19.04.2024

Водород как добывают – Получение водорода в промышленности – способы собирания и распознавания (9 класс, химия)

Содержание

Производство водорода — Википедия

Электролизёр — оборудование для производства водорода из воды

Промышленное производство водорода — неотъемлемая часть водородной энергетики, первое звено в жизненном цикле употребления водорода. Водород практически не встречается на Земле в чистом виде и должен извлекаться из других соединений с помощью различных химических методов.

Разнообразие способов получения водорода является одним из главных преимуществ водородной энергетики, так как повышает энергетическую безопасность и снижает зависимость от отдельных видов сырья.

К ним относятся:[источник не указан 1585 дней]

В данный момент наиболее доступным и дешёвым процессом является паровая конверсия. Согласно прогнозам, она будет использоваться в начальной стадии перехода к водородной экономике для упрощения преодоления проблемы «курицы и яйца», когда из-за отсутствия инфраструктуры нет спроса на водородные автомобили, а из-за отсутствия водородных автомобилей не строится инфраструктура. В долгосрочной перспективе, однако, необходим переход на возобновляемые источники энергии, так как одной из главных целей внедрения водородной энергетики является снижения выброса парниковых газов. Такими источниками может быть энергия ветра или солнечная энергия, позволяющая проводить электролиз воды.

В 2019 г. в Германии началось строительство крупнейшей в мире установки по производству 1300 тонн водорода ежегодно методом электролиза.[1]

Производство водорода может быть сосредоточено на централизованных крупных предприятиях, что понижает себестоимость производства, но требует дополнительных расходов на доставку водорода к водородным автозаправочным станциям. Другим вариантом является маломасштабное производство непосредственно на специально оборудованных водородных автозаправочных станциях.

Производство водорода из различных источников сырья[править | править код]

На 2019 год в мире потребляется 75 млн тонн водорода, в основном в нефтепереработке и производстве аммиака. Из них более 3/4 производится из природного газа, для чего расходуется более 205 млрд м3 газа.[2] Почти все остальное получают из угля. Около 0,1 % (~100 тыс. тонн) вырабатывается электролизом. При производстве водорода в атмосферу поступает ~830 млн тонн CO2. Себестоимость водорода из природного газа оценивается в 1,5-3 доллара за 1 кг.

Из метана[править | править код]

Паровая конверсия с водяным паром при 1000 °C:

Ch5+h3O ⇄ CO+3h3{\displaystyle {\mathsf {CH_{4}+H_{2}O\ \rightleftarrows {}\ CO+3H_{2}}}}

Водород можно получать разной чистоты: 95-98 % или особо чистый. В зависимости от дальнейшего использования водород получают под различным давлением: от 1,0 до 4,2 МПа. Сырье (природный газ или легкие нефтяные фракции) подогревается до 350—400° в конвективной печи или теплообменнике и поступает в аппарат десульфирования. Конвертированный газ из печи охлаждается в печи-утилизаторе, где вырабатывается пар требуемых параметров. После ступеней высокотемпературной и низкотемпературной конверсии СО газ поступает на адсорбцию СО2 и затем на метанирование остаточных оксидов. В результате получается водород 95-98,5 % чистоты с содержанием в нем 1-5 % метана и следов СО и СО

2..

В том случае, если требуется получать особо чистый водород, установка дополняется секцией адсорбционного разделения конвертированного газа. В отличие от предыдущей схемы конверсия СО здесь одноступенчатая. Газовая смесь, содержащая H2, CO2, CH4, H2O и небольшое количество СО, охлаждается для удаления воды и направляется в адсорбционные аппараты, заполненные цеолитами. Все примеси адсорбируются в одну ступень при температуре окружающей среды. В результате получают водород со степенью чистоты 99,99 %. Давление получаемого водорода составляет 1,5-2,0 МПа.

Также возможно каталитическое окисление кислородом:

2Ch5+O2⇄ 2CO+4h3{\displaystyle {\mathsf {2CH_{4}+O_{2}\rightleftarrows {}\ 2CO+4H_{2}}}}

Из угля[править | править код]

Пропускание паров воды над раскалённым углем при температуре около 1000 °C:

h3O+C ⇄ CO↑+h3↑{\displaystyle {\mathsf {H_{2}O+C\ \rightleftarrows {}\ CO\uparrow +H_{2}\uparrow }}}

Старейший способ получения водорода. Себестоимость процесса $2-$2,5 за килограмм водорода. В будущем возможно снижение цены до $1,50, включая доставку и хранение.

Электролиз[править | править код]

Электролиз водных растворов солей:

2NaCl+2h3O → 2NaOH+Cl2↑+h3↑{\displaystyle {\mathsf {2NaCl+2H_{2}O\ {\xrightarrow {}}\ 2NaOH+Cl_{2}\uparrow +H_{2}\uparrow }}}

Электролиз водных растворов гидроксидов активных металлов (преимущественно, гидроксида калия)[3]

2h3O→4e−2h3↑+O2↑{\displaystyle {\ce {2h3O ->[4e^{-}] 2h3 ^ + O2 ^}}}

Кроме того, существует промышленная технология электролиза химически чистой воды, без применения каких-либо добавок. Фактически, устройство представляет собой обратимый топливный элемент с твёрдой полимерной мембраной[3].

Из биомассы[править | править код]

Водород из биомассы получается термохимическим, или биохимическим способом. При термохимическом методе биомассу нагревают без доступа кислорода до температуры 500°-800° (для отходов древесины), что намного ниже температуры процесса газификации угля. В результате процесса выделяется H2, CO и CH4.

Себестоимость процесса $5-$7 за килограмм водорода. В будущем возможно снижение до $1,0-$3,0.

В биохимическом процессе водород вырабатывают различные бактерии, например, Rodobacter speriodes.

Возможно применение различных энзимов для ускорения производства водорода из полисахаридов (крахмал, целлюлоза), содержащихся в биомассе. Процесс проходит при температуре 30° Цельсия при нормальном давлении. Себестоимость процесса около $2 за кг.

Из цепочки сахар-водород-водородный топливный элемент можно получить[4] в три раза больше энергии, чем из цепочки сахар-этанол-двигатель внутреннего сгорания.

Из мусора[править | править код]

Разрабатываются различные новые технологии производства водорода. Например, в октябре 2006 года Лондонское Водородное Партнёрство опубликовало исследование (недоступная ссылка) о возможности производства водорода из муниципального и коммерческого мусора. Согласно исследованию, в Лондоне можно ежедневно производить 141 тонну водорода как пиролизом, так и анаэробным сбраживанием мусора. Из муниципального мусора можно производить 68 тонн водорода.

141 тонны водорода достаточно для работы 13750 автобусов с двигателями внутреннего сгорания, работающими на водороде. В Лондоне в настоящее время эксплуатируется более 8000 автобусов.

Химическая реакция воды с металлами[править | править код]

В 2007 году Университет Purdue (США) разработал метод производства водорода из воды при помощи алюминиевого сплава.

Сплав алюминия с галлием формируется в пеллеты. Пеллеты помещают в бак с водой. В результате химической реакции производится водород. Галлий препятствует образованию оксидной пленки на поверхности алюминия, тормозящую процесс окисления алюминия. В результате реакции создаётся водород и оксид алюминия.

Из одного фунта (≈453 г) алюминия можно получать более 2 кВт·ч энергии от сжигания водорода и более 2 кВт·ч тепловой энергии во время реакции алюминия с водой. В будущем, при использовании электроэнергии атомных реакторов 4-го поколения, себестоимость водорода, получаемого в ходе реакции, станет эквивалента цене бензина $3 за галлон (≈3,8 л).

Автомобиль среднего размера с двигателем внутреннего сгорания с 350 фунтами (158 кг) алюминия на борту может проехать 350 миль (560 км). В будущем стоимость такой поездки составит $63 (0,11 $/км), включая стоимость восстановления оксида алюминия на атомной электростанции 4-го поколения.[5]

С использованием водорослей[править | править код]

Учёные калифорнийского университета в Беркли (UC Berkeley) 1999 году обнаружили[6], что если водорослям не хватает кислорода и серы, то процессы фотосинтеза у них резко ослабевают, и начинается бурная выработка водорода.

Водород может производить группа зелёных водорослей, например, Chlamydomonas reinhardtii. Водоросли могут производить водород из морской воды, или канализационных стоков.

Домашние системы производства водорода[править | править код]

Вместо строительства водородных заправочных станций водород можно производить в бытовых установках из природного газа, или электролизом воды. Honda испытывает свою бытовую установку под названием Домашняя энергетическая станция Honda. Установка в бытовых условиях производит водород из природного газа. Часть водорода используется в топливных элементах для производства тепловой и электрической энергии для дома. Оставшаяся часть водорода используется для заправки автомобиля.

Британская компания ITM Power Plc разработала и испытала в 2007 г. бытовой электролизёр для производства водорода. Водород производится ночью, что позволит сгладить пики потребления электроэнергии. Электролизер мощностью 10 кВт производит из воды водород, и хранит его под давлением 75 бар. Произведённого водорода достаточно для 40 км пробега битопливного (водород/бензин) Ford Focus. Компания планирует начать производство бытовых электролизеров в начале 2008 года. ITM Power уже достигла уровня себестоимости электролизеров $164 за 1кВт.

Производство и добыча водорода как источника водородной энергии

Со школьных уроков химии и физики известно, что энергия водорода сосредоточенная в этом газе довольно значительна. Искры достаточно, чтобы воспламенить смесь нормального воздуха и водорода полученного в результате опыта на школьных уроках.

В отличие от многих других процессов горения, продукт реакции абсолютно безвреден с экологической точки зрения, поэтому люди изучают промышленное производство и энергию водорода.

Так как человечеству необходимы все больше энергии чистая водородная энергия пришлась бы кстати.

Топливные элементы могут генерировать столь востребованную электроэнергию из этого газа. Неудивительно, что многие люди с видением глобальной водородной экономики видят в этом решение наших текущих климатических проблем.

Энергия  водорода  может в то же время помочь нам избавиться от загрязнения воздуха, кислотных дождей и других экологических проблем, вызванных другими источниками.

Жюль Верн увидел потенциал энергии  водорода  еще в 1874 году в романе  «Таинственный остров», и вопрос в том, почему процветающая водородная промышленность еще не развилась.

Ответ прост: этот газ не встречается в природе в чистом виде и нужно преобразование энергии. Энергетика и комплекс технических процессов необходим прежде чем его можно выделить и использовать как водородную энергию.

Отделение до чистого водорода делает его дорогим, а некоторые производственные процессы даже приводят к высоким выбросам парниковых газов.

Но даже если водородная промышленность еще только на чертежной доске, вторичная энергия водорода все еще интересна как альтернативный источник для некоторых областей применения.

Что  представляет первый элемент периодической системы

Водород является наиболее распространенным компонентом в нашей Солнечной системе и имеет около 75% массы и более 90% всех атомов. Наше Солнце и большие газовые планеты Юпитер, Сатурн, Уран и Нептун состоят в основном из этого газа. На Земле этот газ встречается гораздо реже. Его доля в общем весе Земли составляет только около 0,12%. Хотя водород чаще встречается в земной коре, его практически нет в чистом виде. Он почти всегда химически связан и наиболее частым соединением является вода.

Водород – самый маленький и легкий атом. Как чрезвычайно легкий газ, он был использован для наполнения газовых баллонов дирижаблей жесткой формы как Цеппелины, в течение первой половины девятнадцатого века. Катастрофа в Гинденбурге в США в 1937 году, где предположительно произошел электростатический заряд который вызвал возгорание, положил трагический конец перспективам использования водорода в дирижаблях.

Основное применение водорода сегодня находится в химической промышленности. В качестве источника энергия водорода в настоящее время широко используется, в основном, в авиационном и космическом секторе.

Водород как источник энергии используется для привода реактивных двигателей самолетов.

В космических полетах жидкий водород используется в качестве ракетного топлива. Например,  запуск космического челнока потребляет около 1,4 млн литров жидкого водорода весом более 100 тонн создавая температуру горения до  3200° C.

Производство

Водородная энергетика использует несколько способов производства водорода.

Газ сначала должен быть получен в чистом виде, прежде чем энергия из него может быть получена. Это требует легкодоступного недорогого сырья, содержащего этот химический элемент. Кроме воды (H2O), которая состоит из водорода (H) и кислорода (O) могут быть применены смеси углерода. Это в первую очередь природный газ или метан (CH4). Мазут и уголь также состоят из водорода (H) и углерода (C), но имеют гораздо более высокую долю углерода, чем природный газ.

Из углеводородов

Современные промышленные методы получения водорода почти исключительно используют ископаемые  топливо, как природный газ, сырую нефть или уголь, как сырье. Такие методы, как паровой риформинг или частичное окисление паром для получения водорода из ископаемых углеводородов. Этот процесс химически отделяет углерод который после этого превращается в окись углерода (CO). Эти методы добычи водорода не являются идеальным вариантом с целью активной защиты климата. энергия водорода

энергия водорода

В основном, упомянутый способ производства водорода из ископаемых  источников работает при высоких температурах обработки. Это требует большого количества внешних ресурсов.

Поэтому для получения водорода необходимы другие методы, с тем чтобы он был экологически чистым и безопасным. Идеальным способом является электролиз.

Методом электролиза

Немецкий химик Иоганн Вильгельм Риттер впервые использовал электролиз для получения водорода еще в 1800 году. С помощью электрической энергии, электролиз разлагает воду на водород и кислород. метод электролизаметод электролиза

Особенностью электролиза может быть то, что если электроэнергия добыта из возобновляемых источников, то производство водорода во всем цикле  может выделять только углекислый газ.

С помощью этого метода два электрода погружают в проводящий водный электролит. Это может быть смесь воды и серная кислота или гидроксид калия (KOH). Аноды и катоды проводят постоянный ток в электролитах и на них образуются газы водород и кислород. Хотя электролиз уже достиг высокого уровня технического развития, как экологически совместимый вариант производства кислорода, другие альтернативные методы также разрабатываются.

Термохимический метод

При температуре выше 1700° C вода непосредственно разлагается на водород и кислород. темохимический методтемохимический метод

 Однако эти температуры требуют дорогостоящих термостойких средств. Необходимую температуру можно уменьшить ниже чем 1000° С через различные сопряженные химические реакции.

Биологическое получение

Другие методы включают фотобиологическое производство водорода. Суть этого метода в том, что некоторые водоросли во время роста при нехватке серы производят водород. биологический водородбиологический водород Это типа биореакторов использующих свет для разложения воды.

Хранение и транспортировка

После получения водорода он должен храниться и транспортироваться потребителю. В принципе, мы знакомы с хранением и транспортировкой горючих газов.

Водород – очень легкий газ с очень минимальной плотностью, но имеет относительно высокое значение энергоемкости. При сравнении с природным  газом то он требует гораздо больших объемов хранения, хотя накопленный водород намного легче.

Произведенный водород можно сохранить под высоким давлением и сжать для того чтобы уменьшить необходимые объемы хранения. При нормальном давлении этот газ конденсируется, но до тех пор, пока он не достигнет чрезвычайно низких температур минус 253° C.

Для достижения таких низких температур требуется определенное количество энергии. От 20 до 40%  энергии, хранящейся в водороде, используется для его сжижения.

В принципе, те же технологии, которые используются в секторе природного газа могут быть использованы для сжижения, транспортировки и хранения. Этот первый элемент периодической системы  можно транспортировать либо в трубопроводах, либо на специальных танкерах и грузовых судах. В то время как трубопроводы, как правило, транспортируют газообразную форму, танкеры предпочтительны для жидкого водорода. В отличие от водорода, природный газ уже становится жидким при минус 162 ° C. Опыт работы в газовой отрасли может быть использован для хранения и транспортировки водородной энергии.

Будущее применение

Топливные элементы считаются ключом к будущему использованию энергии водорода, поскольку они могут преобразовывать его непосредственно в электрическую энергию. Теоретически это приводит к более высокой эффективности, чем при сжигании в обычных тепловых электростанциях.

Принцип работы топливных элементов известен уже очень давно.

Есть некоторые споры о том, кто на самом деле изобрел топливный элемент:

  • Немецко-швейцарский химик Кристиан Фридрих  провел первые тесты в технологии топливных элементов в 1838 году.
  • Английский физик сэр Уильям Роберт Гроув построил первый топливный элемент в 1839 году.
  • Впоследствии такие известные ученые, как Анри Беккерель и Томас Эдисон, стали участвовать в их дальнейшем развитии. Однако это была довольно слабо продвинутая стадия развития.
  • Наконец, в середине двадцатого века была достигнута задача, позволившая применение и основное использование топливных элементов.

Топливные элементы, в основном, предполагают реверсирование электролиза. Топливный элемент всегда содержит два электрода. В зависимости от типа топливного элемента, чистый водород (H2) или топливо содержащее углеводороды подают через анод и чистый кислород (О2 ) или воздух в качестве окислительного материала через катод. Электролит отделяет анод и катод. Электроны текут по большой цепи и создают электрическую энергию.

С 1990-х годов разработка топливных элементов идет полным ходом. Автомобильные производители и энергокомпании приняли технологию и ищут способ получить прибыль от положительного применения водорода как источника энергии.

Биотехнологическое получение водорода — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 июля 2013; проверки требует 21 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 июля 2013; проверки требует 21 правка. Algae hydrogen production.jpg

Биологическое получение водорода при помощи водорослей — процесс биохимического расщепления воды, осуществляемый замкнутым фотобиореактором, основанный на получении водорода водорослями. Точные условия выделения водорода водорослями неизвестны. В 2000 году было обнаружено, что водоросли вида C. reinhardtii при нехватке серы перейдут от выделения кислорода (как при нормальном фотосинтезе) к выделению водорода.

Микробиологическое получение водорода[править | править код]

Водородообразующие микроорганизмы широко распространены в природе. Например, растущая культура Rhodopseudomonas capsulata выделяет 200—300 мл водорода на 1 грамм сухой биомассы[1]. Микробиологическое образование водорода может идти из соединений углеводного характера (крахмал, целлюлоза).

Биофотолиз воды — разложение воды на водород и кислород с участием микробиологических систем. Производство водорода происходит в биореакторе, содержащем водоросли. Водоросли производят водород при определенных условиях. В конце 90-х годов XX века было показано, что в условиях недостатка серы биохимический процесс производства кислорода, то есть нормальный фотосинтез, переключается на производство водорода.

Во время фотосинтеза цианобактерии и зеленые водоросли расщепляют воду на ионы водорода и электроны. Электроны переводятся в ферредоксин . Fe-Fe гидрогеназа (фермент) объединяет их с газообразным водородом. Фотосистема II Chlamydomonas reinhardtii производит в прямом солнечном излучении 80% электронов, которые в конечном итоге находят свое место в газообразном водороде. LHCBM9 — светосборный белок II в светосборном комплексе эффективно поддерживает солнечную энергию. Fe-Fe-гидрогеназа требует анаэробных условий, потому что кислород блокирует ее активность. Спектроскопия Фурье используется для изучения метаболических путей.

Антенные системы хлорофилла в зеленых водорослях уменьшены или укорочены, чтобы максимизировать эффективность фотобиологического преобразования света в H 2 . Укороченная система сводит к минимуму поглощение и расточительное рассеивание света через отдельные клетки, что, в свою очередь, повышает эффективность использования света и повышает продуктивность фотосинтеза в колониях зеленых водорослей.

Особенности конструкции биореактора[править | править код]

  • Ограничения фотосинтетического производства водорода путём аккумулирования протонного градиента.
  • Конкурентное ингибирование фотосинтеза водорода со стороны углекислого газа.
  • Эффективность фотосинтеза возрастает, если бикарбоната связан с фотосистемой II (PSII)
  • Экономическая реализуемость. Энергетическая эффективность — коэффициент преобразования солнечного света в водород — должна достичь 7—10 % (водоросли в естественных условиях достигают в лучшем случае 0,1 %).

Основные вехи[править | править код]

2006 год — исследователи из Университета Билефельда и Университета Квинсленда генетически модифицировали одноклеточную водоросль Chlamydomonas reinhardtii таким образом, что она стала производить существенно большие количества водорода[2]. Получившаяся водоросль-мутант Stm6 может, в течение долгого времени производить в пять раз больше водорода, чем его предок, и давать 1,6—2,0 % энергетической эффективности.

2006 год — неопубликованная работа из Калифорнийского университета в Беркли (программа реализуется организацией MRIGlobal (англ.), по контракту с Национальной лабораторией возобновляемых источников энергии (англ. обещает разработку технологии с 10 процентной энергетической эффективностью. Утверждается, что путём укорочения стека хлорофилла Tasios Melis возможно преодолеть 10 процентный барьер[3].

Исследования[править | править код]

2006 — В Университете Карлсруэ разрабатывается прототип биореактора, содержащего 500—1000 литров культуры водорослей. Этот реактор используется для доказательства реализуемости экономически эффективных систем такого рода в течение ближайших пяти лет.

Экономичность[править | править код]

Ферма водородопроизводящих водорослей площадью равной площади штата Техас производила бы достаточно водорода для покрытия потребностей всего мира.[источник не указан 2955 дней] Около 25 000 км² достаточно для возмещения потребления бензина в США. Это в десять раз меньше чем используется в сельском хозяйстве США для выращивания сои[4].

История[править | править код]

В 1939 году немецкий исследователь Ханс Гаффрон (англ.), работая в Чикагском университете, обнаружил, что изучаемая им водоросль Chlamydomonas reinhardtii иногда переключается с производства кислорода на производство водорода[5]. Гаффрон не смог обнаружить причину этого переключения. В течение многих лет причину переключения не удавалось обнаружить и другим ученым. В конце 1990-х годов профессор Анастасис Мелис (англ.), работая исследователем в Беркли, обнаружил, что в условиях недостатка серы биохимический процесс производства кислорода, то есть нормальный фотосинтез, переключается на производство водорода. Он обнаружил ответственный за это поведение фермент гидрогеназу, теряющий эти функции в присутствии кислорода. Мелис обнаружил, что серное голодание прерывает внутреннюю циркуляцию кислорода, меняя окружение гидрогеназы таким образом, что она становится способна синтезировать водород. Другой тип водорослей Chlamydomonas moeweesi (англ.) также перспективен для производства водорода.

  • Варфоломеев С. Д., Зайцев С. В., Зацепин С. С. Проблемы преобразования солнечной энергии путём биофотолиза воды. — Итоги науки. М.: ВИНИТИ, 1978

Жидкий водород — Википедия

Жи́дкий водоро́д (ЖВ, жh3, жH2, Lh3, LH2) — жидкое агрегатное состояние водорода, с низкой плотностью − 0,07 г/см³, и криогенными свойствами с точкой замерзания 14,01 K (−259,14 °C) и точкой кипения 20,28 K (−252,87 °C)[1]. Является бесцветной жидкостью без запаха, которая при смешивании с воздухом относится к взрывоопасным веществам с диапазоном коэффициента воспламенения 4—75 %. Спиновое соотношение изомеров в жидком водороде[en] составляет: 99,79 % — параводород; 0,21 % — ортоводород[2]. Коэффициент расширения[en] водорода при смене агрегатного состояния на газообразное при комнатной температуре составляет 848:1.

Как и для любого другого газа, сжижение водорода приводит к уменьшению его объёма. После сжижения жидкий водород хранится в термически изолированных контейнерах под давлением. Жидкий водород используется в промышленности (в качестве формы хранения газа) и в космонавтике (в качестве ракетного топлива).

Первое документированное использование искусственного охлаждения в 1756 году было осуществлено английским учёным Вильямом Калленом[3], Гаспар Монж первым получил жидкое состояние оксида серы в 1784 году, Майкл Фарадей первым получил сжиженный аммиак, американский изобретатель Оливер Эванс первым разработал холодильный компрессор в 1805 году, Яков Перкинс первым запатентовал охлаждающую машину в 1834 году и Джон Гори первым в США запатентовал кондиционер в 1851 году[4][5], Вернер Сименс предложил концепцию регенеративного охлаждения в 1857 году, Карл Линде запатентовал оборудование для получения жидкого воздуха с использованием каскадного «эффекта расширения Джоуля — Томсона» и регенеративного охлаждения[6] в 1876 году. В 1885 году польский физик и химик Зигмунд Вро́блевский опубликовал критическую температуру водорода 33 K, критическое давление 13.3 атм. и точку кипения при 23 K. Впервые водород был сжижен Джеймсом Дьюаром в 1898 году с использованием регенеративного охлаждения и своего изобретения, сосуда Дьюара. Первый синтез устойчивого изомера жидкого водорода — параводорода — был осуществлен Полом Хартеком и Карлом Бонхеффером в 1929 году.

Водород при комнатной температуре состоит на 75 % из спинового изомера, ортоводорода. После производства жидкий водород находится в метастабильном состоянии и должен быть преобразован в параводородную форму, для того чтобы избежать спонтанной экзотермической реакции его превращения, приводящей к сильному самопроизвольному испарению полученного жидкого водорода. Преобразование в параводородную фазу обычно производится с использованием таких катализаторов, как оксид железа, оксид хрома, активированный уголь, покрытых платиной асбестов, редкоземельных металлов или путём использования урановых или никелевых добавок[7].

Жидкий водород может быть использован в качестве формы хранения топлива для двигателей внутреннего сгорания и топливных элементов. Различные проекты водородного транспорта были созданы с использованием этой агрегатной формы водорода (см. например DeepC[en] или BMW h3R[en]). Благодаря близости конструкций, создатели техники на «ЖВ» могут использовать или только дорабатывать системы, использующие сжиженный природный газ («СПГ»). Однако из-за более низкой объёмной плотности энергии для горения требуется больший объём водорода, чем природного газа. Если жидкий водород используется вместо «СПГ» в поршневых двигателях, обычно требуется более громоздкая топливная система. При прямом впрыске увеличившиеся потери во впускном тракте уменьшают наполнение цилиндров.

Жидкий водород используется также для охлаждения нейтронов в экспериментах по нейтронному рассеянию. Массы нейтрона и ядра водорода практически равны, поэтому обмен энергией при упругом столкновении наиболее эффективен.

Преимущества[править | править код]

Преимуществом использования водорода является «нулевая эмиссия» его применения. Продуктом его взаимодействия с кислородом в воздухе является вода, но в реальности — как и в случае с обычными ископаемыми энергоносителями — из-за наличия в воздухе молекул азота при его горении образуется также незначительное количество оксидов этого газа. В качестве топлива для транспортных средств, эксплуатируемых на открытом воздухе, водород при авариях и протечках не скапливается на месте, а уходит вверх, в атмосферу, что снижает пожароопасность.

Препятствия[править | править код]

Один литр «ЖВ» весит всего 0,07 кг. То есть его удельная плотность составляет 70,99 г/л при 20 K. Жидкий водород требует криогенной технологии хранения, такой как специальные теплоизолированные ёмкости и требует особого обращения, что свойственно для всех криогенных материалов. Он близок в этом отношении к жидкому кислороду, но требует большей осторожности из-за пожароопасности. Даже в случае с ёмкостями с тепловой изоляцией его тяжело содержать при той низкой температуре, которая требуется для его сохранения в жидком состоянии (обычно он испаряется со скоростью 1 % в день[8]). При обращении с ним также нужно следовать обычным мерам безопасности при работе с водородом («Водородная безопасность») — он достаточно холоден для сжижения воздуха, что взрывоопасно. Жидкий водород при атмосферном давлении имеет очень узкий температурный диапазон стабильности — всего 7 градусов Цельсия, что создает определенные трудности при хранении.

Жидкий водород является распространенным компонентом ракетного топлива, которое используется для реактивного ускорения ракет-носителей и космических аппаратов. В большинстве жидкостных ракетных двигателей на водороде, он сначала применяется для регенеративного охлаждения сопла и других частей двигателя, перед его смешиванием с окислителем и сжиганием для получения тяги. Используемые современные двигатели на компонентах H2/O2 потребляют переобогащенную водородом топливную смесь, что приводит к некоторому количеству несгоревшего водорода в выхлопе. Кроме увеличения удельного импульса двигателя за счет уменьшения молекулярного веса, это ещё сокращает эрозию сопла и камеры сгорания.

Такие препятствия использования ЖВ в других областях, как криогенная природа и малая плотность, являются также сдерживающим фактором для использования в данном случае. На 2009 год существует только одна ракета-носитель («Дельта-4»), которая целиком является водородной ракетой. В основном ЖВ используется либо на верхних ступенях ракет, либо на разгонных блоках, которые значительную часть работы по выводу полезной нагрузки в космос выполняют в вакууме. В качестве одной из мер по увеличению плотности этого вида топлива существуют предложения использования шугообразного водорода, то есть полузамерзшей формы ЖВ.

Водород с разными окислителями[править | править код]

Данные приводятся на основании[9] таблиц, опубликованных в США в рамках проекта сбора термодинамических данных «JANAF» (англ. Joint Army Navy Air Force, «Сборник ВМС и ВВС армии США»), которые широко используются в этих целях. Изначально вычисления производились компанией «Рокетдайн».[10] При этом делались предположения, что имеет место адиабатическое сгорание, изоэнтропийное расширение в одном направлении и имеет место смещение равновесного состояния. Кроме варианта использования водорода в качестве топлива, приводятся варианты с использованием водорода в качестве рабочего тела, что объясняется его небольшим молекулярным весом. Все данные рассчитаны для давления в камере сгорания («КС»), равного 68,05 атмосфер. Последняя строка таблицы содержит данные для газообразных водорода и кислорода.

Оптимальное расширение от 68.05 атм до условий:поверхности Земли (1 атм)вакуума (0 атм, расширение сопла 40:1)
ОкислительТопливоКомментарийVerTcdC*VerTcdC*
жO2H2распространено38164.1327400.29241644624.8329780.322386
H2-Be 49/5144980.8725580.23283352950.9125890.242850
CH4/H2 92.6/7.431263.3632450.71192037193.6332870.721897
F2H240367.9436890.46255646979.7439850.522530
H2-Li 65.2/34.042560.9618300.192680
H2-Li 60.7/39.350501.0819740.212656
OF2H240145.9233110.39254246797.3735870.442499
F2/O2 30/70H238714.8029540.32245345205.7031950.362417
O2H239973.292576255044853.9228622519

при этом «Ve» является той же единицей, что и удельный импульс, но приведена к размерности скорости [Н*сек/кг], а «C*» вычисляется путём умножения давления в камере сгорания на коэффициент расширения площади сопла и последующего деления на массовый расход топлива и окислителя, что дает приращение скорости на единицу массы.

Жидкий водород довольно опасен для человека. Попадание ЖВ на кожу может вызвать обморожение, а вдыхание паров привести к отёку легких.

  1. ↑ IPTS-1968 (en)
  2. ↑ Жидкий воздух/водород (en)
  3. ↑ Уильям Каллен, «О производстве холода, произведенного при испарении жидкостей и некоторые другие способы получения холода», в «Essays and Observations Physical and Literary Read Before a Society in Edinburgh and Published by Them, II», (Эдинбург, 1756) (en)
  4. ↑ США: 1851 Джон Гори (en)
  5. ↑ США: 1851 Патент 8080 (en)
  6. ↑ НАСА: Водород в течение XIX века (en)
  7. ↑ Преобразование водорода «Орто-Пара». Стр. 13 Архивировано 16 декабря 2008 года. (en)
  8. ↑ Водород в качестве альтернативного топлива Архивировано 8 августа 2008 года. (en)
  9. NIST-JANAF Thermochemical Tables 2 Volume-Set, (Journal of Physical and Chemical Reference Data Monographs), Hardcover: 1951 pp, Publisher: American Institute of Physics; 4th edition (1 августа 1998), Language: English, ISBN 1-56396-831-2, ISBN 978-1-56396-831-0
  10. Modern Engineering for Design of Liquid-Propellant Rocket Engines, (Progress in Astronautics and Aeronautics), Huzel and Huang, Rocketdyne division of Rockwell International

Биоводород — Википедия

Материал из Википедии — свободной энциклопедии

Производство водорода с помощью водорослей

Биоводород — водород, полученный из биомассы.

В настоящее время во всём мире ежегодно производится около 50 млн тонн водорода. Из них примерно 48 % производится из природного газа, 30 % из нефти, и 18 % из угля. При производстве водорода из углеводородов получается большое количество СО2, который является одной из причин глобального потепления. К тому же не все страны обладают собственными углеводородами. Решением этих проблем может стать производство водорода из биомассы.

Водород из биомассы получается термохимическим или биохимическим способом.

При термохимическом методе биомассу нагревают без доступа кислорода до температуры 500—800 °C (для отходов древесины), что намного ниже температуры процесса газификации угля. В результате процесса выделяется H2, CO и CH4.

Себестоимость процесса $5—7 за килограмм водорода. В будущем возможно снижение до $1,0—3,0.

В биохимическом процессе водород вырабатывают различные бактерии, например, Rodobacter speriodes, Enterobacter cloacae.

Возможно применение различных энзимов для ускорения производства водорода из полисахаридов (крахмал, целлюлоза), содержащихся в биомассе. Процесс проходит при температуре 30 °C и нормальном давлении. Себестоимость водорода около $2 за кг.

Учёные Калифорнийского университета в Беркли в 1999 году обнаружили, что если водорослям не хватает кислорода и серы, то процессы фотосинтеза у них резко ослабевают и начинается бурная выработка водорода.

Водород может производить группа зелёных водорослей, например, Chlamydomonas reinhardtii. Водоросли могут производить водород из морской воды, или канализационных стоков.

Водород может производиться риформингом биогаза или лэндфилл-газа.

Металлический водород — Википедия

Металли́ческий водоро́д — совокупность фазовых состояний водорода, находящегося при крайне высоком давлении и претерпевшего фазовый переход. Металлический водород представляет собой вырожденное состояние вещества и, по некоторым предположениям, может обладать некоторыми специфическими свойствами — высокотемпературной сверхпроводимостью и высокой удельной теплотой фазового перехода.

Предсказан теоретически в 1935 году.

В 1930-х годах британский ученый Джон Бернал предположил, что атомарный водород, состоящий из одного протона и одного электрона и представляющий собой полный аналог щелочных металлов, может оказаться стабильным при высоких давлениях[1]. В 1935 году Юджин Вигнер и X. Б. Хантингтон провели соответствующие расчёты. Гипотеза Бернала нашла подтверждение — согласно полученным расчётам, молекулярный водород переходит в атомарную металлическую фазу при давлении около 250 тыс. атмосфер (25 ГПа) со значительным увеличением плотности[2]. В дальнейшем оценка давления, требуемого для фазового перехода, была повышена, но условия перехода всё же считаются потенциально достижимыми. Предсказание свойств металлического водорода ведётся теоретически. Попытки получения, начатые в 1970-х годах, привели к возможным эпизодам водорода в 1996, 2008 и 2011 году, пока, наконец, в 2017 году профессор Айзек Сильвера и его коллега Ранга Диас не добились получения стабильного образца при давлении 5 млн атмосфер[3][4][1], однако камера, где хранился образец, под давлением разрушилась, и образец был потерян.

Связь с другими областями физики[править | править код]

Астрофизика

Считается, что большие количества металлического водорода присутствуют в ядрах планет-гигантов — Юпитера, Сатурна — и крупных экзопланет. Благодаря гравитационному сжатию под газовым слоем должно находиться ядро из металлического водорода.

Переход в металлическую фазу[править | править код]

При увеличении внешнего давления до десятков ГПа коллектив атомов водорода начинает проявлять металлические свойства. Ядра водорода (протоны) сближаются друг с другом существенно ближе боровского радиуса, на расстояние, сравнимое с длиной волны де Бройля электронов. Таким образом, сила связи электрона с ядром становится нелокализованной, электроны слабо связываются с протонами и формируют свободный электронный газ так же, как в металлах.

Жидкий металлический водород[править | править код]

Жидкая фаза металлического водорода отличается от твердой фазы отсутствием дальнего порядка. Имеется дискуссия о допустимом диапазоне существования жидкого металлического водорода. В отличие от гелия-4, жидкого при температуре ниже 4,2 K и нормальном давлении благодаря нулевой энергии нулевых колебаний, массив плотно упакованных протонов обладает значительной энергией нулевых колебаний. Соответственно, переход от кристаллической фазы к неупорядоченной ожидается при ещё более высоких давлениях. Исследование, проведенное Н. Ашкрофтом, допускает область жидкого металлического водорода при давлении около 400 ГПа и низких температурах[5][6]. В других работах Е. Бабаев предполагает, что металлический водород может представлять собой металлическую сверхтекучую жидкость.[7][8]

Сверхпроводимость[править | править код]

В 1968 году Нейл Ашкрофт предположил, что металлический водород может обладать сверхпроводимостью при сравнительно высоких температурах.[9]

Более точные расчёты[10] (Н. А. Кудряшов, А. А. Кутуков, Е. А. Мазур, Письма ЖЭТФ, т. 104, вып. 7, 2016, с. 488) показали, что критическая температура металлического водорода в фазе I41/AMD, той самой, которая изучалась[3] Рангой Диас и Иcааком Сильверой при давлении в 5 миллионов атмосфер, дает величину температуры перехода в сверхпроводящее состояние 215 кельвинов, то есть −58 градусов по Цельсию.

Экспериментальные попытки получения[править | править код]

Металлизация водорода ударным сжатием в 1996 году[править | править код]

В 1996 году Ливерморская национальная лаборатория сообщила, что в ходе исследований были созданы условия для металлизации водорода и получены первые свидетельства его возможного существования[11]. Кратковременно (около 1 мс) было достигнуто давление более 100 ГПа (106{\displaystyle 10^{6}} атм.), температура порядка тысяч кельвинов при плотности вещества около 600 кг/м3[12]. Поскольку предыдущие опыты по сжатию твердого водорода в ячейке с алмазными наковальнями до 250 ГПа не дали результата, целью эксперимента не было получение металлического водорода, а только изучение проводимости образца под давлением. Однако, по достижении 140 ГПа электрическое сопротивление практически исчезло. Ширина запрещенной зоны водорода под давлением составила 0.3 эВ, что оказалось сравнимо с тепловой энергией kT{\displaystyle kT}, соответствующей 3000 К и что свидетельствует о переходе «полупроводник — металл».

Исследования после 1996 года[править | править код]

Продолжались попытки перевести водород в металлическое состояние статическим сдавливанием при низких температурах. А. Руофф и Ч. Нараяна (Корнеллский университет, 1998)[13], П. Лоувьер и Р. Летуле (2002) последовательно приближались к давлениям, наблюдаемым в центре Земли (324—345 ГПа), но все же не наблюдали фазового перехода.

Эксперименты 2008 года[править | править код]

Теоретически предсказанный максимум кривой плавления на фазовой диаграмме, указывающий на жидкую металлическую фазу водорода, был экспериментально обнаружен Ш. Деемьяд и И. Сильвера[14]. Группа М. Ереметца заявила о переходе силана в металлическое состояние и проявление сверхпроводимости[15], но результаты не были повторены.[16][17]

Эксперименты 2011 года[править | править код]

В 2011 году было сообщено о наблюдении жидкой металлической фазы водорода и дейтерия при статическом давлении 260—300 ГПа. [18], что вновь вызвало вопросы в научном сообществе[19].

Эксперименты 2015 года[править | править код]

26 июня 2015 году в журнале Science была опубликована статья, в которой описан успешный эксперимент группы исследователей из Сандийских национальных лабораторий (США) совместно с группой из Ростокского университета (Германия) по сжатию жидкого дейтерия (тяжёлого водорода) с помощью Z-Машины до состояния, которое проявляет свойства металла[20].

Эксперименты 2016 года[править | править код]

В июле 2016 сообщалось, что физикам из Гарвардского университета удалось получить в лаборатории металлический водород. Они нагрели жидкий водород с помощью коротких вспышек лазера до температуры около 1900 градусов Цельсия и подвергли давлению в 1,1—1,7 мегабар[21].

Ожидается, что это вещество будет метастабильным, то есть при снятии давления останется металлом. Эксперимент физиков помогает объяснить, какие процессы могут происходить в недрах газовых гигантов. Учёные предполагают, что в будущем металлический водород может быть использован в качестве ракетного топлива или как сверхпроводник, способный существовать при комнатной температуре[22].

Научное сообщество скептически отнеслось к данной новости[23], ожидая повторного эксперимента[24].

Топливные элементы

Метастабильные соединения металлического водорода перспективны как компактное, эффективное и чистое топливо. При переходе металлического водорода в обычную молекулярную фазу высвобождается в 20 раз больше энергии, чем при сжигании смеси кислорода и водорода — 216 МДж/кг[25].

  1. 1 2 Сергей Стишов. Практическое использование металлического водорода следует отнести к научной фантастике // Коммерсантъ Наука, № 1, 24 февраля 2017
  2. Wigner, E.; Huntington, H.B. On the possibility of a metallic modification of hydrogen (англ.) // Journal of Chemical Physics. — 1935. — Vol. 3, no. 12. — P. 764. — DOI:10.1063/1.1749590.
  3. 1 2 Ranga P. Dias, Isaac F. Silvera. Observation of the Wigner-Huntington transition to metallic hydrogen (англ.) // Science. — 2017-01-26. — P. eaal1579. — ISSN 1095-9203 0036-8075, 1095-9203. — DOI:10.1126/science.aal1579.
  4. In, Geology. Scientists Have Finally Created Metallic Hydrogen, Geology IN. Дата обращения 28 января 2017.
  5. Ashcroft N. W. The hydrogen liquids (англ.) // Journal of Physics: Condensed Matter. — 2000. — Vol. 12, no. 8A. — P. A129. — DOI:10.1088/0953-8984/12/8A/314.
  6. Bonev S.A., et al. A quantum fluid of metallic hydrogen suggested by first-principles calculations (англ.) // Nature. — 2004. — Vol. 431, no. 7009. — P. 669. — DOI:10.1038/nature02968. — arXiv:cond-mat/0410425.
  7. Babaev E., Ashcroft N. W. Violation of the London law and Onsager–Feynman quantization in multicomponent superconductors (англ.) // Nature Physics. — 2007. — Vol. 3, no. 8. — P. 530. — DOI:10.1038/nphys646. — arXiv:0706.2411.
  8. Babaev E., Sudbø A., Ashcroft N. W. A superconductor to superfluid phase transition in liquid metallic hydrogen (англ.) // Nature. — 2004. — Vol. 431, no. 7009. — P. 666. — DOI:10.1038/nature02910. — arXiv:cond-mat/0410408.
  9. Ashcroft, N.W. Metallic Hydrogen: A High-Temperature Superconductor? (англ.) // Physical Review Letters. — 1968. — Vol. 21, no. 26. — P. 1748. — DOI:10.1103/PhysRevLett.21.1748.
  10. N. A. Kudryashov, A. A. Kutukov, E. A. Mazur. Critical temperature of metallic hydrogen at a pressure of 500 GPa (англ.) // JETP Letters. — 2016-12-14. — Vol. 104, iss. 7. — P. 460–465. — DOI:10.1134/S0021364016190061.
  11. Weir S. T., Mitchell A. C., Nellis W. J. Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar) (англ.) // Physical Review Letters. — 2004. — Vol. 76, no. 11. — P. 1860. — DOI:10.1103/PhysRevLett.76.1860.
  12. Nellis, W. J. Metastable Metallic Hydrogen Glass (неопр.). Lawrence Livermore Preprint UCRL-JC-142360 (2001). — «minimum electrical conductivity of a metal at 140 GPa, 0.6 g/cm3, and 3000 K».
  13. Ruoff A. L., et al. Solid hydrogen at 342 GPa: No evidence for an alkali metal (англ.) // Nature. — 1998. — Vol. 393, no. 6680. — P. 46. — DOI:10.1038/29949.
  14. Deemyad S., Silvera I. F. The melting line of hydrogen at high pressures (англ.) // Physical Review Letters. — 2008. — Vol. 100, no. 15. — DOI:10.1103/PhysRevLett.100.155701. — arXiv:0803.2321.
  15. Eremets M. I., et al. Superconductivity in hydrogen dominant materials: Silane (англ.) // Science. — 2008. — Vol. 319, no. 5869. — P. 1506–9. — DOI:10.1126/science.1153282.
  16. Degtyareva O. Formation of transition metal hydrides at high pressures (англ.) // Solid State Communications. — 2009. — Vol. 149, no. 39—40. — DOI:10.1016/j.ssc.2009.07.022. — arXiv:0907.2128v1.
  17. Hanfland M., Proctor J., Guillaume C. L., et al. High-Pressure Synthesis, Amorphization, and Decomposition of Silane (англ.) // Physical Review Letters. — 2011. — Vol. 106, no. 9. — DOI:10.1103/PhysRevLett.106.095503.
  18. Eremets M. I., Troyan I. A. Conductive dense hydrogen (англ.) // Nature Materials. — 2011. — No. 10. — P. 927–931. — DOI:10.1038/nmat3175.
  19. Nellis W. J., Ruoff A., Silvera I. F. Has Metallic Hydrogen Been Made in a Diamond Anvil Cell? (англ.) // arxiv.org. — 2012. — arXiv:http://arxiv.org/abs/1201.0407.
  20. M. D. Knudson, M. P. Desjarlais, A. Becker, R. W. Lemke, K. R. Cochrane, M. E. Savage, D. E. Bliss, T. R. Mattsson, R. Redmer. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium (англ.) // Science. — 26 June 2015. — Vol. 348, no. 6242. — P. 1455—1460. — DOI:10.1126/science.aaa7471.
  21. ↑ Физики получили частицу Юпитера на Земле
  22. ↑ В США ученые провели эпохальный опыт. Они получили металлический водород // Независимая газета, 27.01.2017.
  23. ↑ Physicists doubt bold report of metallic hydrogen // Nature — News & Comment
  24. ↑ There’s Reason To Be Skeptical About Metallic Hydrogen // Форбс (англ.)
  25. Silvera, Isaac F. Metallic Hydrogen: A Game Changing Rocket Propellant (неопр.). NIAC SPRING SYMPOSIUM (27 марта 2012). — «Recombination of hydrogen atoms releases 216 MJ/kg Hydrogen/Oxygen combustion in the Shuttle releases 10 MJ/kg … density about 12-13 fold». Дата обращения 13 мая 2012.

Хранение водорода — Википедия

Материал из Википедии — свободной энциклопедии

Хранение водорода — одно из промежуточных звеньев в жизненном цикле водорода от его производства до потребления. Разработка наиболее экономичных и эффективных способов хранения водорода представляет собой одну из главных технологических проблем водородной энергетики.

Как правило, водород хранят в сжиженном, абсорбированном либо сжатом газообразном состоянии. Основные проблемы, требующие решения при разработке технологий хранения водорода, имеют отношение к обеспечению их рентабельности и безопасности, что напрямую связано с химическими и физическими свойствами водорода.

Хранение водорода может использоваться и как технология сглаживания естественных колебаний в объёмах электрической энергии, получаемой за счёт возобновляемых источников энергии, таких как ветер или солнце. Вырабатываемый в пиковые периоды избыток электрической энергии используется для получения водорода методом электролиза, а в периоды снижения выработки электроэнергии этот водород используется как топливо. КПД данной операции, однако, достаточно низок по сравнению, например, с гидроаккумулирующими электростанциями.

Наиболее перспективным методом считается хранение водорода в абсорбированном состоянии. Большинство материалов позволяют сорбировать не более 7-8 % водорода в массовой доле. В настоящее время разрабатывается несколько способов увеличения этого показателя. Добились успеха в этом Adam Phillips и Bellave Shivaram — они описали процесс синтеза композитного вещества на основе металлического титана, у которого способность сорбировать до 12,4 % водорода (массы).

Компьютерное моделирование показало возможность хранения водорода в бакиболах (кластерных углеродных структурах). Бакиболы являются представителями фуллеренов.

Достаточно необычный, но при этом весьма недорогой способ хранения водорода с использованием карбонизированных волокон куриных перьев приводится здесь.

Ученые из Lawrence Berkeley National Laboratory совместно с Министерством энергетики США (U.S. Department of Energy) разработали новый композитный материал, состоящий из наночастиц магния и кристаллической решетки полиметилметакрилата[1].

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *