04.05.2020

Устройство клапан регулирующий – виды запорного вентиля (ручной, фланцевый, шаровый), отличия от крана и задвижки, монтаж своими руками

Содержание

Регулирующий клапан — Википедия

Современный регулирующий клапан с электрическим приводом.

Регулирующий клапан — один из конструктивных видов регулирующей трубопроводной арматуры. Это наиболее часто применяющийся тип регулирующей арматуры как для непрерывного (аналогового), так и для дискретного регулирования расхода и давления. Выполнение этой задачи регулирующие клапаны осуществляют за счёт изменения расхода среды через своё проходное сечение[1].  Материал изготовления регулирующих клапанов зависит напрямую от типа рабочей среды, с которой клапан будет иметь контакт.

В зависимости от назначения и условий эксплуатации применяются различные виды управления регулирующей арматурой, чаще всего при этом используются специальные приводы и управление с помощью промышленных микроконтроллеров по команде от датчиков, фиксирующих параметры среды в трубопроводе. Используются электрические, пневматические, гидравлические и электромагнитные приводы для регулирующих клапанов. В современной промышленности уже редко, но все же встречается, основной способ управления регуляторами в прошлом — ручное управление[2].

Проходной запорно-регулирующий клапан
с электрическим приводом.

Также применяются запорно-регулирующие клапаны, с помощью этих устройств осуществляется как регулирование по заданной характеристике, так и уплотнение затвора по нормам герметичности для запорной арматуры, что обеспечивается специальной конструкцией плунжера, имеющего профильную часть для регулирования, а также уплотнительную поверхность для плотного контакта с седлом в положении «закрыто».

Для присоединения регулирующих клапанов к трубопроводам применяются все известные способы (фланцевый, муфтовый, штуцерный, цапковый, приваркой), но приварка к трубопроводу используется только для клапанов, изготовленных из сталей.

Большинство из регулирующих клапанов весьма схожи по конструкции с запорными клапанами, но есть и свои специфические виды.

По направлению потока рабочей среды регулирующие клапаны делятся на:

  • проходные — такие клапаны устанавливаются на прямых участках трубопровода, в них направление потока рабочей среды не изменяется;
  • угловые — меняют направление потока на 90°;
  • трехходовые (смесительные) — имеют три патрубка для присоединения к трубопроводу (два входных и один выходной) для смешивания двух потоков сред с различными параметрами в один. В сантехнике такое устройство имеет название смеситель.

Основные различия регулирующих клапанов заключаются в конструкциях регулирующих органов[1][3].

Устройство и принцип действия

На поясняющем рисунке справа изображен простейший проходной односедёльный регулирующий клапан в разрезе. Где:

  • B — корпус арматуры;
  • F — фланец для присоединения арматуры к трубопроводу.
  • P — узел уплотнения, обеспечивающий герметичность арматуры по отношению к внешней среде;
  • S
    — шток арматуры, передающий поступательное усилие от механизированного или ручного привода затвору, состоящему из плунжера и седла;
  • Tплунжер, своим профилем определяет характеристику регулирования арматуры;
  • Vседло арматуры, элемент, обеспечивающий посадку плунжера в крайнем закрытом положении.

Усилие от привода с помощью штока передается на затвор, состоящий из плунжера и седла. Плунжер перекрывает часть проходного сечения, что приводит к уменьшению расхода через клапан. Согласно закону Бернулли при этом увеличивается скорость потока среды, а статическое давление в трубе падает. При полном закрытии плунжер садится в седло, поток перекрывается, и, если затвор будет полностью герметичен, давление после клапана будет равно нулю[1].

Конструкции регулирующих органов

Односедёльные и двухседёльные

В седёльных клапанах подвижным элементом служит плунжер, который может быть игольчатым, стержневым или тарельчатым. Плунжер перемещается перпендикулярно оси потока среды через седло (или сёдла), изменяя проходное сечение. Наиболее часто встречаемые — двухседёльные клапаны, так как их затвор хорошо уравновешен, что позволяет их применять для непрерывного регулирования давления до 6,3 МПа в трубопроводах диаметром до 300 мм, при этом используя исполнительные механизмы меньшей мощности, чем односедёльные. Односедёльные клапаны применяются чаще всего для небольших диаметров прохода из-за своего неуравновешенного плунжера. Также преимущество двухседёльных клапанов состоит в том, что такой конструкцией гораздо легче обеспечить требуемую для запорно-регулирующей арматуры герметичность с помощью плунжера, имеющего специальный регулирующий профиль для контакта с одним седлом, а для посадки в другое седло — уплотнительную поверхность для более плотного контакта

[1][3].

Клеточные

Затвор клеточных клапанов выполняется в виде полого цилиндра, который перемещается внутри клетки, являющейся направляющим устройством и, одновременно, седлом в корпусе. В клетке имеются радиальные отверстия (перфорация), позволяющие регулировать расход среды. Ранее такие клапаны назывались поршневыми перфорированными. Клеточные клапаны за счёт своей конструкции позволяют снизить шум, вибрацию и кавитацию при работе арматуры[1][3].

Мембранные

В клапанах этого типа используются встроенные или вынесенные мембранные пневмо- или гидроприводы. В случае встроенного привода расход рабочей среды напрямую изменяется за счёт перекрытия прохода в седле гибкой мембраной из резины, фторопласта или полиэтилена, на которую воздействует давление управляющей среды. Если привод вынесен, то перестановочное усилие передаётся через мембрану на опору штока клапана, а через него на регулирующий орган; когда давление управляющей среды сбрасывается, пружина возвращает мембрану в начальное положение. Чтобы усилия от среды и сила трения в направляющих и уплотнении не приводили к снижению точности работы клапана, в такой арматуре часто используются дополнительные устройства —

позиционеры, контролирующие положение штока. Мембранные клапаны могут быть как одно-, так и двухседёльные. Основным достоинством таких клапанов является высокая герметичность подвижного соединения и коррозионная стойкость материалов, из которых изготавливаются мембраны, что позволяет обеспечить хорошую защиту внутренних поверхностей арматуры от воздействия рабочих сред, которые могут быть агрессивными[1][3][2].

Золотниковые

В этих устройствах регулирование расхода среды происходит при повороте золотника на необходимый угол, в отличие от других клапанов с поступательным движением штока или мембраны. Такие клапаны применяются, как правило, в энергетике и имеют альтернативное название «регулирующий кран», так как по принципу действия принадлежат к кранам

[1][3].

См. также

Примечания

  1. 1 2 3 4 5 6 7 Поговорим об арматуре. Р.Ф.Усватов-Усыскин — М.: Vitex, 2005.
  2. 1 2 Трубопроводная арматура с автоматическим управлением. Справочник. Под общей редакцией С.И.Косых. — Л.: Машиностроение, 1982.
  3. 1 2 3
    4 5 Трубопроводная арматура. Справочное пособие. Д.Ф.Гуревич — Л.: Машиностроение, 1981.

Регулирующая арматура — Википедия

Регулирующая арматура — это вид трубопроводной арматуры, предназначенный для регулирования параметров рабочей среды. В понятие регулирования параметров входит регулирование расхода среды, поддержания давления среды в заданных пределах, смешивание различных сред в необходимых пропорциях, поддержание заданного уровня жидкости в сосудах и некоторые другие. Выполнение всех своих функций регулирующая арматура осуществляет за счёт изменения расхода среды через своё проходное сечение.

В зависимости от конкретных условий эксплуатации применяются различные виды управления регулирующей арматурой, чаще всего при этом используются внешние источники энергии и управление по команде от датчиков, фиксирующих параметры среды в трубопроводе. Используется также автоматическое управление непосредственно от рабочей среды. В современной промышленности уже редко, но все же встречается, основной способ управления регуляторами в прошлом — ручное управление (

см. рисунок справа).

В зависимости от параметров рабочей среды (давления, температуры, химического состава и др.) к каждому виду регулирования предъявляются различные требования, что привело к появлению множества конструктивных типов регулирующей арматуры. С точки зрения автоматизации промышленных предприятий каждый из них рассматривается как элемент системы автоматического управления технологическим процессом, протекающий с участием жидких и газообразных рабочих сред и регулирующийся под воздействием получаемой командной информации[1][2][3].

Блок подготовки воздуха Современный регулирующий клапан с электрическим приводом.

Регулирующий клапан[править | править код]

Эти устройства получили наибольшее распространение среди различных типов регулирующей арматуры. Большинство из них весьма схожи по конструкции с запорными клапанами, но есть и свои специфические виды.

По направлению потока рабочей среды регулирующие клапаны делятся на:

  • проходные — такие клапаны устанавливаются на прямых участках трубопровода, в них направление потока рабочей среды не изменяется;
  • угловые — меняют направление потока на 90°;
  • трехходовые (смесительные) — имеют три патрубка для присоединения к трубопроводу (два входных и один выходной) для смешивания двух потоков сред с различными параметрами в один. В сантехнике такое устройство имеет название смеситель.

Основные различия регулирующих клапанов заключаются в конструкциях регулирующих органов, по этому признаку они разделяются на:

  • односедельные;
  • двухседельные;
  • клеточные;
  • мембранные;
  • золотниковые[1][2].

Для управления регулирующими клапанами используются электроприводы, электромагнитные приводы и пневмоприводы. Чтобы усилия от среды и сила трения в направляющих и уплотнении не приводили к снижению точности работы клапана, используются дополнительные устройства — позиционеры[3].

Запорно-регулирующий клапан[править | править код]

С помощью этого устройства осуществляется как регулирование по заданной характеристике, так и уплотнение затвора по нормам герметичности для запорной арматуры, что обеспечивается специальной конструкцией

плунжера, имеющего профильную часть для регулирования, а также уплотнительную поверхность для плотного контакта с седлом в положении «закрыто»; такая конструкция является односедельным клапаном[1][2].

Смесительные клапаны[править | править код]

Используются в тех случаях, когда необходимо в определенных пропорциях смешивать различные среды, например, холодную и горячую воду, выдерживая постоянным какой-либо параметр (например, температуру) или изменяя его по заданному закону. Отличие смесительных клапанов от регулирующих заключается в том, что управляющее воздействие, задающее положение плунжера в первых, определяет расходы одновременно двух сред, а не одной, как в регулирующих клапанах[1].

Так же, как и регулирующие клапаны, смесительные могут управляться с помощью электрического или пневматического привода (см. рис).

Регулятор с мембранным пневматическим приводом и электронным позиционером.

Регуляторы давления прямого действия[править | править код]

Регуляторы прямого действия служат для поддержания постоянного давления в трубопроводе, эта необходимость может возникнуть в реальных рабочих условиях, когда в нём происходят колебания давления рабочей среды, недопустимые для нормальной работы технологической системы или установки.

В отличие от арматуры непрямого действия, в которой для непрерывного регулирования нужно отслеживать специальными датчиками состояние контролируемого параметра и при его отклонении от нормы выдавать командный сигнал приводу, регулятор прямого действия срабатывает непосредственно от среды в контролируемом участке трубопровода без использования посторонних источников энергии. Кроме таких регуляторов, арматурой прямого действия являются предохранительные клапаны, относящиеся к предохранительной арматуре, и обратные клапаны, относящиеся к защитной арматуре.

Регулирование давления может производиться после регулятора (по направлению потока среды), в этом случае регулятор называют «После себя», или перед ним, в этом случае он называется «До себя».

Принцип работы:

Предположим, что заданному номинальному давлению в трубопроводе соответствует установившийся поток среды через регулятор, при этом усилие от давления среды на чувствительном элементе компенсируется задатчиком нагружения (пружиной или грузом), то есть система находится в равновесии. При изменении давления в трубопроводе это равновесие нарушается, и затвор арматуры перемещается, преодолевая усилие от задатчика, или наоборот, поддаваясь ему, при этом изменятся степень открытия регулирующего органа, а, следовательно, и расхода среды. С изменением расхода меняется давление, и, при достижении исходного его значения, система снова приходит в равновесие, и затвор прекращает двигаться.

Наиболее часто встречаются регуляторы прямого действия, оснащенные мембранными приводами. Присоединение регуляторов к трубопроводу, как правило, фланцевое, однако встречаются регуляторы малых диаметров с резьбовым соединением (муфтовые)[1][2][3].

Регулятор уровня[править | править код]

Регуляторы уровня используются в сосудах, применяемых в энергетических, холодильных и других установках. Управляются они поплавком, по команде от которого происходит впуск дополнительного количества жидкости («регулятор питания») или выпуск избыточного количества жидкости («регулятор перелива») — статического и аститического типа[1][2].

Другие типы[править | править код]

Также могут использоваться в качестве регулирующей арматуры, но значительно реже, другие типы:

  1. 1 2 3 4 5 6 7 Р. Ф. Усватов-Усыскин. Поговорим об арматуре. — М.: Vitex, 2005.
  2. 1 2 3 4 5 Д. Ф. Гуревич. Трубопроводная арматура. Справочное пособие. — Л.: Машиностроение, 1981.
  3. 1 2 3 4 Трубопроводная арматура с автоматическим управлением. Справочник. Под общей редакцией С. И. Косых. — Л.: Машиностроение, 1982.

Регулирующий клапан – электропривод, МИМ или позиционер?

Многие задачи автоматизации технологических процессов в той или иной мере требуют плавного изменения параметров рабочей среды. Это может быть поддержание нужного расхода теплоносителя на входе в теплообменник, или заданного давления воздуха внутри рабочей камеры пневмоцилиндра для регулировки усилия прижима, или поддержание соотношения газ/воздух при подаче топлива в горелку котла и т. д. Эти и многие другие задачи требуют применения регулирующих клапанов для их решения.

1. Клапаны с электроприводом и трёхпозиционным управлением

Шаровый клапан с электроприводомРисунок 1 — Регулирующий шаровый клапан с электроприводом VALMA0

Одним из наиболее распространённых типов регулирующих клапанов являются клапаны с электроприводом и трёхпозиционным управлением, который в народе часто называют «больше/меньше». Данный способ управления характеризуется наличием трёх состояний клапана: открывается (сигнал «больше»), закрывается (сигнал «меньше») и не изменяет состояния (оба сигнала: и «больше» и «меньше» отсутствуют).

Электроприводы с таким способом управления применяются как совместно с запорно-регулирующими клапанами (линейное перемещение рабочего органа), так и совместно с регулирующими шаровыми кранами или заслонками (поворот рабочего органа). В обои случаях принцип работы электропривода одинаковый: подача одного из сигналов «больше» или «меньше» приводит к вращению электромотора в различных направлениях, а редуктор преобразует это вращение в линейное (для клапанов) или поворотное (для кранов) движение. При этом необходимость обеспечения высокого выходного момента заставляет использовать редукторы с большим передаточным отношением, что приводит к уменьшению скорости работы привода.

Время полного хода регулирующих клапанов с электроприводом составляет, как правило, от нескольких десятков до нескольких сотен секунд. Для многих медленно протекающих процессов быстродействие не является критичным и на первый план при выборе выходят цена и общая надёжность конструкции. Примером таких процессов может служить задача поддержания температуры в контурах отопления или горячего водоснабжения в индивидуальных тепловых пунктах (ИТП).

2. Клапаны с мембранным исполнительным механизмом (МИМ)

Рисунок 2 — Регулирующий клапан с МИМ

Использование клапанов с электроприводом и управлением «больше/меньше» требует применения специальных регуляторов. Однако, данные регуляторы не являются редкостью, а их настройка не вызывает больших трудностей, так что этот факт следует отнести скорее к особенностям таких клапанов, а не к их недостаткам.

Впрочем, некоторые процессы для качественного управления требуют быстродействующих клапанов со временем полного хода не более нескольких секунд. Примерами таких процессов могут служить пастеризационно-охладительные установки (ПОУ) или уже упоминаемый процесс поддержания оптимального соотношения газ/воздух. Для решения этих задач используют клапаны с пропорциональным способом управления и одними из наиболее распространённых клапанов такого типа являются клапаны с мембранным исполнительным механизмом (МИМ).

электропневмопреобразователиРисунок 3 — ЭПП ASCO Sentronic LP

В качестве входного сигнала управления, определяющего положение рабочего органа клапана чаще всего выступает унифицированный пневматический сигнал 20…100 кПа. При этом для подключения к электронной системе автоматики используют специальные электропневмопреобразователи (ЭПП). С помощью этих устройств унифицированный электрический сигнал 4…20 мА или 0…10 В преобразуется в пневматический сигнал управления 20…100 кПа.

Клапаны с МИМ совместно с ЭПП имеют на порядок большее быстродействие по сравнению с клапанами с электроприводом, что позволяет обеспечивать большую точность в динамическом режиме работы. Однако, такой подход при построении системы управления несёт в себе одну скрытую угрозу.

Дело в том что в цепи управления присутствует преобразование без обратной связи (ЭПП ➝ МИМ ➝ процент открытия клапана) и на обоих этапах этого преобразования возможны нелинейности, вызывающие уменьшение динамической точности. Таким образом одна и та же величина сигнала управления генерируемая регулятором может приводить к различному проценту открытия клапана и, как следствие, к отличающемуся от ожидаемого воздействию на объект управления.

Схема контура регулирования при использовании клапана с МИМ и ЭППРисунок 4 — Схема контура регулирования при ипользовании клапана с МИМ и ЭПП

Неточная передача управляющих воздействий на объект управления связана с естественными отклонениями реальных устройств от их идеального представления. Эти отклонения присущи любым устройствам, хотя разные модели разных производителей могут иметь различную величину данных отклонений. Применительно к пропорциональным клапанам отклонение реальных устройств от их идеальных моделей обычно характеризуют четырьмя параметрами: линейность, чувствительность, гистерезис и повторяемость.

Линейность

Характеризует отклонение реального положения рабочего органа клапана от расчётного, соответствующего текущему уровню входного сигнала. Идеальная зависимость между управляющим сигналом и положением рабочего органа клапана представляет из себя прямую линию. Однако, фактическое положение может отличаться от расчётного по ряду причин. Максимальное отклонение фактического положения от расчётного выражают в процентах и называют линейностью (или нелинейностью). На рисунке 5 характеристика идеального клапана показана чёрной линией, а реального зелёной. Для клапанов с трёхпозиционным управлением значение линейности не указывают, т. к. однозначная зависимость между сигналами управления и положением рабочего органа клапана отсутствует.

Чувствительность

Если придерживаться формального подхода, определяет минимально возможное перемещение рабочего органа клапана. Выражается в процентах от общего перемещения. Чем меньше значение чувствительности, тем более незначительные изменения управляющего сигнала может отработать регулирующий клапан. Однако, не следует забывать что частые перемещения рабочего органа на малые расстояния приводят к повышенному износу и сокращают срок службы клапана. Поэтому, чаще всего, чувствительность клапана обозначает максимально возможную точность остановки рабочего органа в требуемом положении, а для того что-бы избежать микроперемещений при работе клапана в устройстве управления Рисунок 6 – Чувствительность вводится зона нечувствительности, превышающая чувствительность клапана и предотвращающая повышенный износ.

Гистериз

Под гистерезисом регулирующих клапанов понимают разность положений рабочего органа, которые он занимает при одной и той-же величине управляющего сигнала но при движении в разных направлениях – при закрытии и открытии. Наибольшее влияние на процесс регулирования гистерезис оказывает при изменении направления движения рабочего органа. Допустим, система управления открывает клапан. При этом рабочий орган движется по нижней кривой от точки 0 до точки 1. Если в этот момент требуется изменить направление движения, система управления уменьшает величину входного сигнала, однако, положение рабочего органа клапана не изменится до тех пор пока не будет достигнута точка 2.

Линейность

Рисунок 5 — Линейность

Чувствительность

Рисунок 6 — Чувствительность

Гистериз

Рисунок 7 — Гистериз

Высококачественные клапаны имеют небольшой гистерезис, 1…2%, который не оказывает существенного влияния на процесс управления. Однако, гистерезис некоторых типов регулирующих клапанов может достигать 10…15%, что заставляет инженеров внедрять в систему управления дополнительные устройства или программные модули для компенсации влияния гистерезиса. В процессе эксплуатации, значение гистерезиса клапана может сильно увеличиваться вследствие износа. При критическом увеличении гистерезиса его называют люфтом.

Повторяемость это способность рабочего органа клапана занимать одинаковые положения при многократной подаче на него одинаковых входных сигналов. В отличии от измерительных приборов для клапанов значение повторяемости, обычно не является критичным, т. к. повторяемости почти любого современного клапана оказывается достаточно высокой чтобы не оказывать сколько-нибудь существенного влияния на процесс регулирования. Все эти отклонения возникают в разомкнутой части системы управления (ЭПП ➝ МИМ ➝ процент открытия клапана) и их качественная компенсация без введения обратной связи является сложным процессом, требующим применения нетрадиционных регуляторов и длительной настройки на этапе пусконаладочных работ.

В связи с высокой сложностью компенсации нелинейностей в цепи управления при использовании клапанов с МИМ и ЭПП от неё часто отказываются. При этом оценить точность системы управления в динамическом режиме работы становится практически невозможно и при построении системы приходится опираться на личный опыт проектировщиков, а представления о применимости тех или иных клапанов для решения поставленных задач формируются исходя из успехов (или неудач) уже реализованных проектов. Избежать неясностей при построении подобных систем управления позволяет введение в цепь управления обратной связи по положению штока клапана с формированием второго, стабилизирующего, контура. В качестве регулятора в этом контуре используется позиционер.

Схема контура регулирования при использовании клапана с позиционеромРисунок 8 — Схема контура регулирования при спользовании клапана с позиционером

3. Позиционер управления клапаном

Позиционер для пневмоклапанаРисунок 9 — Позиционер

Это устройство которое полностью берёт на себя функцию управления клапаном. Примером может служить позиционер ASCO 60566318, который устанавливается на все регулирующие клапаны серий E290(резьбовой), S290(приварной) и T290(фланцевый). После установки позиционера на клапан запускается процедура инициализации, в процессе которой позиционер в автоматическом режиме собирает всю необходимую информацию о клапане и настраивает встроенный регулятор таким образом чтобы обеспечить оптимальное управление. После завершения инициализации из системы управления достаточно подать на позиционер пропорциональный сигнал с требуемым процентом открытия клапана, а позиционер приведёт клапан в нужное положение.

Регулирующий клапан с позиционеромРисунок 10 — Регулирующий клапан ASCO с позиционером

Использование клапанов с позиционером позволяет скомпенсировать нелинейности на этапах преобразования пропорционального электрического сигнала от регулятора в процент открытия клапана. Благодаря этому можно почти полностью отказаться от сложной процедуры ручной настройки регуляторов, управляющих пропорциональными клапанами.

Клапан с позиционером уже имеет в своём составе замкнутый контур управления с оптимально настроенным регулятором, среди прочего в автоматическом режиме компенсирующим гистерезис и нелинейность клапана. Таким образом время пусконаладочных работ сокращается до минимума, а расчёт точности упрощается и представляет из себя один параметр – зону нечувствительности встроенного в позиционер регулятора.

Для регулирующих клапанов ASCO с позиционером заводское значение зоны нечувствительности составляет 1%. Инженерам-проектировщикам следует, однако, помнить что даже такие высокие показатели точности не гарантируют высококачественного регулирования в случае неправильно выбранного регулирующего клапана. Так, например, часто встречающейся ошибкой при проектировании систем является выбор регулирующего клапана по диаметру трубопровода на котором он устанавливается.

При таком подходе реальный расход среды через регулирующий клапан может оказаться существенно ниже номинального расхода, а значит и показатели качества процесса регулирования ухудшатся в несколько раз. Поэтому при высоких требованиях к точности регулирования следует уделить особое внимание выбору клапана с коэффициентом расхода Kv соответствующим проектируемой системе.

4. Выводы

На современном рынке технических средств автоматизации представлено большое количество различных регулирующих клапанов. Наиболее распространёнными являются три типа: клапаны с электроприводом с трёхпозиционным способом управления («больше/меньше»), клапаны с МИМ и ЭПП, клапаны с позиционером. Преимущества и недостатки каждого из них можно резюмировать следующим образом.

Клапаны с электроприводом и управлением «больше меньше»

Клапаны с электроприводом и управлениемРисунок 11 — Клапаны с электроприводом и управлением «больше меньше»

Плюсы:

  • управление дискретными сигналами
  • простой и понятный принцип работы+ цена
  • требуют использования специальных регуляторов

Минусы:

  • низкая скорость работы
  • ограниченная применимость
  • высокое энергопотребление (вызывает сложности при построении систем с автономным резервированием питания)

Клапаны с МИМ и ЭПП

Клапаны с МИМ и ЭППРисунок 11 — Клапаны с МИМ и ЭПП

Плюсы:

  • высокое быстродействие
  • низкое энергопотребление
  • расширенная сфера применения
  • управление пропорциональным сигналом

Минусы:

  • чрезвычайно высокая сложность компенсации нелинейностей в контуре управления
  • сложность оценки точности, особенно в динамических режимах работы
  • требует для работы сжатый воздух

Клапаны с позиционером

Клапаны с МИМ и ЭППРисунок 11 — Клапаны с позиционером

Плюсы:

  • высокое быстродействие
  • низкое энергопотребление
  • автоматическая компенсация нелинейностей
  • лёгкое построение двухконтурной системы управления с минимумом трудозатрат
  • наиболее широкая сфера технологических применений
  • управление пропорциональным сигналом

Минусы:

  • требует для работы сжатый воздух

Инженер ООО «КИП-Сервис»
Быков А.Ю.

Дополнительные материалы:

Читайте также:

Регулирующий клапан Википедия

Современный регулирующий клапан с электрическим приводом.

Регулирующий клапан — один из конструктивных видов регулирующей трубопроводной арматуры. Это наиболее часто применяющийся тип регулирующей арматуры как для непрерывного (аналогового), так и для дискретного регулирования расхода и давления. Выполнение этой задачи регулирующие клапаны осуществляют за счёт изменения расхода среды через своё проходное сечение[1].  Материал изготовления регулирующих клапанов зависит напрямую от типа рабочей среды, с которой клапан будет иметь контакт.

В зависимости от назначения и условий эксплуатации применяются различные виды управления регулирующей арматурой, чаще всего при этом используются специальные приводы и управление с помощью промышленных микроконтроллеров по команде от датчиков, фиксирующих параметры среды в трубопроводе. Используются электрические, пневматические, гидравлические и электромагнитные приводы для регулирующих клапанов. В современной промышленности уже редко, но все же встречается, основной способ управления регуляторами в прошлом — ручное управление[2].

Проходной запорно-регулирующий клапан с электрическим приводом.

Также применяются запорно-регулирующие клапаны, с помощью этих устройств осуществляется как регулирование по заданной характеристике, так и уплотнение затвора по нормам герметичности для запорной арматуры, что обеспечивается специальной конструкцией плунжера, имеющего профильную часть для регулирования, а также уплотнительную поверхность для плотного контакта с седлом в положении «закрыто».

Для присоединения регулирующих клапанов к трубопроводам применяются все известные способы (фланцевый, муфтовый, штуцерный, цапковый, приваркой), но приварка к трубопроводу используется только для клапанов, изготовленных из сталей.

Большинство из регулирующих клапанов весьма схожи по конструкции с запорными клапанами, но есть и свои специфические виды.

По направлению потока рабочей среды регулирующие клапаны делятся на:

  • проходные — такие клапаны устанавливаются на прямых участках трубопровода, в них направление потока рабочей среды не изменяется;
  • угловые — меняют направление потока на 90°;
  • трехходовые (смесительные) — имеют три патрубка для присоединения к трубопроводу (два входных и один выходной) для смешивания двух потоков сред с различными параметрами в один. В сантехнике такое устройство имеет название смеситель.

Основные различия регулирующих клапанов заключаются в конструкциях регулирующих органов[1][3].

Устройство и принцип действия

На поясняющем рисунке справа изображен простейший проходной односедёльный регулирующий клапан в разрезе. Где:

  • B — корпус арматуры;
  • F — фланец для присоединения арматуры к трубопроводу.
  • P — узел уплотнения, обеспечивающий герметичность арматуры по отношению к внешней среде;
  • S — шток арматуры, передающий поступательное усилие от механизированного или ручного привода затвору, состоящему из плунжера и седла;
  • Tплунжер, своим профилем определяет характеристику регулирования арматуры;
  • Vседло арматуры, элемент, обеспечивающий посадку плунжера в крайнем закрытом положении.

Усилие от привода с помощью штока передается на затвор, состоящий из плунжера и седла. Плунжер перекрывает часть проходного сечения, что приводит к уменьшению расхода через клапан. Согласно закону Бернулли при этом увеличивается скорость потока среды, а статическое давление в трубе падает. При полном закрытии плунжер садится в седло, поток перекрывается, и, если затвор будет полностью герметичен, давление после клапана будет равно нулю[1].

Конструкции регулирующих органов

Односедёльные и двухседёльные

В седёльных клапанах подвижным элементом служит плунжер, который может быть игольчатым, стержневым или тарельчатым. Плунжер перемещается перпендикулярно оси потока среды через седло (или сёдла), изменяя проходное сечение. Наиболее часто встречаемые — двухседёльные клапаны, так как их затвор хорошо уравновешен, что позволяет их применять для непрерывного регулирования давления до 6,3 МПа в трубопроводах диаметром до 300 мм, при этом используя исполнительные механизмы меньшей мощности, чем односедёльные. Односедёльные клапаны применяются чаще всего для небольших диаметров прохода из-за своего неуравновешенного плунжера. Также преимущество двухседёльных клапанов состоит в том, что такой конструкцией гораздо легче обеспечить требуемую для запорно-регулирующей арматуры герметичность с помощью плунжера, имеющего специальный регулирующий профиль для контакта с одним седлом, а для посадки в другое седло — уплотнительную поверхность для более плотного контакта[1][3].

Клеточные

Затвор клеточных клапанов выполняется в виде полого цилиндра, который перемещается внутри клетки, являющейся направляющим устройством и, одновременно, седлом в корпусе. В клетке имеются радиальные отверстия (перфорация), позволяющие регулировать расход среды. Ранее такие клапаны назывались поршневыми перфорированными. Клеточные клапаны за счёт своей конструкции позволяют снизить шум, вибрацию и кавитацию при работе арматуры[1][3].

Мембранные

В клапанах этого типа используются встроенные или вынесенные мембранные пневмо- или гидроприводы. В случае встроенного привода расход рабочей среды напрямую изменяется за счёт перекрытия прохода в седле гибкой мембраной из резины, фторопласта или полиэтилена, на которую воздействует давление управляющей среды. Если привод вынесен, то перестановочное усилие передаётся через мембрану на опору штока клапана, а через него на регулирующий орган; когда давление управляющей среды сбрасывается, пружина возвращает мембрану в начальное положение. Чтобы усилия от среды и сила трения в направляющих и уплотнении не приводили к снижению точности работы клапана, в такой арматуре часто используются дополнительные устройства — позиционеры, контролирующие положение штока. Мембранные клапаны могут быть как одно-, так и двухседёльные. Основным достоинством таких клапанов является высокая герметичность подвижного соединения и коррозионная стойкость материалов, из которых изготавливаются мембраны, что позволяет обеспечить хорошую защиту внутренних поверхностей арматуры от воздействия рабочих сред, которые могут быть агрессивными[1][3][2].

Золотниковые

В этих устройствах регулирование расхода среды происходит при повороте золотника на необходимый угол, в отличие от других клапанов с поступательным движением штока или мембраны. Такие клапаны применяются, как правило, в энергетике и имеют альтернативное название «регулирующий кран», так как по принципу действия принадлежат к кранам[1][3].

См. также

Примечания

  1. 1 2 3 4 5 6 7 Поговорим об арматуре. Р.Ф.Усватов-Усыскин — М.: Vitex, 2005.
  2. 1 2 Трубопроводная арматура с автоматическим управлением. Справочник. Под общей редакцией С.И.Косых. — Л.: Машиностроение, 1982.
  3. 1 2 3 4 5 Трубопроводная арматура. Справочное пособие. Д.Ф.Гуревич — Л.: Машиностроение, 1981.

Клапаны регулирующие

Каталог трубопроводной арматуры АРМАТЭК

Заголовок статьи «Клапаны регулирующие» состоит из существительного и прилагательного. Прилагательное «регулирующие» свидетельствует о принадлежности ее «главного героя» к определенному виду трубопроводной арматуры ─ регулирующей арматуре. Существительное ─ о принадлежности к одному из ее типов ─ клапанам.

Регулирующая трубопроводная арматура: решая самые сложные задачи

Регулирование параметров потока рабочей среды необходимо для эффективного контроля технологических процессов и связывания между собой их отдельных фаз. Без этого невозможно обеспечить стабильность в номинальных режимах и нормальное протекание переходных режимов.

Управлять параметрами потока рабочей среды посредством изменения ее расхода, обеспечивая комплекс требований по виду регулировочной характеристики, надежности и точности регулирования, ─ одна из важнейших задач трубопроводной арматуры. И, прежде всего,─ регулирующей арматуры, занимающей исключительно важное место в общей номенклатуре трубопроводной арматуры.

Регулирующая арматура как в своем «классическом» виде, так и в комбинации с запорной арматурой (согласно «ГОСТ 24856-2014. Арматура трубопроводная. Термины и определения») обеспечивает условия нормального функционирования оборудования на различных объектах, включая такие сложные и ответственные как ТЭС, АЭС, системы трубопроводного транспорта. Примером симбиоза трубопроводной арматуры различных видов является совмещающая функции запорной и регулирующей арматуры запорно-регулирующая арматура (запорно-регулирующий клапан). Как известно, запорная арматура предназначена для перекрытия потока рабочей среды с определенной герметичностью.

Иногда к регулирующей трубопроводной арматуре относят самостоятельную с точки трения классификации, установленной в нормативно-технической документации (Так было в «ГОСТ Р 52720-2007. Арматура трубопроводная. Термины и определения»; пришедший на смену ГОСТ Р 52720-2007 ГОСТ 24856-2014 о редукционной арматуре не упоминает), редукционную (дроссельную) арматуру, предназначенную для снижения (редуцирования) рабочего давления в системе за счет увеличения гидравлического сопротивления в проточной части. Т. е. клапан, регулирующий давление. Актуальность регулирующей арматуры только возрастает по мере усложнения условий работы в электроэнергетике. Их ярким проявлением являются повышение начальных параметров теплоносителей на тепловых станциях и рост единичной мощности турбоустановок в атомной энергетике.

Без использования регулирующей арматуры невозможно обеспечить растущие требования по обеспечению надежной и вместе с тем максимально экономичной работы различных систем в тепло- и электроэнергетике, трубопроводном транспорте и других направлениях современных технологий.

Клапан ─ имя существительное

Если слово «арматура» имеет латинское происхождение, то «клапан» пришел в русский язык из немецкого, в котором еще до появления клапанов как технического устройства обозначало крышку (нем. Klappe). Языковеды даже называют точное время ─ XVIII век. Свойство клапана открывать и закрывать проход для какой-то среды ─ прямое подтверждение его кровного родства с открывающейся — закрывающейся крышкой.

Существительное «клапан» используется не только в трубопроводной арматуре. Сердечные клапаны регулируют кровоток, клапаны духовых инструментов — поступление превращающегося в звуки музыки воздуха из легких. Клапаны есть в самых разных технических устройствах ─ насосах, компрессорах и т. д. Клапан прикрывает отверстие в кармане пальто или пиджака.

Клапаны ─ самый распространенный тип трубопроводной арматуры. В качестве основного элемента они входят в конструкцию большинства регуляторов.

У клапана запирающий или регулирующий элемент перемещается параллельно к оси потока рабочей среды.

Особенности, свойственные клапанам, ─ быстрое срабатывание, высокая герметичность, большие усилия на привод затвора и гидравлическое сопротивление, наличие противодавления рабочей среды.

Конструктивно выполненная в виде клапана запорная арматура называется запорным клапаном. Обратная арматура ─ обратный клапан, невозвратно-запорная арматура ─ невозвратно-запорный клапан, невозвратно-управляемая арматура ─ невозвратно-управляемый клапан. Регулирующий клапан (иногда говорят «исполнительное устройство») ─ вид регулирующей арматуры, конструктивно выполненной в виде клапана (с исполнительным механизмом или ручным управлением).

Регулирующий клапан, предназначенный для смешения двух и более различных по параметрам и/или свойствам рабочих сред, называют смесительным клапаном.

Регулирующие клапаны зачастую ─ наиболее значимый и дорогостоящий элемент контура регулирования. Работать им приходится в достаточно сложных условиях: изменение положения регулирующего органа сопровождается изменением давления на клапане, формы проходного сечения, скорости рабочей среды в проточной части. Перепады давления сопровождаются преобразованием огромных количеств энергии.

Эффективная работа регулирующего клапана обеспечивает условия для нормального функционирования технологических систем, поддерживают стабильность их рабочих параметров.

Разновидности регулирующих клапанов

Конструктивно регулирующие клапаны могут быть односедельными, двухседельными, клеточными.

Регулирующий клапан, расчетное проходное сечение которого образовано одним затвором, называют клапан регулирующий односедельный, а двумя параллельно работающими затворами, расположенными на одной оси, ─ двухседельный регулирующий клапан.

Седло ─ неподвижная часть рабочего органа клапана. Представляет канал или отверстие для прохода потока. Подвижная часть рабочего органа носит название «затвор» и служит для перекрытия проходного отверстия седла. Подвижный регулирующий элемент затвора регулирующего клапана, перемещением которого достигается изменение его пропускной способности, носит название «плунжер».

Если затвор регулирующего клапана выполнен в виде детали с профилированными отверстиями для пропуска рабочей среды и плунжера, благодаря перемещениям которого внутри клетки меняется суммарная площадь открытых сечений этих отверстий, это ─ регулирующий клеточный клапан.

Регулирующие клапаны клеточного типа обладают высокими эксплуатационными характеристиками, отличаются безотказностью, надежностью и экономичностью. Это сравнительно новый вид оборудования ─ в России их начали выпускать только в конце в 90-х годов.

В зависимости от направления потока клапаны подразделяются на проходные и угловые.

Клапан регулирующий проходной ─ это клапан, присоединительные патрубки которого соосны или взаимно параллельны. У углового регулирующего клапана оси входного и выходного патрубков расположены во взаимно перпендикулярных плоскостях.

Проходные клапаны, у которых площадь проходного сечения затвора равна или больше площади входного патрубка, называют полнопроходными клапанами.

Регулирующий клапан, в котором при отсутствии энергии внешнего источника затвор закрыт, называют регулирующим нормально-закрытым клапаном (регулирующий клапан НЗ). А если затвор открыт ─ регулирующим нормально-открытым клапаном (регулирующий клапан НО).

Регулирующий клапан с приводом

Привод ─ устройство для управления арматурой, обеспечивающее перемещение запирающего элемента, а также создание, в случае необходимости, усилий для обеспечения требуемой герметичности в затворе.

Используются разные приводы. Управление регулирующим клапаном может быть ручным ─ клапан ручной регулирующий управляется поворотом маховика или рукоятки. Или, в зависимости от потребляемой энергии, ─ электрическим (регулирующий или запорно-регулирующий клапан с электроприводом), электромагнитным, гидравлическим, пневматическим (клапаны с пневмоприводом в основном устанавливаются там, где развиты воздушные системы) или их комбинацией.

В зависимости от местоположения относительно арматуры различают приводы встроенные или дистанционные.

Выбор конструкции регулирующего клапана

Выбор конструкции регулирующего клапана в первую очередь зависит от температуры, давления и свойств рабочей среды. Широко используются отличающиеся высокой универсальностью односедельные проходные клапаны.

В случае больших номинальных диаметров или больших перепадов давления альтернативой односедельным разгруженным клапанам являются клапаны с двойным седлом.

При «стандартных» температурах эффективное конструктивное решение — самоподжимающийся пружинный сальник. Особые требования предъявляются к клапанам, работающим в условиях очень высоких и низких температур. В первом случае для лучшей тепловой изоляции клапанов могут применяться специальные охлаждающие ребра, препятствующие чрезмерному повышению температуры в зоне сальникового уплотнения.

При криогенных температурах необходимо предусмотреть защиту сальникового уплотнения от обледенения.

В условиях сильно загрязненной рабочей среды стараются избегать сетчатых конструкций.

Для абразивной рабочей среды хорошо подойдут угловые клапаны, обеспечивающие ее беспрепятственный выброс. Если они изготовлены из износостойких материалов, срок их эксплуатации даже в экстремальных условиях будет достаточно продолжительным.

Важная часть конструкции ─ присоединение к трубопроводу. Чаще всего применяются фланцевые, сварные или винтовые соединения. Наиболее распространены фланцевые. Сварные используются, главным образом, в линиях высокого давления водяных и паровых контуров. Преимущества сварных соединений ─ герметичность. Недостаток ─ ограниченная ремонтопригодность и более высокая стоимость изготовления.

Характеристики регулирующих клапанов

Производители регулирующих клапанов в технических документах приводят значимые для потребителей параметры.

К числу важнейших из них принадлежат пропускная способность, давление рабочей среды (рабочее, пробное, иногда говорят «испытательное»), ее температура.

Большое значение имеет «геометрия» регулирующего клапана: номинальный диаметр (используются и другие наименования ─ условный проход, диаметр условного прохода, условный диаметр, номинальный размер, номинальный проход), габаритные и монтажные размеры. А также масса.

Потребителю важно знать нормативный срок службы клапана.

Интересуют его и такие характеристики, как показатели надежности, наработка на отказ, герметичность в закрытом положении, коррозионная стойкость.

Из технических паспортов регулирующих клапанов можно узнать допустимые значения температуры и влажности окружающей среды, монтажное положение, тип привода, необходимый крутящий момент для управления клапаном, диапазон регулирования, время срабатывания и ряд других показателей, характеризующих их применяемость в конкретных эксплуатационных условиях.

Регулирующие клапаны по совокупности своих возможностей и масштабам использования с полным основанием заслужили право считаться ключевыми компонентами экономической эффективности и безопасности установок, в которых они установлены.

Магистральные направления развития регулирующих клапанов ─увеличение надежности, уменьшение энергоемкости, повышение точности регулирования, рост диапазона значений объемного расхода среды и перепада давления, увеличение быстродействия, еще большая коррозионная стойкость. И при этом конструкции клапанов должны быть надежными и простыми, не требующими технического обслуживания в межремонтный период.

Значительная часть этого пути пройдена. Уже сегодня в ассортименте производителей и поставщиков трубопроводной арматуры широко представлены регулирующие клапаны чрезвычайно высокого технического уровня, способные удовлетворить запросы самых требовательных потребителей.

Регулирующая арматура, запорно-регулирующая назначение

Любой трубопровод включает в свою конструкцию устройства, предназначенные для регулировки, отключения и включения, перемещения веществ, которые носят название «арматура». Все они обладают своей классификацией, в том числе и регулирующая арматура. Этот вид позволяет поддерживать давление, уровень и расход в нужных пределах. Рассмотрим подробнее основные виды регулирующей арматуры и их назначение.

Виды регулирующей арматуры

Виды регулирующей арматуры

В силу своих конструкционных особенностей регулирующая арматура очень походит на запорную. Поэтому зачастую данные элементы имеют одинаковую марку. Регулирующие устройства делятся на 2 типа:

  • редукционный, который работает на снижение давления рабочей среды;
  • запорно-регулирующий.

Теперь о видах регулирующей арматуры. Наиболее распространенным видом принято считать регулирующие клапаны, которые также делятся на несколько подвидов:

  • проходные;
  • угловые;
  • смесительные, обладающие трехходовой конструкцией.

К остальным видам регулирующих устройств относятся запорно-регулирующие клапаны, регуляторы давления прямого действия, а также регуляторы уровня.

Обо всех перечисленных устройствах далее более подробно.

Особенности работы регулирующих клапанов

Регулирующий клапан

Регулирующие клапаны, как уже говорилось ранее, относятся к наиболее распространенным видам запорных устройств. Их основная функция – это изменение давления среды, которая проходит по определенной трубопроводной системе. Сфера применения данных устройств:

  • водопроводные системы;
  • системы газоснабжения;
  • магистрали, предназначенные для перемещения нефтепродуктов и газообразных веществ.

Материал, использующийся для изготовления этой арматуры, может быть разнообразным: латунь, чугун, сталь, высоколегированные сплавы. Выбор определенного исполнения зависит от трубопроводной системы и находящейся в ней среды.

В зависимости от особенностей работы все регулирующие клапаны делятся на 2 вида:

  • с ручным приводом, где управление происходит с помощью специально встроенного штурвала, который при необходимости нужно собственноручно вращать. Для труб с большими параметрами такой вариант практически не используется, поскольку приведение регулирующего устройства в работу требует значительных усилий;
  • с автоматическими управлением, где работа выполняется за счет встроенного гидравлического, пневматического либо электрического привода. Для обеспечения своевременного срабатывания затвора в регулирующее устройство входят датчики, которые измеряют существующее давление в системе.

Также существует классификация клапанов-регуляторов в зависимости от их формы:

  • проходные устанавливаются на прямом трубопроводе и никак не воздействуют на направление среды;
  • угловые изменяют направление среды, а значит и самого трубопровода на 90˚;
  • смесительные включают в свою конструкцию 3 патрубка, которые две рабочие среды в совместный поток.

Принцип работы запорно-регулирующих клапанов

Запорно-регулирующий клапан

Основное назначение запорно-регулирующих клапанов – это контроль рабочей среды в трубопроводе и изменение ее расхода. Эта регулирующая арматура может использоваться в следующих системах:

  • сети отопления и горячего водоснабжения;
  • центральные и индивидуальные тепловые пункты;
  • вентиляционная система.

Для каждого из условий существует определенный тип исполнения и используемого материала.

Запорно-регулирующие клапаны являются универсальными регулирующими устройствами. Это объясняется тем, что они не только контролирует расход используемой в трубопроводе среды, но еще и выполняет запорную функцию, способную полностью перекрыть движение потока.

Рассмотрим принцип действия запорно-регулирующей арматуры: внутри корпуса запорный элемент перемещается благодаря вращению штока, который приводится в движение собственноручно либо при помощи предусмотренного привода. Особенностью этого регулирующего устройства является присутствие уплотнителя, благодаря которому при опускании штока происходит полная герметизация системы.

Запорно-регулирующая арматура обладает рядом достоинств, самыми главными из которых является простота в использовании и обслуживании, надежность в эксплуатации. Установка регулирующих устройств возможна не только на трубопроводы стандартного типа, но и на магистрали с нестандартными углами и поворотами. К тому же зачастую они используются для работы в агрессивных средах.

Регуляторы давления прямого действия

Регулятор давления прямого действия

Регулятор давления прямого действия необходим для того чтобы автоматически поддерживать нужный показатель перепада давления на одном из участков системы.

Эта регулирующая арматура делится на 2 вида:

  • до себя;
  • после себя.

Регулятор давления состоит из корпуса, клапана двухседельной конструкции, крышки, дополненной сальниковым устройством, грузового механизма и исполнительного механизма мембранного типа.

Особенностью конструкции такой регулирующей арматуры является наличие сразу двух клапанов на одном штоке. Такая особенность необходима для уравновешивания показателя давления рабочей среды на клапан, и соответственно, на шток.

Оба типа регуляторов отличаются друг от друга только расположением клапанов относительно седел. Регулирующая арматура «после себя» под воздействием давления от грузового механизма благодаря клапанам образует проход в седлах. Суть работы этого регулирующего устройства достаточно проста: при поступлении рабочей среды к нему проходное сечение находится в открытом состоянии, поэтому она проходит за него в трубопровод. Там и происходит увеличение показателя давления, которое перемещается по импульсной трубке к мембране и создает нагрузку для штока в противоположном направлении от воздействия груза, размещенного на рычаге. При достижении усилия большего, чем усилие груза движение штока будет направлено книзу и клапаны закроют отверстия в корпусе.

При настройке такой регулирующей арматуры на определенный показатель давления необходимо подобрать величину груза и его расположением на рычаге.

Отличие принципа работы регулирующей арматуры «до себя» от предыдущего вида в закрытых клапанах под воздействием имеющегося груза. Когда давление в системе увеличивается, то при передаче его через импульсную трубку на мембрану и тем самым создается усилие на шток по направлению противоположную действию груза. Это и приводит к открытию клапанов, что впоследствии ведет к выводу рабочей среды за них. А это значит, что давление в системе начинает снижаться.

Информация о регуляторах уровня

Регулятор уровня

Предназначение регулятора уровня в поддержке уровня рабочей среды (жидкости) в необходимых пределах и заданной высоте. Используемый сосуд может находиться под давлением, а может соединяться непосредственно с атмосферой, что встречается значительно чаще. Такие условия характерны для резервуаров, наполненных нефтепродуктами или водой. Поддержка показателя давления здесь на заданном уровне осуществляется за счет впуска дополнительного объема жидкости. В этом случае регулирующая арматура носит название регулятор питания. Когда жидкость выпускается из резервуара под действием избыточного давления, регулирующая арматура называется регулятором перелива.

Действующими и главными элементами в такой регулирующей арматуре являются датчик положения уровня, чаще называющийся чувствительным элементом и элемент исполнительного действия, представленный в виде клапана регулирующего или запорного действия.

Принцип работы такого приспособления основан на прекращении или регулировании подачи рабочей среды (жидкости) с помощью исполнительного устройства, работа которого зависит от командного оповещения встроенного датчика.

Для регуляторов уровня прямого действия датчик обычно представлен в виде поплавка полой шарообразной формы, подсоединенного к затвору клапана. При увеличении или уменьшении уровня воды больше установленных пределов поплавок создает подъемную силу, которая и перемещает рычаг клапана в направление, заданное для работы исполнительного механизма регулятора.

Заключение

Регулирующая арматура относится к очень важным элементам, присутствующим во всех трубопроводных системах. В функции данных регулирующих устройств входит поддержание давления в системе на должном уровне. Некоторые также дополнительно выполняют и запорную функцию. Можно неустанно перечислять различные виды регулирующей арматуры, но самыми часто используемыми являются регулирующие и запорно-регулирующие клапаны, регуляторы давления прямого действия и регуляторы уровня.

Запорно-регулирующая арматура. Принцип действия

Запорно-регулирующая арматура используется для контроля потока среды на объектах промышленного производства, и бытовых системах жизнедеятельности. Магистральные трубопроводы, месторождения нефти и газа и заводы по их переработке, сталеплавильные и химические предприятия, очистные сооружения и городской водопровод – вот лишь небольшая часть предприятий, где требуется огромное количество запорно-регулирующей арматуры.

Существует множество типов и модификаций запорно-регулирующей арматуры. Мы рассмотрим принцип действия наиболее распространенных типов изделий, таких как шаровые краны, дисковые поворотные затворы, шиберные задвижки, запорные клапаны и мембранные клапаны.

Принцип действия всех вышеперечисленных типов запорной арматуры примерно одинаков. Все эти устройства либо ограничивают поток среды (воздуха, жидкостей, пара, газа, сыпучих тел), либо полностью перекрывает его. Различаются лишь элементы конструкции типов запорной арматуры, (мембрана, диск, шар) с помощью которых и происходит перекрытие потока.

 

Принцип действия шарового крана.

Принцип действия шарового крана.Принцип действия шарового крана.

Шаровый кран – один из самых надежных элементов запорной арматуры. Краны такого типа обеспечивают очень хорошую возможность полного перекрытия потока, в случае поворота запорного элемента на четверть оборота (90°). К достоинствам шарового крана следует также отнести низкое время закрытия, и низкую вероятность протечки, в случае износа уплотнения

Шаровые краны можно разделить на неполнопроходные, и полнопроходные. Неполнопроходной кран в открытом состоянии имеет диаметр прохода меньший, чем диаметр трубопровода, полнопроходный кран имеет диаметр прохода равный диаметру трубопровода. Полнопроходный шаровый кран более эффективен, т.к. позволяет свести к минимуму падение давления в клапане.

Шаровые краны рекомендуются только для использования в полностью открытом, или полностью закрытом положении. Они не приспособлены для точного регулирования потока, или функционирования в частично открытом положении, так как создается избыточное давление на часть корпуса, что может привести к его деформированию. Деформирование корпуса приводит к протечкам и поломкам.

 

Принцип действия дискового поворотного затвора

В положении «открыто»

Принцип действия дискового поворотного затвора

Шаг 1

Принцип действия дискового поворотного затвора

Шаг 2

Принцип действия дискового поворотного затвора

В положении «закрыто»

Принцип действия дискового поворотного затвора

 

Дисковый поворотный затвор регулирует поток при помощи специального элемента – диска, закреплённого на валу, и поворачивающегося вокруг своей оси. Также, как и шаровый кран, дисковый затвор способен осуществить перекрытие за достаточно короткое время, так как диск осуществляет такой же оборот на 90 °, из-за чего этот затвор называют также четверть-оборотным.

В зависимости от положения диска и вала относительно корпуса, дисковые затворы могут быть трехэксцентриковыми и двухэксцентриковыми. Затвор со смещенным эксцентриситетом означает, что ось диска смещена относительно геометрической оси корпуса, что обеспечивает более плотное прилегание диска к уплотнению затвора, а следовательно – исключает протечки.

Дисковые поворотные затворы характеризуются простотой конструкции, легкостью веса, и компактными размерами. Но материалы, используемые при производстве затворов, могут ограничить их применение при очень высоких температурах, или крайне агрессивных средах. В основном это касается уплотнений затвора, изготовляемых из полимерных материалов.

Принцип действия дискового поворотного затвора

 

Принцип действия запорно-регулирующего клапана

В положении «открыто»

Принцип действия запорно-регулирующего клапана

Шаг 1

Принцип действия запорно-регулирующего клапана

Шаг 2

Принцип действия запорно-регулирующего клапана

В положении «Закрыто»

Принцип действия запорно-регулирующего клапана

 

Запорно-регулирующий клапан подходит для использования на различных технологических  объектах, исключая лишь трубопроводы больших диаметров, для контроля и регуляции потока среды.

Принцип действия клапанов не сильно отличается от принципа действия прочей запорно-регулирующей арматуры. Достоинства этих клапанов состоят в малом ходе затвора для полного открытия, соответственно такой клапан обычно имеет малые габариты и приемлемую массу. Также клапан обладает высокой герметичностью, и отсутствием трения уплотнения затвора о седло, что значительно сокращает их износ.

Недостатки подобного типа клапанов заключаются в сильном гидравлическом сопротивлении, и, соответственно, в больших потерях энергии, ограничении максимального диаметра трубопроводов, на которые их можно установить, а также в существовании застойных зон (по причине S-образного внутреннего сечения), где могут накапливаться примеси и мусор.

 

Принцип работы шиберной задвижки

В положении «открыто»

Принцип работы шиберной задвижки

Шаг 1

Принцип работы шиберной задвижки

Шаг 2

Принцип работы шиберной задвижки

В положении «закрыто»

Принцип работы шиберной задвижки

Конструкция шиберной задвижки напоминает шлюз — поток регулируется путем его разделения при помощи металлической пластины – шибера. Шиберная задвижка – одно из наиболее простых приспособлений для регуляции потока.

Шиберные задвижки, в зависимости от конструкции запирающего элемента могут быть межфланцевыми, двусторонними и ножевыми.

К достоинствам шиберной задвижки следует отнести то, что этот тип задвижек в открытом состоянии не содержит никаких элементов, препятствующих потоку.

Принцип работы шиберной задвижки

 

 

 

Принцип действия мембранного клапана

В положении «открыто»

Принцип действия мембранного клапана

Шаг 1

Принцип действия мембранного клапана

Шаг 2

Принцип действия мембранного клапана

В положении «закрыто»

Принцип действия мембранного клапана

Мембранные клапаны используют в качестве запорного элемента гибкую мембрану (диафрагму) метод «щипать», чтобы остановить поток клапана, используя гибкую мембрану. 

Одним из преимуществ мембранного клапана является то, что компоненты самого клапана отделены от потока среды, что в случае агрессивных сред увеличивает срок службы клапана, при условии регулярного обслуживания и своевременной замены мембраны.

Эти типы клапанов, как правило, не подходит для агрессивных сред, и сред с высокими температурами,  в основном, они применяются для водопроводных систем.

Принцип действия мембранного клапана

Ниже представлено видео, в котором наглядно показан принцип работы трехэксцентрикового дискового затвора

Отправить ответ

avatar
  Подписаться  
Уведомление о