22.11.2024

Вентилятор нагнетания воздуха – канальный, осевой, вытяжной, промышленный, радиальный, бытовой, тепловентиляторы для дома, видео-инструкция по монтажу своими руками, фото и цена

Содержание

устройство, принцип работы, подбор подходящей модели

С развитием промышленного сектора большое количество технологических процессов потребовало принудительную подачу воздуха. Не осталась в стороне и бытовая сфера. Для обеспечения некоторых типов коммуникаций требуется регулярный приток свежего воздуха.

Элегантным решением этой проблемы стал центробежный вентилятор, который способен в автономном режиме нагнетать необходимое количество воздушной массы. Но как он устроен и как работает? Именно эти вопросы мы подробно разберем в нашей статье.

Рассмотрим конструкционные особенности прибора, его возможности, сферу применения, лучших производителей, продукция которых представлена на рынке. А также дадим рекомендации по выбору подходящей модели вентилятора.

Содержание статьи:

Суть нагнетания и разрежения воздуха вентилятором

Вентилятор являет собой механическую конструкцию, которая способна обрабатывать поток газовоздушной смеси посредством увеличения её удельной энергии для последующего перемещения.

Такая архитектура агрегата предоставляет возможность создавать эффект нагнетания или разрежения рабочего газа в пространстве через увеличение или уменьшение давления соответственно (механизм преобразования энергии).

Под газовым давлением понимают бесконечный процесс хаотичного перемещения молекул газа, которые ударяясь о стенки замкнутого пространства, создают давление на них.

Следовательно, чем выше скорость этих молекул, тем больше ударов и тем выше давление. Газовое давление – это одна из главных характеристик газа.

Галерея изображений

Фото из

Самая простая разновидность вентиляторов

Вентиляторная установка на производственном предприятии

Двигатель центробежного вентиляторного устройства

Разновидности радиальных вентиляторных агрегатов

С иной стороны любой газ имеет еще два параметра: объём и температуру. Объём – количество пространства, которое заполнил газ. Температура газа – термодинамическая характеристика, которая связывает скорость молекул и генерируемое ими давление.

На этих “трёх китах” стоит молекулярно–кинетическая теория, которая является базисом для описания всех процессов связанных с обработкой газов и газовых смесей.

Процесс нагнетания являет собой принудительное сосредоточение молекул в замкнутом пространстве сверх некой нормы. Например, общепринятое воздушное давление у поверхности земли приблизительно составляет 100 кПа (105 кило Паскалей) или 760 мм рт. ст. (миллиметров ртутного столба).

С увеличением высоты над поверхностью Земли давление становится меньше, воздух становится разреженным.

Атмосферное давлениеАтмосферное давление

Атмосферное давление – вес воздушного столба относительно площади поверхности над которой он находится. Не масса, а именно вес Р=mg. Измеряется барометром, остальные типы давления определяются манометром

Разрежение есть обратный процесс нагнетанию, во время которого молекулы покидают замкнутую систему. Объём остаётся тот же, а количество молекул уменьшается в разы, следовательно, и давление уменьшается.

Эффект нагнетания необходим для принудительного перемещения воздуха. Возможен вариант перемещения воздуха через эффект разрежения: для восстановления баланса давления во всей системе молекулы перемещаются от более сконцентрированной области молекул до менее сконцентрированной.

Таким способом происходит перемещение молекул газа.

Типичный анемометрТипичный анемометр

Для определения скорости потока воздуха снаружи или внутри здания часто применяют специальный инструмент – анемометр. Незаменимый прибор для проектирования систем вентиляции

Существуют самые разные компоновки вентиляционных систем, но их условно можно разделить на несколько классов по определённым параметрам:

  1. По назначению. Различают вентиляторы общего и специального назначения. Вентиляторы применяются для обычного перемещения газа. Специальные вентиляторы используются для пневмотранспорта, транспортировки агрессивных и взрывоопасных газовых смесей.
  2. По быстроходности. Бывают с малой, средней и высокой удельной частотой вращения колеса с лопатками.
  3. По диапазону давления. Известны системы генерации низкого (до 1 кПа), среднего (1–3 кПа), высокого ( более 3 кПа) давления.

Некоторые промышленные и бытовые процессы с применением воздуходувок происходят в экстремальных условиях окружающей среды, поэтому к оборудованию выдвигаются соответствующие требования.

Таким образом, можно говорить о пылевых, влагозащищенных, термостойких, коррозиестойких, искрозащитных агрегатах и устройствах для удаления дыма и обычных вентиляторах.

Информация о видах вентиляторов подробно рассмотрена в другой .

Конструкция вентилятора центробежного типа

Система центробежной конструкции являет собой нагнетательный механизм с радиальной архитектурой, который способен генерировать давление любого диапазона.

Предназначен для транспортировки одно- и многоатомных газов, в том числе химически “агрессивных” соединений.

Галерея изображений

Фото из

Типичный центробежный вентилятор

Расположение двигателя и корпуса на станине

Вид сверху вентилятора центробежного типа

Рабочее колесо центробежного вентилятора

Лопатки рабочего колеса вентилятора

Левое исполнение центробежного вентилятора

Вентилятор одностороннего всасывания

Радиальный вентилятор с двухсторонним всасыванием

Конструкция “облачена” металлическим/пластиковым корпусом, который называют защитным кожухом. Оболочка защищает внутреннюю камеру от пыли, влаги и других веществ, которые могут негативно влиять на работу агрегата.

Качественное вентиляционное изделие всегда имеет определённый класс защиты. Степень защиты оболочки (Ingress Protection) – единый международный стандарт качества изделия, который определяет уровень защищенности оборудования от влияния окружающей среды.

Схема радиального вентилятораСхема радиального вентилятора

Вентилятор радиального типа развивает значительно большее давление, чем осевой вариант. Это обусловлено сообщением порции попавшего в барабан воздуха энергии, формируемой при переходе от входа к выходу из системы

Механизм приводится в движение электрическим мотором или двигателем внутреннего сгорания (характерно для промышленных вентиляторов). Самым распространённым методом является электродвигатель, который вращает вал с крыльчаткой.

Известно несколько вариантом передачи вращательного движения от мотора на импеллер:

  • эластичная муфта;
  • клиноременная передача;
  • бесступенчатая передача (гидравлическая или индуктивная муфта скольжения).

Учитывая существование огромного количества фирм-производителей, которые создают уникальные системы с самыми разными динамическими параметрами, в распоряжении потребителей довольно обширный ассортимент вентиляторов.

Входной и выходной патрубкиВходной и выходной патрубки

В корпусе имеются два магистральных канала: входной и выходной. Газовая смесь входит в первый канала перемещается в камеру, там обрабатывается, после чего выходит в другой

В результате усиленной работы разработчиков имеем широкий спектр применения таких машин, в том числе:

  • системы вентиляции и отопления в частных и многоэтажных домах;
  • подача и очистка воздуха для нежилых зданий;
  • фильтрационные системы в сельском хозяйстве;
  • выполнение технологических процессов в лёгкой и тяжёлой промышленности разнообразного направления.

Существуют также варианты применения воздуходувок в системах пожаротушения и сверхбыстрой замены воздуха в замкнутом пространстве.

Такие вентиляторы работают с высокотемпературными газовыми смесями, что обязывает производителей включать в техническую документацию информацию о соответствии своего оборудования международным стандартам.

Проверенная и простая конструкция центробежного механизма имеет ряд явных преимуществ:

  • высокая надёжность и непревзойдённая производительность;
  • лёгкость и доступность обслуживания оборудования;
  • безопасность интеграции и эксплуатации агрегатов;
  • минимальные расходы на энергоресурсы и ремонт в случае выходя из строя.

Кроме того, воздуходувки отличаются довольно низким шумовым порогом, что позволяет их применять в бытовых условиях. Центробежные вентиляторы также имеют исключительно долгий срок службы за счёт отсутствия прямого соприкосновения рабочих частей механизма в рабочей камере.

Особенности рабочего цикла прибора

Рассмотрим общий принцип работы центробежной воздуходувки радиальной конструкции. Отметим, что специалисты различают две основные конструкции вентилятора: с осевым и радиальным размещением входного отверстия, куда всасывается воздушный поток.

Это влияет в первую очередь на вариант монтажа вентилятора в систему и практически не влияет на общую производительность.

Промышленный центробежный вентиляторПромышленный центробежный вентилятор

Вентилятор радиального типа может работать как с обычным воздухом, который он забирает из пространства, так и с потоковым воздухом что идёт через воздухопровод (эффект баланса областей с разным давлением)

Осевое входное отверстие характерно для нагнетательных воздуходувок общего применения. Радиальное размещение входа потока характерно для воздуходувок магистрального использования.

На первом этапе рабочего цикла вентилятора поток воздуха перемещается на поверхность быстро вращающегося импеллера. Лопатки крыльчатки разделяют воздух на небольшие объёмы, которые перемещаются внутрь рабочей камеры.

Здесь происходит накапливание воздушной массы, то есть происходит непосредственное сжатие воздушной массы в малый объём.

Сама конструкция корпуса агрегата имеет свои особенности.

Известны две наиболее распространённые формы корпуса:

  • округлые;
  • спиралевидные.

Округлая форма корпуса характерна для вентиляторов, которые перемещают огромное количество воздуха за короткое время выполнения процесса. А спиралевидная форма присуща вентиляторам, которые дополнительно производят сжатие воздушного объёма и генерацию среднего и высокого давления.

На втором этапе происходит нагнетание воздуха в рабочей камере. Как известно, при постоянном объёме с увеличением общей массы молекул газа увеличивается количество столкновений молекул, а значит и увеличивается их скорость. Следовательно, давление газа также увеличивается.

Виды радиальных барабановВиды радиальных барабанов

Большое значение имеет форма и количество лопастей. Все без исключения варианты импеллеров тестируются в аэродинамических трубах для определения оптимальных условий эксплуатации

На заключительном этапе происходит отвод сжатого газа из рабочей камеры к выходному отверстию. Дальше воздух переходит в центральный воздуховод и перемещается в указанном направлении.

Процесс разрежения происходит с точностью наоборот. Воздух забирается от воздушного трубопровода или замкнутого пространства, где необходимо создать разреженную область, и выводится в окружающую среду или другое ограниченное пространство.

Спецификация центробежного вентилятора

Компрессорные системы характеризуются целым рядом конструкционных и динамических отличий, которые необходимо учитывать при их подборе и внедрении в систему вентиляции.

К спецификации относят:

  • непосредственно саму конструкцию воздуходувки;
  • тип двигателя;
  • блок управления;
  • размещение крыльчатки и передачу вращательного движения от мотора;
  • угол расположение входного и выходного патрубка;
  • материал из которого выполнены детали изделия, его габариты и вес.

Специалисты также обращают внимание на соответствие изделий международным нормам: стандарты ISO/IEC и ГОСТ, маркировки IP, директивы ATEX и т. д.

Вентилятор открытого типаВентилятор открытого типа

К динамическим особенностям относят технические параметры производительности воздуходувки: генерируемое давление и коэффициент перепада давления, скорость и максимальная температура потока, частота вращения вала и уровень звукового давления, КПД и мощность двигателя

Нагнетаемое давление – максимальное значение, которое способен создать вентилятор во время работы в номинальном режиме.

Pv = Psv + Pdv,

Где: Pv – полное давление, Psv – статическое давление, Pdv – динамическое давление.

Коэффициент перепада – разница между входным и генерируемым давлением (бар).

Объёмный расход воздуха – количество газовой смеси, которая перемещается за единицу времени (производительность). Обычно вычисляется в м3/ч для отечественных производителей, литр/мин – для зарубежных.

Частота вращения – количество полных оборотов крыльчатки за единицу времени. Вычисляется в шт/с или Гц. Нужно помнить, что уровень нагрузки воздушного вентилятора не должен превышать 75% от максимального.

Работая длительное время в режиме перегрузки с большой частотой вращения, вентилятор перегревается и может быстро выйти из строя. Но этот процесс можно контролировать, управляя им по своему усмотрению. Для чего используют вентилятора.

Звуковое давление – уровень шума от вращающихся деталей и трение воздуха металл. Измеряется на расстоянии 3 метра от источника, когда он работает в режиме максимальной нагрузки. Шум необходимо учитывать при выборе постоянно работающего вентилятора.

Безлопастный бытовой вентиляторБезлопастный бытовой вентилятор

Большинство оборудования оснащается поглотителями шумов и фоновых звуков. Нормы для шума: не более 50 дБа для бытовых помещений и не более 75 дБа для промышленных

Одним из устройств с мизерным уровнем шума является .

Коэффициент полезного действия вентилятора является произведением трёх нижеуказанных коэффициентов:

  • потери в потоке воздуха;
  • утечки через зазоры в конструкции;
  • механический КПД изделия.

Для центробежных вентиляторов общий КПД находится в пределах от 0.7 до 0.85, в осевых (канальных) – не более 0.95. Выбирая радиальный вентилятор необходимо учитывать коэффициент запаса электродвигателя 1.2. То бишь подбирать мощность электромотора на 20% больше от необходимой.

Мощность электродвигателя вентилятора определяется по формуле:

N = (Q*P)/(102*3600*КПД),

Где: Q – производительность (объёмный расход воздуха), P – генерируемое давление.

Подбор вентилятора согласно требований

Процесс подбора вентиляционного оборудования для промышленного объекта (рабочего цеха, ангара) довольно интересный и замысловатый процесс, который должен делать специалист. Особенности вентиляции производственных помещений детально .

Для обычных квартир и частных домов уже существуют готовые решения. В общем случае (для 2–3 комнатной квартиры) имеем следующую архитектуру системы вентиляции:

  • в жилых комнатах монтируются проветриватели, количество которых зависит от размеров помещений и числа жильцов;
  • в кухне и санузле интегрируются вытяжные диффузоры плюс прокладываются к приточно–вытяжной установке.

Центробежный вентилятор включает блок управления, фильтр–систему для очистки воздуха, электродвигатель и непосредственно сам радиальный вентилятор.

Вентс серии ЦФВентс серии ЦФ

Для указанной выше системы вентиляции подойдут настенные вентиляторы серии ЦФ производства Вентс с производительностью до 120 м3/час

Нынешний рынок вентиляционного оборудования представлен широким спектром фирм зарубежного производства: Systemair, Soler&Palau, OSTBERG, Rosenberg, HELIOS, Maico, Ruck Ventilatoren GmbH, AeroStar, Blauberg, Elicent, Rhoss, Frapol, CMT CLIMA, HygroMatik GmbH, Winterwarm, Tecnair LV, AERIAL GmbH, MITA.

Изделия от этих компаний будут отличным решением для задач вентиляции любого масштаба.

Не уступают им в качестве производства и надёжности оборудования отечественные бренды Вентс, Элком, Домовент и Веза. Если есть сомнения в точности произведённых расчётов или с выбором конкретной модели, рекомендуем обратиться в службу поддержки любой из компаний.

Если вы являетесь владельцем частного 1–2 этажного дома, производственного или коммерческого здания подобной площади (ресторан, склад, столовая, кафе, офис), при выборе оборудования необходимо учитывать объём помещений, кратность обмена воздуха, длину и сечение магистральных трубопроводов.

Крышной вентилятор ВезаКрышной вентилятор Веза

С задачами вентилирования и дымоудаления легко справятся многозональные воздуходувки или крышные вентиляторы серии КРОМ от компании Веза, вентиляторы серии ВН компании Вентс и другие

Обязательно обращайте внимание на дополнительный функционал центробежных вентиляторов и возможность интеграции в разнообразные системы кондиционирования.

Так, радиальные воздуходувки могут оснащаться вспомогательными компонентами:

  • регулируемыми таймерами и интервальными переключателями, фотодатчиками и детекторами влажности;
  • регуляторами скорости и индикаторами состояний;
  • датчиками перегрузки электродвигателя и отсутствия электрического питания сети;
  • пружинными вибропоглотителями или резиновыми виброизоляторами.

Если вентилятор размещён внутри квартиры или дома, его можно закрыть съёмной лицевой декоративной панелью из алюминия или пластика, учитывая интерьер помещения.

Для многих пользователей существенным критерием при выборе вентилятора является уровень шума. Вы подбираете тихий вентилятор в ванную комнату? Рекомендуем ознакомиться с рейтингом .

Выводы и полезное видео по теме

В следующем видео специалисты компании Элком доступно рассказывают о центробежных вентиляторах:

Ниже показан отличный пример монтажа бытового вентилятора в ванной:

Ещё один вариант установки бытового маломощного вентилятора в квартире:

Классический центробежный вентилятор является результатом многолетнего опыта в сфере проектирования и производства оборудования для вентиляции. Это не только великолепное решение для промышленности, но и оптимальный инструмент транспортировки воздуха для жилых и офисных помещений.

Вы задумались о приобретении центробежного вентилятора? Или заметили несоответствие в разобранном материале? Задавайте свои вопросы, уточняйте технологические аспекты в блоке комментариев.

А может вы уже установили такой вентилятор в ванной комнате? Довольны ли вы его работой? Правильно ли выбрали мощность прибора для своего помещения? Присылайте фото своего вентилятора и оставляйте свои комментарии.

Классификация промышленных воздуходувок (нагнетателей) — статьи Пневмомаш

Когда речь заходит о воздуходувках, возникает определенная путаница, поскольку данным термином принято обозначать очень разные виды оборудования, начиная от садового пылесоса и заканчивая строительным феном. Наша компания предлагает нагнетатели воздуха, применяемые в промышленных целях. Именно об этом оборудовании и пойдет речь ниже.

Что такое воздуходувка?

Промышленные воздуходувки – это особый вид оборудования, предназначенный для нагнетания или откачки газа, позволяющий производить любые технологические процессы, требующие наличия мощной и стабильной струи воздуха.

По сути, эти аппараты занимают промежуточное положение между компрессорами и мощными вентиляторами. Иногда их даже называют «компрессорами низкого давления». Работа воздуходувки заключается в создании избыточного давления в диапазоне от 10 до 100 кПа (от 0,1 до 1 атмосферы).

Помимо нагнетания воздуходувка также может работать на создание вакуума от 10 до 50 кПа, что делает ее еще более универсальной в промышленном применении.

Какие конструкции воздуходувок существуют?

По типу конструкции все воздуходувки можно разделить на объемные и динамические  агрегаты.

1. Объемные воздуходувки. Такое оборудование действует по принципу сжатия воздуха, то есть имеет в своей конструкции два ротора или винта, которые захватывают воздух с одной стороны и в процессе вращения сжимают его между собой, отдавая на выходе газ под давлением.Воздуходувка рутса. Схема работы

В силу того что от воздуходувок не требуется создание высокого давления, в них очень часто можно встретить конструкцию Рутса (Roots), которая также использует вращающиеся роторы, но сжатие происходит не между лопастями двух винтов, а между винтами и стенками камеры, в которой они расположены. Преимуществами данной технологии можно считать компактность, долговечность и низкий уровень шума. Однако такие механизмы создают довольно сильные вибрации в трубопроводе, существенно нагревают воздух и, напомним, их эффективная работа возможна лишь до определенных значений наддува.

Иногда также встречаются модели спиральной конструкции, где две вложенные спирали сжимают воздух между собой, проталкивая его к выходу, а также мембранные — с двигающимся сердечником и прикрепленной к нему мембраной.

2. Динамические агрегаты, которые иначе называют вихревыми воздуходувками или турбовоздуходувками, работают за счет вращения импеллера, на котором закреплены лопасти, захватывающие и закручивающие воздух в небольшие вихри. Спиралевидная траектория движения потока придает ему дополнительную энергию, в результате чего растет и давление воздуха.

Вихревые воздуходувки

Простая конструкция, работающая по принципу вентилятора, дает следующие преимущества:

  • легкость и компактность,
  • длительный срок службы,
  • отсутствие смазки в воздухе на выходе,
  • равномерный поток воздуха без пульсаций,
  • относительно низкий уровень шума.

Однако следует учитывать, что такие воздуходувки очень чувствительны к качеству проходящего через них воздуха, поэтому на входе обязательно должны стоять фильтры. Во избежание перегрева не рекомендуется также их применение при повышенных температурах окружающей среды. Сравнительно невысокий КПД вихревых воздуходувок делает их оптимальным выбором при работе на небольших мощностях, примерно до 15 кВт.

Муфтовая или ременная?

В некоторых классификациях встречается разделение воздуходувок на ременные и муфтовые в зависимости от типа передачи.

В воздуходувках муфтового типа момент вращения от двигателя к рабочей камере выполняется посредством упругой муфты. Подобная конструкция получила широкую популярность ранее, однако в настоящее время и производители и потребители предпочитают ременной тип привода.

Почему так произошло? Дело в том, что стоимость производства ременной конструкции стала сопоставима с муфтовой, а преимуществ у такой воздуходувки довольно много: низкий уровень вибрации, возможность продолжительной безостановочной эксплуатации, а также более благоприятный тепловой и нагрузочный режим работы.

Какие функции может выполнять нагнетатель?

1. Аэрация

Сюда можно отнести все, что связано с насыщением воды кислородом, например, аэрацию прудов в рыбохозяйствах, или на станциях водоочистки для поддержания жизнеспособности аэробных бактерий.

Кроме того, возможен вариант использования нагнетателя, когда в емкость с жидкой средой накачивают определенный газ для осуществления необходимой химической реакции. В частности, при гальванизации подача воздуха в ванну позволяет быстро и равномерно наносить покрытие.

Даже процесс подачи сжатого воздуха в бассейн или ванну для создания пузырьков (джакузи) также можно выполнить при помощи воздуходувки.

2. Уборка, очистка

Воздуходувка может работать в режиме вакуумного насоса или нагнетателя, всасывая или сдувая с конвейерной ленты или станка излишки материала: металлическую крошку, тяжелую пыль, бумажные или тряпичные обрезки, обрывки пряжи.

3. Перемещение

Одним из основных назначений воздуходувок считается транспортировка газов, а также пневмотранспорт сыпучих материалов (легких гранул, порошка), небольших готовых изделий (методом всасывания или выталкивания). При помощи потока воздуха возможна также подача бумаги в печатную машину, а также приведение в движение плунжерного механизма.

4. Создание потока воздуха, сушка

Стабильный поток воздуха может требовать небольшого давления, например, для прохождения через фильтр тонкой очистки, создающий большое сопротивление. Подача нагнетаемого воздуха в вентиляционное отверстие поможет улучшить тягу.

При помощи воздуходувок производят быструю и качественную сушку тканого полотна, пленки, лакокрасочного слоя. При намотке тонкой ленты или пленки, перемотке бумаги также может потребоваться создание специальной воздушной подушки для предотвращения слипания или повреждения материала.

5. Упаковка

С помощью вакуума возможно удаление воздуха из бутылки при ее заполнении жидкостью, а также удержание предметов для их последующей укладки в коробку.

Применение воздуходувок в промышленности

 

Нагнетатель (автомобилестроение) — Википедия

Нагнетатель — механический агрегат, опционально применяемый на поршневых и роторно-поршневых двигателях внутреннего сгорания (далее — ДВС), работающий за счёт того или иного вида энергии, получаемой в процессе работы самого ДВС, и осуществляющий наддув, то есть принудительное нагнетание воздуха в ДВС с целью его всережимной форсировки или (в отдельных случаях) продувки.

Нагнетатель как элемент агрегатного наддува[править | править код]

Применение нагнетателя и его функции[править | править код]
Работа нагнетателя на двухтактном и четырёхтактном моторах

Нагнетатель может применяться на поршневых и роторно-поршневых ДВС, работающих по любому термодинамическому циклу и с любым числом тактов. Для большинства типов подобных ДВС нагнетатель является опциональным элементом конструкции, не влияющим на принципиальную возможность работы самого ДВС. Основная задача нагнетателя здесь — наддув с целью повышения мощности. Под наддувом подразумевается в первую очередь принудительное нагнетание воздуха в ДВС с давлением выше текущего уровня атмосферного, приводящее к увеличению плотности и массы воздуха в камере сгорания перед тактом рабочего хода, что, в свою очередь, согласно правилу стехиометрической горючей смеси для конкретного типа двигателя, позволяет сжечь больше топлива, а значит увеличить крутящий момент (и мощность, соответственно) на любой сравнимой с безнаддувным двигателем частоте вращения коленвала/ротора. В рамках этой задачи наддув с помощью нагнетателя есть лишь один из возможных методов форсировки и/или повышения КПД, и наличие или отсутствие нагнетателя определяется лишь целями и бюджетом разработчиков конкретного мотора. Исключением из этого правила является только некоторые типы двухтактных поршневых ДВС, где нагнетатель в первую очередь выполняет задачу по принудительной продувке цилиндров на стыке двух рабочих тактов и присутствует во впускной системе такого ДВС практически всегда.

Отсутствие нагнетателя в составе ГТД[править | править код]

В газотурбинных ДВС нагнетатель формально отсутствует. Компрессор, входящий в состав любого газотурбинного ДВС, является абсолютно неотъемлемым элементом конструкции, обеспечивающим принципиальную возможность работы подобного ДВС, и такой компрессор в русскоязычном инженерно-техническом лексиконе нагнетателем не называется, хотя и выполняет функцию принудительного нагнетания воздуха.

Типы нагнетателей по их энергетическому приводу[править | править код]

Нагнетатель работает за счёт того или иного вида энергии, получаемой с самого ДВС либо напрямую, либо опосредованно. Возможно использование энергии выхлопных газов, механической энергии вращения валов ДВС, электрической энергии. В зависимости от своего энергетического привода конструкция нагнетателя имеет свои технические особенности и своё собственное название. Нагнетатели, работающие от энергии выхлопных газов, называются турбонагнетателями, от механического привода — приводными нагнетателями. Также есть нагнетатели, работающие от электрической энергии, но для их описания устоявшийся русскоязычный термин пока отсутствует и их можно называть как электронагнетателями, так и нагнетателями с электроприводом.

Смысл терминов «нагнетатель» и «компрессор»[править | править код]

Важным элементом нагнетателя является воздушный компрессор, который присутствует в конструкции абсолютно любого нагнетателя, независимо от его энергетического привода. При этом контексте агрегатного наддува оба термина — и нагнетатель и компрессор — используются наравне, в том числе в составе сложносоставных слов, типа турбонагнетатель/турбокомпрессор, что у непосвящённых в тему может вызвать вопросы к смысловым оттенкам терминов. Следует понимать, что с точки зрения семантики термин «нагнетатель» подразумевает функцию всего агрегата в целом, а «компрессор» — наименование энергетической машины и главного исполнительного узла абсолютно любого нагнетателя. В русскоязычном речевом обиходе равноправное использование обоих терминов применительно к наддуву фактически допустимо, а оба слова, как в простом, так и в сложносоставном виде в данном случае могут считаться синонимами.

В теории лопастных машин термины «нагнетатель» и «компрессор» не тождественны. Обычно лопастные машины, повышающие давление потока не более, чем на 10%, относят к вентиляторам; на 20…25% — к нагнетателям; большие давления соответствуют компрессорам. В обиходе нагнетатель в сборе часто называют «турбиной», хотя в приводном нагнетателе турбина вообще отсутствует, а в газотурбинном является лишь приводом нагнетателя/компрессора.

Турбонагнетатель в сборе. Турбина — слева, компрессор — справа Простой турбонагнетатель фиксированной геометрии в разрезе

Таковым является нагнетатель, конструкция которого включает в себя миниатюрную турбину, а принцип работы основан на использовании энергии потока выхлопных газов самого мотора, на который осуществляется наддув. Выхлопные газы, воздействуя на турбину, располагающуюся в выпускной системе сразу за выпускным коллектором, раскручивают её, а она передаёт энергию вращения на компрессор. Принципиальная конструкция каждого из двух исполнительных узлов турбонагнетателя в общем и целом идентична для любой разработки, доведённой до стадии работающего агрегата, и предполагает одну одноконтурную турбину и один центробежный компрессор. При этом фактическая конструкция турбины, компрессора, вала и корпуса может быть весьма различной: так, помимо канонических простых совмещённых турбонагнетателей фиксированой геометрии на подшипниках скольжения, возможно применение турбин изменяемой геометрии, применение двойных спиральных каналов подвода газов к турбине (так называемый Twin-Scroll), применение двойных каналов выхода воздуха с компрессора, разнесение турбины и компрессора на существенное расстояние друг от друга, применение керамических роторов, установка вала на подшипниках качения. Важными (хотя и не особо декларируемыми) критериями мощности и эффективности турбонагнетателя являются наружные диаметры его турбинного и насосного колёс (что можно примерно оценить визуально по размеру корпуса), частота вращения ротора и величина турболага, присущего всем без исключения турбинам.

Турбонагнетатель всегда работает в режиме высоких температур выхлопных газов, а подшипники вала турбонагнетателя являются самой термонапряжённой деталью мотора, которая контактирует с моторным маслом, что накладывает особые требования как к технологии производства деталей, составляющих турбонагнетатель, так и к качеству масла и его ресурсу. И то и другое долгое время было одним из сдерживающих технологических факторов для какого-либо массового внедрения турбонагнетателей на бензиновых моторах .

Любой бензиновый мотор с турбонагнетателем изначально проектируется под наддув. Применение турбонагнетателя на бензиновом моторе, изначально спроектированном как , без переделок в принципе возможно, но приведёт к быстрому (если не моментальному) разрушению такого мотора при работе. Необходимость постоянного контроля детонации требует наличия некоей управляющей электроники, что обычно подразумевает систему питания мотора на основе электронного (или как минимум электронно-механического) впрыска. Массовые карбюраторные моторы с турбонагнетателями были крайне редки ввиду чрезмерной механической сложности своих систем питания. Широкое применение турбонагнетатели получили на дизельных моторах коммерческого транспорта — на моторах грузовиков, тракторов, локомотивов, судов. Здесь разрешающими факторами стали повышенная детонационная стойкость дизельных моторов и их более высокий КПД, предполагающий меньший уровень теплового излучения, относительная нетребовательность к эффективности работы мотора коммерческого транспорта в переходных режимах, достаточное пространство моторного отсека.

Особенностью работы турбонагнетателя в сравнении с другими агрегатами наддува является то, что в случае его применения эффект от наддува всегда превышает энергетические затраты на наддув. То есть, для любого мотора, оснащённого турбонагнетателем, всегда возможно получить такой режим наддува, который форсирует мотор настолько, что разрушит его. Мощность любого мотора с турбонагнетателем в 100 % случаев ограничивается прочностью самого мотора, его моторесурсом, а не эффективностью турбонагнетателя. Необходимость ограничения эффекта наддува есть причина того, что турбонагнетатель никогда не применяется на моторах сам по себе, а только комплексно в составе системы турбонаддува, в которой он является основным её элементом, но не единственным.

Объёмный приводной нагнетатель Roots Объёмный приводной нагнететель PowerPlus на основе шиберного пластинчатого насоса

Таковым является нагнетатель, конструкция которого состоит из компрессора и некоего механического привода, посредством которого, в свою очередь, и обеспечивается работа нагнетателя за счёт использования мощности, получаемой с мотора, на который осуществляется наддув. Единого общего вида у приводного нагнетателя нет. Исходя из принципов работы своего компрессора, приводные нагнетатели могут быть объёмные, то есть осуществляющие наддув импульсно порциями некоего фиксированного объёма, и динамические, то есть осуществляющие наддув непрерывным потоком. В группу объёмных нагнетателей попадают такие конструкции как: кулачковые (американские Roots, Eaton), винтовые (американский Lisholm, немецкий Mercedes 2000-х годов), спиральные (немецкий G-Lader, применявшийся на Volkswagen 1990-х), шиберные (британский нагнетатель PowerPlus для довоенных MG и Rolls-Royce Merlin). Динамические приводные нагнетатели известны только центробежного типа, известных собственных названий они обычно не имеют, а их конструкция более-менее универсальна и в общем и целом схожа с конструкцией некоего канонического центробежного компрессора. В обоих случаях, независимо от типа компрессора, конструкция его механического привода не имеет принципиального значения для работы нагнетателя в целом, с теми лишь особенностями, что привод компрессора имеет повышающее передаточное отношение (порядка 0,15-0,08), а иные конструкции привода позволяют включать/отключать нагнетатель (в том числе по аналоговому принципу) по команде водителя или блока управления. Сами приводы возможны промежуточными валами, шестернями, зубчатыми ремнями, цепями, набором трапецеидальных ремней, а также прямые приводы с торцов коленчатого или распределительного валов. В случаях отключаемого привода используются муфты различной конструкции.

Особенностью работы приводного нагнетателя в сравнении с другими агрегатами наддува является то, что на его привод мотор вынужден расходовать существенную часть своей так называемой индикаторной мощности. Это приводит к тому, что все моторы с приводными нагнетателями имеют высокий удельный расход топлива, который может в несколько раз превышать удельный расход топлива безнаддувного мотора сравнимой нетто-мощности. На высоких оборотах мотора затраты мощности на привод нагнетателя растут нелинейно относительно роста отдачи от его применения, что ещё более увеличивает значения удельного расхода топлива, а сама разница между индикаторной мощностью и нетто-мощностью на максимальных режимах может достигать значения в 50% от нетто.

Ввиду относительно низкого уровня термонапряжённости при работе, приводные нагнетатели относительно нетребовательны к технологии металлов и качеству смазки, и работоспособный надёжный агрегат наддува на основе приводного нагнетателя был доступен к производству практически одновременно с появлением массовых автомобилей. Однако ввиду требований к точности производства деталей приводные нагнетатели были в любом случае дороги, и их применение в первой половине XX-го века ограничивалось эксклюзивными, псевдоспортивными или гоночными автомобилями. Второй областью применения приводных нагнетателей были поршневые авиамоторы, в которых наддув был призван компенсировать понижение атмосферного давления на высоте и связанное с этим разрежение воздуха. После 2МВ авиация перешла на турбореактивные двигатели, а конструкторы автомобильных моторов пошли по пути безнаддувной форсировки, в результате чего приводные нагнетатели оказались почти забыты, и их уделом остался лишь американский тюнинг или некоторые американские и редкие европейские модели дорожных машин. В начале 2000-х приводные нагнетатели стали появляться на относительно недешёвых дорожных машинах в составе комбинированных агрегатов наддува в паре с турбонагнетателем. Подобные системы наддува применяются до сегодняшнего момента, хотя в последние годы существует тенденция вытеснения комбинированного наддува эффективным всережимным турбонаддувом на основе турбин типа Twin-Scroll или турбин изменяемой геометрии, а также комбинированным наддувом из турбонагнетателя и электронагнетателя.

Специфика применения на автомобильных моторах[править | править код]
Объёмный нагнетатель Roots в работе

На бензиновых моторах серийных легковых автомобилей в случаях разработки мотора под наддув на основе приводного нагнетателя таковой нагнетатель всегда будет только объёмного типа. Обоснованием этого является то важное качество любых объёмных компрессоров, что их производительность всегда имеет линейную зависимость от частоты вращения ротора. Именно поэтому моторы с объёмными нагнетателями удобны для водителя: они работают в переходных режимах не хуже безнаддувных (у них отсутствует какая-либо задержка в раскрутке мотора при нажатии на педаль газа) и увеличивают крутящий момент во всём диапазоне оборотов, что на моторе с объёмным нагнетателем особенно ощутимо на «низах». Также у объёмных нагнетателей есть то конструктивное преимущество, что их применение не требует каких-либо дополнительных управляющих элементов и системах (клапанах сброса давления, электронных блоков управления, дополнительных датчиков), что в периоды отсутствия электронных систем впрыска позволяло легко устанавливать объёмные приводные нагнетатели на карбюраторные моторы или моторы с механическим впрыском. В современных системах комбинированного наддува в случае применения объёмных приводных нагнетателей, таковые отвечают за наддув на низких оборотах мотора и выводятся из работы управляющими системами по достижению достаточного давления наддува параллельно работающего турбонагнетателя.

Центробежный приводной нагнетатель ATI ProCharger

Центробежные нагнетатели также могут применяться на бензиновых моторах легковых автомобилей. Но ввиду того, что в любых центробежных компрессорах зависимость объёма перекачиваемого вохдуха от числа оборотов не является линейной, приводные нагнетатели на их основе делаются либо кратковременно подключаемыми (наподобие машин американского тюнинга), либо устанавливаются на моторы, для которых эффективность работы в переходных режимах и эффективность работы на «низах» не сильно важна (например, машины для гонок на дистанцию в четверть мили). При этом установка подключаемого приводного центробежного нагнетателя на изначально безнаддувный мотор может и не требовать доработок под наддув, если время работы мотора в режиме наддува ограничено. А установка постоянно работающего приводного центробежного нагнетателя помимо доработок под наддув может потребовать наличия клапанов сброса давления (что не нужно в случае объёмных нагнетателей). В любом случае обычные серийные дорожные автомобили приводными центробежными нагнетателями не оснащаются.

И объёмные и центробежные приводные нагнетатели могут применяться не только на бензиновых моторах легковых автомобилей, но и на бензиновых и дизельных моторах тяжёлой техники. Выбор приводного нагнетателя, а не более подходящего турбонагнетателя, здесь, вероятно, объясняется спецификой эксплуатации. Примером первого случая является американский танковый бензиновый мотор Teledyne Continental AVSI-1790; примером второго — советский/российский танковый дизельный мотор В-46.

В современном массовом автомобильном моторостроении использование приводных нагнетателей сходит на нет. Главной причиной этого являются механические потери на привод, выражающиеся в повышенном расходе топлива и повышенных выбросах углекислого газа. Адекватной заменой объёмных приводных нагнетателей сегодня являются турбонагнетатели с турбинами типа Twin-Scroll и с турбинами изменяемой геометрии, а также применение нагнетателей с электроприводом в системах комбинированного наддува, что во всех случаях так или иначе помогает решать проблему турболага в переходных режимах и проблему низкой эффективности обычного турбонаддува на низких оборотах мотора.

Специфика применения на двухтактных моторах[править | править код]
Центробежная воздуходувка (2) на двухтактном моторе со встречным движением поршней Объёмная воздуходувка на двухтактном моторе с клапанно-щелевой продувкой

На отдельных типах бензиновых и дизельных двухтактных моторов (с клапанной-щелевой продувкой, со встречным движением поршней), работа которых предполагает относительно невысокие обороты, в качестве неотъемлемого элемента всей конструкции для целей продувки цилиндров на стыке двух рабочих тактов применяются приводные нагнетатели низкого давления. В советском инженерно-техническом лексиконе подобные приводные нагнетатели назывались терминами «воздуходувка» или «продувочный насос». Обеспечиваемое ими давление наддува обычно порядка 0,1-0,2 Бара. На высокооборотных моторах с щелевой продувкой (например, мотоциклетных) подобные воздуходувки/насосы не применяются, и там продувка цилиндров обеспечивается иными способами.

Известны разработки воздуходувок/насосов как на основе объёмных компрессоров, так и на основе центробежных. Пример первого варианта — советские автомобильные дизельные моторы ЯАЗ-204 и ЯАЗ-206. Пример второго варианта — советский/украинский танковый многотопливный мотор 5ТДФ. При этом свойство центробежных компрессоров увеличивать давление наддува с ростом оборотов может использоваться и для целей форсировки мотора в режиме высоких оборотов. Наличие воздуходувки/насоса не отменяет возможности дополнения подобного двухтактного мотора турбонагнетателем, задачей которого является форсировка мотора в чистом виде. Примером таких моторов с турбонаддувом и без будут конструктивно идентичные локомотивные дизели 10Д100 и 2Д100 тепловозов ТЭ10 и ТЭ3.

Схема комбинированного наддува, состоящего из турбины, мотор-генератора, компрессора и аккумуляторной батареи. Работа наддува в режиме турбонагнетателя постоянна, в режиме турбонагнетателя и электронагнетателя — повторно-кратковременна.

Принцип работы электронагнетателя (нагнетателя с электрическим приводом) основан на использовании для привода компрессора электроэнергии из бортовой электрической сети автомобиля. Принципиальная конструкция в общем и целом едина — высокооборотный электромотор и связанный с ним общим валом центробежный компрессор.

Подобные нагнетатели получают распространение на бензиновых моторах легковых автомобилей в последние годы, ввиду широкого внедрения бортовых электросетей с относительно высоким напряжением (~50V) и включением в состав силового агрегата мощных генераторов, аккумуляторов большой ёмкости и конденсаторов. При этом электронагнетатели являются лишь частью общего агрегата наддува и комбинируются с турбонагнетателем (одним или двумя) для совместной работы в рамках функции наддува. Включение электронагнетателя здесь обычно ограничивается переходными режимами работы самого мотора, и в первую очередь такими, на которых эффективность турбонагнетателя низка, например, раскруткой мотора с оборотов холостого хода. В качестве постоянного источника наддува электронагнетатели не применяются, ввиду существенных потерь на перевод механической энергии ДВС в электрическую для питания электромотора и опять в механическую для работы компрессора.

Нагнетающий однофазный осевой вентилятор YWF2S-250B5DII

Маркировка и коды заказа

YWF  2  S − 250  B  5  D  II   
Подключение вентилятора
 I — клеммная коробка
 II — кабель
Размеры решетки
Количество лопастей вентилятора
Направление потока воздуха
 S — всасывание (через мотор на решетку)
 B — нагнетание (через решетку на мотор)
Диаметр крыльчатки
 S — однофазный двигатель
 T — трехфазный двигатель
Количество полюсов мотора
Серия внешнероторных вентиляторов

Характеристики воздушного потока

Направление потока воздуха     Кривые производительности

Номенклатура двухполюсных нагнетающих вентиляторов YWF

МодельРабочее напряжение, ВЧастота, ГцВходная мощность, ВтСкорость вращения, об/минШум, дБМаксимальный воздушный поток, м3
YWF2S-200B5DII2205063255052745
YWF2S-250B5DII220501002480581330
YWF2S-300B5DII220501252400581800

Размеры

размеры вентилятора осевого YWF2S-250B5DII

Нагнетатель воздуха

Одной из основных задач, стоявших перед разработчиками с момента рождения ДВС, являлось повышение его мощности. Решение проблемы в лоб – увеличение количества цилиндров – приводит к росту массы и габаритов двигателя, а также вызывает другие сложности. Тем не менее, ещё на самых первых моторах был определен достаточно простой вариант увеличения мощности до пятидесяти процентов, при сохранении всех прочих характеристик силового агрегата. Добиться этого позволяет нагнетатель, обеспечивающий подачу дополнительного количества воздуха в двигатель авто.

Нагнетатель воздуха – зачем он нужен?

Для понимания места и роли нагнетателя воздуха необходимо вспомнить основы работы ДВС. В цилиндры двигателя авто поступает топливно-воздушная смесь (ТВС), сгорание которой и обеспечивает работу мотора. Соотношение между бензином и воздухом поддерживается на определенном уровне и зависит от режимов работы и нагрузки двигателя. Количество ТВС в цилиндре при обычных условиях ограничено его объемом, попадает она туда благодаря создаваемому разрежению на такте впуска, тогда мотор авто всасывает необходимое количество смеси.

центробежный турбо нагнетатель

центробежный турбо нагнетатель

Вот здесь и скрыта тонкость, позволяющая повысить мощность двигателя. Если в него подавать ТВС под давлением, то в тот же самый объем ее поместится гораздо больше, и значит, в процессе сгорания смеси выделится больше энергии и увеличится мощность, которую способен развивать силовой агрегат. Для увеличения объема воздуха, идущего в цилиндры двигателя авто, используется нагнетатель (компрессор). Так называется механизм для сжатия и подачи газа под давлением.

Дополнительным преимуществом может стать экономия топлива, т. к. необходимой мощности можно добиться от мотора меньшего объема.

Нагнетатель воздуха на авто – не все так просто

Однако использовать нагнетатель воздуха прямо в лоб оказалось достаточно затруднительно. Дело в том, что хотя мощность двигателя при этом увеличилась, но это создало ряд новых проблем, которые требовали своего решения для успешного внедрения наддува на авто. Одной из них явилось выделение значительно большего количества тепла при сгорании ТВС, из-за чего прогорали клапана, поршни, выходила из строя система охлаждения.

Другой особенностью стала повышенная вероятность возникновения детонации бензинового двигателя. Когда нагнетатель осуществляет дополнительную подачу воздуха в мотор, то возникающие в них при сжатии повышенные температура и давление могут вызвать детонацию, вследствие чего возможно разрушение двигателя, или как минимум, его преждевременный значительный износ. Избежать этого поможет использование высокооктановых видов топлива или декомпрессия, так по-другому называется уменьшение степени сжатия.

Новые виды горючего дороги, что увеличивает стоимость эксплуатации авто, а декомпрессия приводит к снижению выдаваемой мощности, т.е. теряется эффект от использования наддува воздуха.

Воздушный нагнетатель на авто – каким он бывает

Подачу воздуха в мотор можно осуществить разными вариантами, при которых используется внешний нагнетатель или складывающиеся условия в процессе движения. Исходя из этого, можно определить такие способы наддува:

  • механический, когда на авто устанавливается механический нагнетатель, приводимый в действие от коленвала мотора;
  • турбонаддув, когда предусмотрено использование турбо нагнетателя, приводимого в действие выхлопными газами;
  • электрический, в этом случае в авто применяется электрический нагнетатель воздуха;
  • «Comprex», при этом способе отсутствует приводной нагнетатель, а в цилиндры подача воздуха осуществляется с помощью выхлопных газов;
  • комбинированный, при котором используются несколько различных схем, как правило, совмещают механический нагнетатель и турбонаддув.

Существуют и другие способы, обеспечивающие подачу воздуха в двигатель авто, но выше отмечены наиболее часто применяемые на машинах. На отечественных, кстати, в том числе семейства ВАЗ, подобные устройства серийно не устанавливались.

Механический нагнетатель на карбюраторный авто – варианты построения

Механический нагнетатель был создан одним из первых, почти после появления ДВС. Он связан непосредственно с коленвалом двигателя авто и начинает работать сразу же после его запуска, обеспечивая подачу воздуха пропорционально оборотам мотора. Это является несомненным достоинством, но такой нагнетатель для своей работы отбирает часть мощности двигателя.

Нагнетатель ROOTS

Нагнетатель ROOTS

Существует несколько самых распространенных вариантов построения подобных устройств, наиболее известные из них показаны на фото. Их конструктивные особенности рассмотрены ниже:

  1. Нагнетатель ROOTS. Первоначально это были две обычные шестеренки, вращающиеся в разные стороны, помещенные в замкнутый корпус. С течением времени они видоизменились до того, что представлено на фото. Работает такой нагнетатель достаточно просто – вращающиеся лопатки ротора создают воздушный поток от входа к выходу. Основной недостаток подобных устройств – подача воздуха осуществляется неравномерно, что приводит к пульсации давления. Кроме того, после прохождения устройства возникающая турбулентность воздуха вызывает его нагрев. К достоинствам надо отнести простоту, компактность, и надежность, низкий уровень шума.
  2. Нагнетатель LYSHOLM. Относится к аппаратам винтового типа. Работает подобное устройство аналогичным образом – воздушный поток создается вращающимися роторами. Благодаря малому зазору между ними, обеспечивается требуемое качество наддува. Главным отличием подобного устройства будет сжатие воздуха внутри корпуса. Однако сложности проектирования и изготовления таких изделий вызывают их высокую стоимость, что ограничивает их применение в массовом производстве авто.
  3. Центробежный нагнетатель. Является наиболее распространенным типом и применяется как самостоятельно, в виде компрессора, так и в составе турбо устройств. Вращающиеся лопатки захватывают воздух и отбрасывают его на периферию корпуса. Двигаясь вдоль корпуса, имеющего улиткообразную форму, воздушный поток на выходе приобретает необходимое давление.

 

Нагнетатель LYSHOLM

Нагнетатель LYSHOLM

Для того чтобы центробежный нагнетатель работал эффективно, его крыльчатка должна вращаться с высокой скоростью. Обеспечение такого режима работы связано с трудностями смазки подшипников и создания подобных условий. Однако простота и относительно низкая стоимость самих устройств, сделала их наиболее популярными среди других типов нагнетателей. Особенно часто они используются для тюнинга авто, в том числе и семейства ВАЗ.

Центробежный нагнетатель

Центробежный нагнетатель

Турбо нагнетатель воздуха

Такой подход к обеспечению мотора дополнительным количеством воздуха является наиболее популярным. Применяется он и для дизелей, и для бензиновых моторов. Принцип, на котором работает подобный нагнетатель, понятен из приведенного рисунка:

работа турбо нагнетателя

работа турбо нагнетателя

По сути дела, это комбинация двух устройств – турбины, использующей энергию выхлопных газов, и компрессора. Здесь надо сразу отметить, что режим турбо, применяемый для повышения мощности дизелей, применяется гораздо чаще, чем нагнетание воздуха в бензиновых двигателях. В них повышение давления ограничено появлением детонации, и введение режима турбо требует принятия специальных защитных мер.

Использование энергии отработанных газов связано с целым комплексом проблем, в первую очередь с применяемыми материалами. Лопатки турбины должны выдерживать температуру до тысячи градусов, и при этом скорость их вращения зачастую превышает десять тысяч оборотов в минуту. Однако режим турбо, при котором в дизель поступает дополнительный воздух, облегчает его работу.

Исходя из изложенных особенностей, наилучшим образом наддув турбо будет выполняться при высоких оборотах двигателя, когда турбина сильно раскручена. Другой особенностью такого режима является так называемое запаздывание. В момент резкого нажатия педали, пока сработает наддув в режиме турбо, проходит некоторое время, что и вызывает провал в характеристике.

Чтобы его обойти, применяются специальные технические решения. Одним из возможных вариантов будет применение двух нагнетателей турбо, один из которых работает на малых оборотах, а другой на высоких. Каждый из автопроизводителей по-своему решает эту задачу – кто-то использует мощный нагнетатель, обеспечивающий излишний приток воздуха на всех режимах, и при необходимости сбрасывает его излишки, кто-то применяет несколько маленьких нагнетателей вместо одного большого, кто-то реализует различные комбинации двух первых вариантов.

Если говорить о режиме турбо для бензиновых двигателей, то стоит отметить, что он максимально эффективен на впрысковых двигателях. Карбюраторный мотор может работать в режиме турбо, но ему необходима определенная доработка – установка жиклеров большего сечения, изменение уровня поплавковой камеры и ряд других мер. Тогда как для инжекторного двигателя все сведется к использованию новой прошивки.

Тем не менее, режим турбо зачастую реализуют и на старых машинах, в том числе и семейства ВАЗ, правда, в этом случае чаще всего применяют электрический наддув.

Электрический нагнетатель для двигателя автомобиля

Подобные системы, реализующие режим турбо, относятся к комбинированным. В них чаще всего используется электрический мотор, работающий совместно с центробежным нагнетателем. Достоинством такого подхода, когда привод выполнен как электро, является его универсальность. Он не связан напрямую с работой двигателя, как механический наддув, и электрический мотор можно использовать при любых условиях.

Благодаря такому приводу как электро, можно избежать провала в характеристике нагнетателя. На средних и малых оборотах мотора работает электрический нагнетатель, на высоких включается турбина и реализуется обычный режим турбо. Подобные возможности построения наддува с использованием такого привода как электро, привлекают внимание все более широкого круга автопроизводителей.

нагнетатель воздуха с ременной передачей

нагнетатель воздуха с ременной передачей

Стоит отметить, что нагнетатель электро является привлекательным для выполнения тюнинга авто, в том числе и семейства ВАЗ. На этом рынке есть (отличный от уже описанных) осевой электрический нагнетатель. По оси воздуховода ставится вентилятор (электро). Когда он работает, то усиленный поток воздуха направляется во впускной коллектор. Фактически, таким образом вентилятор (электро) обеспечивает наддув.

К достоинствам, которыми обладает подобный электрический нагнетатель, следует отнести простоту его реализации. Для создания такой системы наддува не требуется никаких технически сложных систем и устройств, обычный бытовой вентилятор (электро) зачастую справится с обеспечением подачи нужного дополнительного количества воздуха в цилиндры мотора.

Использование такой техники позволяет без особых затруднений провести тюнинг старых машин, например таких, как ВАЗ ранних годов выпуска.

Нагнетатель на ВАЗ

В данном случае проблему надо рассматривать несколько шире – речь зачастую идет не конкретно о каком-то автомобиле семейства ВАЗ, а вообще об улучшении атмосферного двигателя. Это достаточно сложная проблема, и она не имеет однозначного решения. Конечно, решаясь улучшить характеристики старого автомобиля, например какой-то модели ВАЗ или Москвича, при использовании штатного двигателя его мощность можно увеличить только с помощью наддува.

Однако это далеко не так просто сделать, как кажется с первого взгляда. Повышение мощности мотора ВАЗ, как и любого другого, должно сопровождаться дополнительными изменениями, обеспечивающими правильное использование подобного усовершенствования. В противном случае измененный двигатель очень быстро выйдет из строя.

нагнетатель на ваз

нагнетатель на ваз
В то же время благодаря тюнингу двигателя, старый ВАЗ или любой другой подобный автомобиль, может получить новую жизнь, тем более что сделать подобные улучшения достаточно просто и не слишком дорого. Гораздо проще грамотно и правильно поставить на ВАЗ нагнетатель воздуха, что обеспечит прирост порядка тридцати процентов мощности двигателя, чем заниматься полной переделкой мотора в поисках тех же самых тридцати процентов мощности.

Но это уже совсем другая тема, в том числе и в отношении старых автомобилей ВАЗ, и хотя она не менее интересна, ее рассмотрение надо проводить самостоятельно.

Использование дополнительного объема воздуха для обеспечения прироста мощности двигателей, в том числе и семейства ВАЗ, довольно известный и давно освоенный автостроителями прием. Он позволяет решить многие вопросы, связанные с получением большей мощности от сравнительно небольших моторов, правда, при соблюдении ряда правил. Но, тем не менее, этот подход достаточно широко применяется разработчиками различных марок авто.

Нагнетательное отверстие вентилятора — это… Что такое Нагнетательное отверстие вентилятора?


Нагнетательное отверстие вентилятора

27п. Нагнетательное отверстие вентилятора

Часть вентилятора, через которую воздух выходит из вентилятора.

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • Нагнетательная сторона сечения лопасти
  • нагнетательное проветривание

Смотреть что такое «Нагнетательное отверстие вентилятора» в других словарях:

  • нагнетательное отверстие вентилятора — Часть вентилятора, через которую воздух выходит из вентилятора. [ГОСТ 22270 76] нагнетательное отверстие вентилятора [Интент] Тематики вентилятор EN fan outlet …   Справочник технического переводчика

  • защитная решетка на нагнетательное отверстие (вентилятора) — — [Интент] Тематики вентилятор EN delivery side protective grill …   Справочник технического переводчика

  • Отверстие вентилятора, нагнетательное — Нагнетательное отверстие вентилятора Часть вентилятора, через которую воздух выходит из вентилятора. Смотреть все термины ГОСТ 22270 76. ОБОРУДОВАНИЕ ДЛЯ КОНДИЦИОНИРОВАНИЯ ВОЗДУХА, ВЕНТИЛЯЦИИ И ОТОПЛЕНИЯ. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ Источник: ГОСТ… …   Словарь ГОСТированной лексики

  • ГОСТ 22270-76: Оборудование для кондиционирования воздуха, вентиляции и отопления. Термины и определения — Терминология ГОСТ 22270 76: Оборудование для кондиционирования воздуха, вентиляции и отопления. Термины и определения оригинал документа: 40. Абсорбционный осушитель воздуха Осушитель воздуха, в котором снижение влагосодержания воздуха происходит …   Словарь-справочник терминов нормативно-технической документации

  • радиальный вентилятор — Вентилятор, у которого направление меридиональной скорости потока газа на входе в рабочее колесо параллельно, а на выходе из рабочего колеса перпендикулярно оси его вращения. Примечание. В зависимости от конструкции рабочего колеса вентиляторы… …   Справочник технического переводчика

  • радиальный вентилятор — Вентилятор, у которого направление меридиональной скорости потока газа на входе в рабочее колесо параллельно, а на выходе из рабочего колеса перпендикулярно оси его вращения. Примечание. В зависимости от конструкции рабочего колеса вентиляторы… …   Справочник технического переводчика

  • ГОСТ 22270-76. ОБОРУДОВАНИЕ ДЛЯ КОНДИЦИОНИРОВАНИЯ ВОЗДУХА, ВЕНТИЛЯЦИИ И ОТОПЛЕНИЯ. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ (СТ СЭВ 2145-80) — Агрегат, вентиляторный Агрегат, вентиляционно вытяжной Агрегат, вентиляционно приточный Агрегат, вентиляционный Агрегат, воздухоосушительный …   Словарь ГОСТированной лексики

  • Вентиляция — Вытяжная и приточная вентиляция Вентиляция (от лат. ventilatio  проветривание)  процесс удаления отработанного воздуха из поме …   Википедия

Вентиляторы для системы вентиляции: какие они бывают и как работают

Рейтинг автора

Автор статьи

Опытный специалист по системам вентиляции и кондиционирования. Работает в этой сфере более 15 лет.

Написано статей

Вентиляторами называют устройства, с помощью которых происходит забор или подача воздуха и его транспортирование по воздуховодам. Данные детали имеют широкое применение, используются они и вентиляционных системах.УчительУчитель

Краткое содержание

Применение и назначение вентиляторов

Вентиляторы эксплуатируются в приточно-вытяжной вентиляции. Они перемещают воздушные потоки, и тем самым создают сопротивление вентиляционной конструкции и перепад давления. Это в свою очередь влияет на эффективность механизма.

Все вентиляторы работают при помощи приводов — двигателей, которые питаются от электрической сети, а сам забор воздуха выполняют лопасти. Существуют различные виды данных механизмов.

Классификация типов вентиляционных вентиляторов и принцип их работы

Вентиляторы в системах проветривания имеют между собой множество отличий. Поэтому есть 5 категорий отличия этих механизмов.

По конструкции и принципу работы

Некоторые способны вращаться как в правую, так и в левую сторону.

Различают такие устройства:

  1. осевой вентиляторосевой вентиляторОсевые. Их еще называют аксиальными. Эти вентиляторы имеют лопасти, которые вращаются возле оси и гонят поток воздуха по вентиляционным шахтам. Преимущество данного вида вентиляторов в простоте и относительной дешевизне конструкции. Также данная установка обладает высоким КПД, так как при этом наблюдается небольшое сопротивление воздуха, и нет трения деталей между собой. Внешний вид механизма напоминает колесо, его лопасти находятся под нужным углом. Воздушный поток направлен параллельно оси вращающегося вентилятора. Присутствие специального коллектора помогает его выравнивать, что существенно улучшает аэродинамику механизма;
  2. центробежный вентиляторцентробежный вентиляторЦентробежные. Когда вращается этот приточный вентилятор, то воздух захватывается и поток попадает на периферию, а по пути немного сжимается. Центробежная сила его толкает в воздуховод, и он попадает в помещение. Состоит из цилиндра, в котором зафиксированы лопасти загнутые в какую-либо сторону (зависит от его назначения), рабочего колеса, располагающегося в спиральном улиткообразном корпусе, всасывающий и нагнетательный патрубки. Особенность этого механизма в том, что в конце воздух который выходит, всегда имеет угол 90 °C, к входящему потоку. Несравненным преимуществом у данного устройства является высокая мощность. О работе воздуховодов читайте здесь //ventilation-conditioning.ru/tipy-ventilyacii/zachem-nuzhny-vozdukhovody-naznachenie-i.html;
  3. диагональный вентилятордиагональный вентиляторДиагональные. Эта модель напоминает аксиальную. Вход воздушного потока в этом вентиляторе такой же, как и в осевого, а выходит он по диагонали. Кожух его имеет коническую форму, что помогает увеличить скорость воздуха. Но по сравнению с осевым типом КПД у этого устройства гораздо ниже;
  4. безлопастный вентиляторбезлопастный вентиляторБезлопастные. В центре этой конструкции есть турбина, зафиксирована в основании механизма. С ее помощью происходит подача сжатого потока через небольшие щели в рамке. Поскольку с обратной стороны воздух становится разряженным, то происходит всасывание новых воздушных масс. Поскольку снаружи вращающиеся движения отсутствуют, то этот прибор является более безопасным, чем все остальные. Высокий КПД. К его недостаткам относят сильную шумность;
  5. диаметральный вентилятордиаметральный вентиляторДиаметральные. Эти вентиляторы работают таким образом, что получается двукратное и перекрестное движение воздуха. Данный механизм имеет корпус, диффузор, фильтр, патрубок и цилиндр, в котором есть параллельные рабочие детали, загнутые в сторону вращения. Диаметральные устройства также отличаются плоским и широким потоком. Они удобны в монтаже. Высокий КПД. Используют эти вентиляторы в файнколах.

По назначению

Эта классификация указывает, в каких условиях применяются данные механизмы. Существуют такие категории:

  • вентиляторы, которые предназначены для выведения из помещения воздушных масс температурой не больше 50 °C;
  • с усиленной устойчивостью против коррозии, их устанавливают в местах с повышенным уровнем влажности;
  • термостойкий тип вентиляторов, они работают в условиях, где воздух прогревается до 80 °C и выше;
  • конструкции, защищенные от взрывов, используются в местах, где может возникнуть это явление;
  • пылевые механизмы, они устанавливаются в тех средах, где количество примесей в воздушном потоке превышает количество 100 мг на 1 м2.

Первый тип относится к устройствам бытового назначения, а остальные, с повышенной устойчивостью, к вытяжным промышленным вентиляторам.

По способам присоединения привода

К механизмам, которые используются на производстве, привод присоединяется несколькими способами:

  • непосредственно к двигателю;
  • с помощью эластичной муфты;
  • клиноременной передачей;
  • сцепкой бесступенчатого типа регулируемого вращения.

В роли привода в вентиляционной конструкции служат электродвигатели.

По типу монтажа

Монтируются приточные вентиляторы также по-разному:

  1. обычный крепежобычный крепежОбычным способом — устройство крепится на стационарную опору. Это может быть рама, сделанная со стали или железобетонная конструкция. Данный монтаж является самым простым из всех существующих;
  2. канальный крепежканальный крепежКанальным методом — механизм располагается внутри воздуховода, и там выполняют свои функции. Данная конструкция вентиляторов чаще всего бывает диагональная или радиальная, но иногда и аксиальная. Определяются с формой механизма, исходя из конфигурации воздуховода, в котором он должен функционировать. Поэтому существуют круглые, прямоугольные и квадратные вентиляторы. Обычно механизмы круглой формы сделаны из пластика, а прямоугольной и квадратной — металлические. Каждый вариант имеет свои достоинства: металлические обладают большей прочностью, а пластиковые детали более тихие;
  3. крышный крепежкрышный крепежКрышный вариант. Прибор устанавливается снаружи производственного здания на горизонтальной крыше. Он выступает заключительным элементом в конструкции для проветривания. Вентилятор, расположенный с наружной стороны постройки постоянно подвергается агрессивному влиянию внешней среды. К неблагоприятным факторам относят: его нагревание солнечными лучами, попадание на него осадков, сопротивление порывам ветра. Поэтому данный механизм должен быть изготовлен из материалов с повышенной прочностью. Если устанавливают на кровле бытовой вентилятор, то чаще он имеет осевой принцип, крышные установки производственного назначения, имеют центробежную конструкцию. Когда делается выбор вентиляционного механизма, то берется во внимание назначение помещения. В некоторых случаях приоритетом является низкая шумность, в других — мощность;
  4. многозональный крепежмногозональный крепежМногозональные вентиляторы. Они приспособлены к одновременному присоединению к одной вентиляционной системы. Это им позволяет сделать специальный корпус. Пользуются данной установкой при необходимости ее монтажа в нескольких помещениях с общей вентиляционной конструкцией. Данный вариант позволяет рационально использовать комплекс труб для транспортировки воздушных масс, и уменьшить расходы на обустройство приточной промышленной системы или бытовой конструкции для проветривания. Простота эксплуатации и обслуживания — это еще одно дополнительное преимущество.

Все виды промышленных вентиляторов защищены специальным конусом, который препятствует попаданию в корпус соринок.

По техническим характеристикам

Еще одним параметром классифицирования вентиляторов в вентиляционных системах являются технические параметры, такие как давление, быстрота вращения, мощность установки, скорость наполнения помещения чистым воздухом, коэффициент полезного действия и степень шумности.

Вентиляторы в вентиляционных конструкциях используются как в быту, так и на производстве — в цехах, где происходит покраска деталей и перекачка различных газосмесей, в общественных заведениях пищевой промышленности и государственных учреждениях.

Все вентиляционные установки облегчают труд человека, делая его пребывание в помещении более комфортным и безопасным.

 


Отличная статья 0

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *