
Температура
кипения,
K
Тройная
точка,
K /kPa
Критическая
точка,
K /kPa
Плотность
жидкий /газ,
кг/м³
H2 13.95 20,39 13,96 /7,3 32,98 /1,31 70,811 /1,316
HD 16,60 22,13 16,60 /12,8 35,91 /1,48 114,80 /1,802
HT   22,92 17,63 /17,7 37,13 /1,57 158,62 /2,310
D2 18,62 23,67 18,73 /17,1 38,35 /1,67 162,50 /2,230
DT   24.38 19,71 /19,4 39,42 /1,77 211,54 /2,694
T2   25,04 20,62 /21,6 40,44 /1,85 260,17 /3,136

Дейтерий и тритий также имеют орто- и пара- модификации: p-D2, o-D2, p-T2, o-T2. Гетероизотопный водород (HD, HT, DT) не имеют орто- и пара- модификаций.

Химические свойства


Доля диссоциировавших молекул водорода

Молекулы водорода Н2 довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:

Н2 =2Н − 432 кДж

Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция:

Ca +Н2 =СаН2

и с единственным неметаллом— фтором, образуя фтороводород:

F2 +H2 =2HF

С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении:

О2 +2Н2 =2Н2О

Он может «отнимать» кислород от некоторых оксидов, например:

CuO +Н2 =Cu +Н2O

Записанное уравнение отражает восстановительные свойства водорода.

N2 +3H2 → 2NH3

С галогенами образует галогеноводороды:

F2 +H2 → 2HF, реакция протекает со взрывом в темноте и при любой температуре,
Cl2 +H2 → 2HCl, реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

C +2H2 → CH4

Взаимодействие со щелочными и щёлочноземельными металлами

При взаимодействии с активными металлами водород образует гидриды:

2Na +H2 → 2NaH
Ca +H2 → CaH2
Mg +H2 → MgH2

Гидриды— солеобразные, твёрдые вещества, легко гидролизуются:

CaH2 +2H2O → Ca(OH)2 +2H2

Взаимодействие с оксидами металлов (как правило, d-элементов)

Оксиды восстанавливаются до металлов:

CuO +H2 → Cu +H2O
Fe2O3 +3H2 → 2Fe +3H2O
WO3 +3H2 → W+3H2O

Гидрирование органических соединений

Молекулярный водород широко применяется в органическом синтезе для восстановления органических соединений. Эти процессы навзывают реакциями гидрирования. Эти реакции проводят в присутствии катализатора при повышенных давлении и температуре. Катализатор может быть как гомогенным (напр. Катализатор Уилкинсона), так и гетерогенным (напр. никель Ренея, палладий на угле).

Так, в частности, при каталитическом гидрировании ненасыщенных соединений, таких как алкены и алкины, образуются насыщенные соединения — алканы.

Геохимия водорода

На Земле содержание водорода понижено по сравнению с Солнцем, гигантскими планетами и первичными метеоритами, из чего следует, что во время образования Земля была значительно дегазирована и водород вместе с другими летучими элементами покинул планету во время аккреции или вскоре после неё.

Свободный водород H2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах.

В состав минералов водород может входить в виде иона аммония, гидроксил-иона и кристаллической воды.

В атмосфере водород непрерывно образуется в результате разложения воды солнечным излучением. Имея малую массу, молекулы водорода обладают высокой скоростью диффузионного движения (она близка ко второй космической скорости) и, попадая в верхние слои атмосферы, могут улететь в космическое пространство.

Особенности обращения

Водород при смеси с воздухом образует взрывоопасную смесь— так называемый гремучий газ. Наибольшую взрывоопасность этот газ имеет при объёмном отношении водорода и кислорода 2:1, или водорода и воздуха приближённо 2:5, так как в воздухе кислорода содержится примерно 21%. Также водород пожароопасен. Жидкий водород при попадании на кожу может вызвать сильное обморожение.

Взрывоопасные концентрации водорода с кислородом возникают от 4% до 96% объёмных. При смеси с воздухом от 4% до 75(74)% объёмных.

Применение водорода

Атомарный водород используется для атомно-водородной сварки.

Химическая промышленность

При производстве аммиака, метанола, мыла и пластмасс

Пищевая промышленность

При производстве маргарина из жидких растительных масел.
Зарегистрирован в качестве пищевой добавки E949 (упаковочный газ)

Авиационная промышленность

Водород очень лёгок и в воздухе всегда поднимается вверх. Когда-то дирижабли и воздушные шары наполняли водородом. Но в 30-х гг. XXв. произошло несколько катастроф, когда дирижабли взрывались и сгорали. В наше время дирижабли наполняют гелием.

Топливо

Водород используют в качестве ракетного топлива. Ведутся исследования по применению водорода как топлива для легковых и грузовых автомобилей. Водородные двигатели не загрязняют окружающей среды и выделяют только водяной пар.

В водородно-кислородных топливных элементах используется водород для непосредственного преобразования энергии химической реакции в электрическую.

Водород, Hydrogenium, Н (1)
Как горючий (воспламеняемый) воздух водород известен довольно давно. Его получали действием кислот на металлы, наблюдали горение и взрывы гремучего газа Парацельс, Бойль, Лемери и другие ученые XVI— XVIII вв. С распространением теории флогистона некоторые химики пытались получить водород в качестве «свободного флогистона». В диссертации Ломоносова «О металлическом блеске» описано получение водорода действием «кислотных спиртов» (например, «соляного спирта», т. е. соляной кислоты) на железо и другие металлы; русский ученый первым (1745) выдвинул гипотезу, о том что водород («горючий пар»— vapor inflammabilis) представляет собой флогистон. Кавендиш, подробно исследовавший свойства водорода, выдвинул подобную же гипотезу в 1766 г. Он называл водород «воспламеняемым воздухом», полученным из «металлов» (Inflammable air from metals), и полагал, как и все флогистики, что при растворении в кислотах металл теряет свой флогистон. Лавуазье, занимавшийся в 1779 г. исследованием состава воды путем ее синтеза и разложения, назвал водород Hydrogine (гидроген), или Hydrogene (гидрожен), от греч. гидор— вода и гайноме— произвожу, рождаю.

Номенклатурная комиссия 1787 г. приняла словопроизводство Hydrogene от геннао, рождаю. В «Таблице простых тел» Лавуазье водород (Hydrogene) упомянут в числе пяти (свет, теплота, кислород, азот, водород) «простых тел, относящихся ко всем трем царствам природы и которые следует рассматривать как элементы тел»; в качестве старых синонимов названия Hydrogene Лавуазье называет горючий газ (Gaz inflammable), основание горючего газа. В русской химической литературе конца XVIII и начала XIX в. встречаются два рода названий водорода: флогистические (горючий газ, горючий воздух, воспламенительный воздух, загораемый воздух) и антифлогистические (водотвор, водотворное существо, водотворный гас, водородный гас, водород). Обе группы слов представляют собой переводы французских названий водорода.

Изотопы водорода были открыты в 30-x годах текущего столетия и быстро приобрели большое значение в науке и технике. В конце 1931 г. Юри, Брекуэдд и Мэрфи исследовали остаток после длительного выпаривания жидкого водорода и обнаружили в нем тяжелый водород с атомным весом 2. Этот изотоп назвали дейтерием (Deuterium, D) от греч.— другой, второй. Спустя четыре года в воде, подвергнутой длительному электролизу, был обнаружен еще более тяжелый изотоп водорода 3Н, который назвали тритием (Tritium, Т), от греч.— третий.

himsnab-spb.ru

Получение водорода — это… Что такое Получение водорода?

Электролизёр — оборудование для производства водорода из воды

Промышленное производство водорода — неотъемлемая часть водородной энергетики, первое звено в жизненном цикле употребления водорода. Водород практически не встречается в природе в чистой форме и должен извлекаться из других соединений с помощью различных химических методов.

Методы производства водорода

Разнообразие способов получения водорода является одним из главных преимуществ водородной энергетики, так как повышает энергетическую безопасность и снижает зависимость от отдельных видов сырья.

К ним относятся:

В данный момент наиболее доступным и дешёвым процессом является паровая конверсия. Согласно прогнозам, она будет использоваться в начальной стадии перехода к водородной экономике для упрощения преодоления проблемы «курицы и яйца», когда из-за отсутствия инфраструктуры нет спроса на водородные автомобили, а из-за отсутствия водородных автомобилей не строится инфраструктура. В долгосрочной перспективе, однако, необходим переход на возобновляемые источники энергии, так как одной из главных целей внедрения водородной энергетики является снижения выброса парниковых газов. Такими источниками может быть энергия ветра или солнечная энергия, позволяющая проводить электролиз воды.

Производство водорода может быть сосредоточено на централизованных крупных предприятиях, что понижает себестоимость производства, но требует дополнительных расходов на доставку водорода к водородным автозаправочным станциям. Другим вариантом является маломасштабное производство непосредственно на специально оборудованных водородных автозаправочных станциях.

Производство водорода из различных источников сырья

Из углеводородов

Паровая конверсия природного газа / метана

В настоящее время данным способом производится примерно половина всего водорода. Водяной пар при температуре 700° − 1000° Цельсия смешивается с метаном под давлением в присутствии катализатора. Себестоимость процесса $2-5 за килограмм водорода. В будущем возможно снижение цены до $2-$2,50, включая доставку и хранение.

Газификация угля.

Старейший способ получения водорода. Уголь нагревают при температуре 800°-1300° Цельсия без доступа воздуха. Первый газогенератор был построен в Великобритании в 40-х годах XIX века. США предполагают построить электростанцию по проекту угля. Электричество будут вырабатывать топливные элементы, используя в качестве горючего водород, получающийся в процессе газификации угля.

В декабре 2007 г. была определена площадка для строительства первой пилотной электростанции проекта FutureGen. В Иллинойсе будет построена электростанция мощностью 275 МВт. Общая стоимость проекта $1,2 млрд. На электростанции будет улавливаться и храниться до 90% СО2.

Себестоимость процесса $2-$2,5 за килограмм водорода. В будущем возможно снижение цены до $1,50, включая доставку и хранение.

Из биомассы

Водород из биомассы получается термохимическим, или биохимическим способом. При термохимическом методе биомассу нагревают без доступа кислорода до температуры 500°-800° (для отходов древесины), что намного ниже температуры процесса газификации угля. В результате процесса выделяется H2, CO и CH4.

Себестоимость процесса $5-$7 за килограмм водорода. В будущем возможно снижение до $1,0-$3,0.

В биохимическом процессе водород вырабатывают различные бактерии, например, Rodobacter speriodes.

Возможно применение различных энзимов для ускорения производства водорода из полисахаридов (крахмал, целлюлоза), содержащихся в биомассе. Процесс проходит при температуре 30° Цельсия при нормальном давлении. Себестоимость водорода около $2 за кг.

Из цепочки сахар-водород-водородный топливный элемент можно получить [1] в три раза больше энергии, чем из цепочки сахар-этанол-двигатель внутреннего сгорания.

См. полную статью Биоводород.

Из мусора

Разрабатываются различные новые технологии производства водорода. Например, в октябре 2006 году Лондонское Водородное Партнёрство опубликовало исследование о возможности производства водорода из муниципального и коммерческого мусора. Согласно исследованию, в Лондоне можно ежедневно производить 141 тонну водорода как пиролизом, так и анаэробным сбраживанием мусора. Из муниципального мусора можно производить 68 тонн водорода.

141 тонны водорода достаточно для работы 13750 автобусов с двигателями внутреннего сгорания, работающими на водороде. В Лондоне в настоящее время эксплуатируется более 8000 автобусов.

Химическая реакция воды с металлами

В 2007 году Университет Purdue (США) разработал метод производства водорода из воды при помощи алюминиевого сплава.

Сплав алюминия с галлием формируется в пеллеты. Пеллеты помещают в бак с водой. В результате химической реакции производится водород. Галлий создаёт вокруг алюминия плёнку, предотвращающую окисление алюминия. В результате реакции создаётся водород и оксид алюминия.

Из одного фунта алюминия можно получать более 2 кВт·ч энергии от сжигания водорода и более 2 кВт·ч тепловой энергии во время реакции алюминия с водой. В будущем, при использовании электроэнергии атомных реакторов 4-го поколения, себестоимость водорода, получаемого в ходе реакции, станет эквивалента цене бензина $3 за галлон.

Автомобиль среднего размера с двигателем внутреннего сгорания с 350 фунтами (158 кг.) алюминия на борту может проехать 350 миль (560 км.). В будущем стоимость поездки составит $63, включая стоимость восстановления оксида алюминия на атомной электростанции 4-го поколения.

Подробнее см. pdf файл

Производство водорода из различных источников энергии

Из энергии ветра

Департамент Энергетики США (DOE) и Национальная Исследовательская Энергетическая Лаборатория (NREL) с 2006 г. проводит исследовательские работы «Водород из ветра». Построена водородная заправочная станция с ветрогенератором мощностью 100 кВт. Исследования должны сравнить методы производства водорода гидролизом из энергии ветра и энергии из промышленной электрической сети. Ветро-гидролизная система установлена в Национальном Ветряном Технологическом Центре, принадлежащем NREL. Будут сравниваться различные технологии гидролиза воды, хранения, их стоимости.

Согласно расчетам NREL, произведённым в 2006 году, в ближайшем будущем себестоимость производства водорода из энергии ветра составит $4,03 за кг. водорода. В долгосрочной перспективе себестоимость водорода снизится до $2,33 за кг. водорода.

США смогут ежегодно производить из энергии ветра 4 класса и выше 154 млрд. кг. водорода.

Из энергии солнца

Швейцарская компания Clean Hydrogen Producers (CHP) разработала технологию производства водорода из воды при помощи параболических солнечных концентраторов. Площадь зеркал установки составляет 93 м2. В фокусе концентратора температура достигает 2200°С. Вода начинает разделяться на водород и кислород при температуре более 1700° С.

За световой день 6,5 часов (6,5 кВт·ч/кв.м.) установка CHP может разделять на водород и кислород 94,9 литров воды. Производство водорода составит 3800 кг. в год (около 10,4 кг. в день).

Израильский Weizmann Institute of Science в 2005 году испытал технологию получения не окисленного цинка в солнечной башне. Оксид цинка в присутствии древесного угля нагревался зеркалами до температуры 1200 °С на вершине солнечной башни. В результате процесса получался чистый цинк. Далее цинк можно герметично упаковать и транспортировать к местам производства электроэнергии. На месте цинк помещается в воду, в результате химической реакции получается водород и оксид цинка. Оксид цинка можно ещё раз поместить в солнечную башню и получить чистый цинк.

Технология прошла испытания в солнечной башне канадского Institute for the Energies and Applied Research.

См. также Солнечный коллектор.

Из атомной энергии

Правительством США принята Атомная водородная инициатива. Ведутся работы (совместно с Южной Кореей) по созданию атомных реакторов нового поколения, способных производить в больших количествах водород. INEEL (Idaho National Engineering Environmental Laboratory) прогнозирует, что один энергоблок атомной электростанции 4-го поколения будет производить ежедневно водород, эквивалентный 750000 литров бензина.

Финансируются исследования возможностей производства водорода на существующих атомных электростанциях.

С использованием водорослей

Учёные калифорнийского университета в Беркли (UC Berkeley) 1999 году обнаружили, что если водорослям не хватает кислорода и серы, то процессы фотосинтеза у них резко ослабевают, и начинается бурная выработка водорода.

Водород может производить группа зелёных водорослей, например, Chlamydomonas reinhardtii. Водоросли могут производить водород из морской воды, или канализационных стоков.

См. также Фотоводород.

Домашние системы производства водорода

Вместо строительства водородных заправочных станций водород можно производить в бытовых установках из природного газа, или электролизом воды. Honda испытывает свою бытовую установку под названием Домашняя энергетическая станция Honda. Установка в бытовых условиях производит водород из природного газа. Часть водорода используется в топливных элементах для производства тепловой и электрической энергии для дома. Оставшая часть водорода используется для заправки автомобиля.

Британская компания ITM Power Plc разработала и испытала в 2007 г. бытовой электролизёр для производства водорода. Водород производится ночью, что позволит сгладить пики потребления электроэнергии. Электролизер мощностью 10 кВт производит из воды водород, и хранит его под давлением 75 бар. Произведённого водорода досточно для 40 км. пробега битопливного (водород/бензин) Ford Focus. Компания планирует начать производство бытовых электролизеров в начале 2008 года. ITM Power уже достигла уровня себестоимости электролизеров $164 за 1 кВт.

Крупнейшие производители водорода

Смотри также

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *