Плотность антифриза 65 (ГОСТ 159–52) и его свойства
В таблице приведена плотность антифриза 65 и значения его теплофизических свойств в зависимости от температуры. Антифриз 65 (водный раствор этиленгликоля или тосол ГОСТ 159–52) имеет температуру замерзания -65°С.
В таблице представлены следующие свойства антифриза: давление пара антифриза Р, кинематическая вязкость ν, плотность антифриза ρ, коэффициент объемного расширения β, удельная теплоемкость Cp, коэффициент теплопроводности λ, температуропроводность a, число Прандтля Pr.
Свойства антифриза в таблице даны в зависимости от температуры (в интервале от -60 до 120°С).
В процессе нагрева антифриза его плотность, а также кинематическая вязкость, температуропроводность и число Прандтля уменьшаются. По данным таблицы при росте температуры особенно заметно уменьшение значений таких свойств антифриза, как кинематическая вязкость и число Прандтля.
Коэффициент объемного расширения антифриза при увеличении температуры имеет слабую тенденцию к росту, то есть антифриз при нагревании расширяется более заметно. Плотность антифриза при увеличении его температуры снижается. Например, при температуре 20°С антифриз, согласно таблице, имеет плотность 1089 кг/м3, а при нагревании до 120°С плотность антифриза уменьшается до значения 1011 кг/м3. Плотность антифриза 65 в нормальных условиях больше плотности воды на 10%, а при температуре выше 120°С приближается к этому значению.
Теплопроводность антифриза слабо зависит от температуры. Удельная теплоемкость антифриза при повышении температуры увеличивается.
Источник:
Тепломассообмен влажного воздуха в компактных пластинчато-ребристых теплообменниках : монография / А.В. Чичиндаев. – Новосибирск : Изд-во НГТУ, 2009. – 298 с.
Коэффициент объемного расширения антифриза
В таблице приведена плотность антифриза 65 и значения его теплофизических свойств в зависимости от температуры. Антифриз 65 (водный раствор этиленгликоля или тосол ГОСТ 159–52) имеет температуру замерзания -65°С.
В таблице представлены следующие свойства антифриза: давление пара антифриза Р, кинематическая вязкость ν
Свойства антифриза в таблице даны в зависимости от температуры (в интервале от -60 до 120°С).
В процессе нагрева антифриза его плотность, а также кинематическая вязкость, температуропроводность и число Прандтля уменьшаются. По данным таблицы при росте температуры особенно заметно уменьшение значений таких свойств антифриза, как кинематическая вязкость и число Прандтля.
Коэффициент объемного расширения антифриза при увеличении температуры имеет слабую тенденцию к росту, то есть антифриз при нагревании расширяется более заметно. Плотность антифриза при увеличении его температуры снижается. Например, при температуре 20°С антифриз, согласно таблице, имеет плотность 1089 кг/м 3 , а при нагревании до 120°С плотность антифриза уменьшается до значения 1011 кг/м 3 . Плотность антифриза 65 в нормальных условиях больше плотности воды на 10%, а при температуре выше 120°С приближается к этому значению.
Теплопроводность антифриза слабо зависит от температуры. Удельная теплоемкость антифриза при повышении температуры увеличивается.
Источник:
Тепломассообмен влажного воздуха в компактных пластинчато-ребристых теплообменниках : монография / А.В. Чичиндаев. – Новосибирск : Изд-во НГТУ, 2009. – 298 с.
Немного физики
Говорить о температуре закипания антифриза в конкретике тосола некорректно, поскольку, во-первых, тосол имеет определённый химический состав, и его теплофизические характеристики определяются не только температурой, но и давлением. Во-вторых, тосол, создававшийся в своё время исключительно под двигатели отечественного производства, содержит присадки, которые обеспечивают не только эксплуатацию автомобиля при пониженных температурах, но и его защиту от ряда неблагоприятных факторов:
Смазывающего действия тосол, в отличие от антифризов, не оказывает, а снижение износа достигается вследствие уменьшения температуры подвижных элементов привода, при росте которой выбираются зазоры, и коэффициент трения естественным образом увеличивается.
Если с допустимой температурой всё более-менее ясно (не более 90 º С), то с давлением в двигателе дело обстоит сложнее. Для обеспечения защиты двигателя от перегрева тосол прокачивается при повышенных давлениях, что сказывается и на температуре жидкости. Для большинства марок фактическое давление в блоке цилиндров не менее 1,2…1,3 ат: именно тогда, согласно закону Клаузиуса, температурный максимум, необходимый для кипения жидких сред, возрастает. Таким образом, теоретически допустимая температура кипения охлаждающих жидкостей может составлять 110…112 º С.
Какая температура кипения тосола?
Перегрев в двигателях таких популярных охлаждающих сред как Felix А40, Мотюль, Аляска и других связан с недостаточным количеством тосола, неисправностью системы вентиляции двигателя, появлением воздушной пробки, неисправностью системы охлаждения или использованием некачественного хладагента (разбавленного, отработанного и т. п.). Говорить о температуре закипания тосола можно лишь тем владельцам автомобилей, которые допускают значительное превышение давления охлаждающей жидкости и её избыточный объём в системе охлаждения. Иное дело – использование вместо тосола тосолоподобных жидкостей (приобретённых на сомнительных авторынках). Те действительно могут кипеть, причём даже при температурах 90 º С.
Теплофизические свойства тосолов отечественного производства
В двигателях российского производства целесообразно использование тосолов торговых марок Феникс, Sintec и им подобных. Их пределы работоспособности таковы:
- Для тосола А40М: -40…+108 º С.
- Для тосола А65М: -65…+108 º С.
- Для тосола А60М: -60…+105 º С.
- Для тосола TL-30 Premium: -30…+108 º С.
При температурах в двигателе, выше, чем указанные, тосол закипает.
Коэффициент объёмного расширения тосола – в пределах 1,09…1,12. Прочие показатели определяются техническими требованиями ГОСТ 28084-89.
Возможную температуру закипания тосола оценивают также и по величине давления:
- При Р = 1 ат Tкип = 105 º С;
- При Р = 1,1 ат Tкип = 109 º С;
- При Р = 1,3 ат Tкип = 112 º С.
Основным производителем тосолов в стране является ПКФ «МИГ и Ко» (г. Дзержинск, Нижегородской обл.).
Во многих регионах России устойчивая работа автономной системы теплоснабжения в осенне-зимний период обеспечивается применением теплоносителя с низкой температурой замерзания. В подавляющем большинстве случаев используются гликолевые смеси, физико-химические характеристики которых отличаются от параметров воды.
У же более полутораста лет назад в России стали широко применяться системы отопления с теплоносителем. В большинстве случаев это было водяное или паровое отопление. Еще примерно через сто лет начался переход от открытых систем отопления к закрытым, важным элементом которых стал расширительный бак (экспансомат), назначение которого состояло в компенсации температурного расширения теплоносителя (рис.1).
Рис. 1. Конструкция современных мембранных баков
В том случае, если автономная система теплоснабжения была изначально спроектирована в расчете на использование в качестве теплоносителя воды, исходя из ее физических параметров подбирался тип и главное объем расширительного бака. Однако гликолевые смеси имеют другой коэффициент объемного теплового расширения, кинематическую вязкость и теплоемкость (
Для определения массового расхода (М) теплоносителя требуется рассчитать необходимое отопительной системой количества тепла. Затем расход определяется по формуле:
где ΣQi – требуемый тепловой поток , Вт; с – удельная теплоемкость теплоносителя, кДж/кг•˚С, ∆t =»» t1т – t2т – разность температур теплоносителя на входе и выходе из системы, ˚С.
Объемный расход в м 3 /ч определяется делением полученного значения на удельный вес теплоносителя. При смене теплоносителя значение имеет увеличение объемного расхода относительно воды – Va/Vв, где Vа и Vв – соответственно, объемы гликолевой смеси и воды. Причем объем первой зависит также от типа гликоля и его концентрации, которые в свою очередь подбираются, исходя из условий эксплуатации. Например, при понижении температуры замерзания смеси на основе этиленгликоля от –20 до –67 ˚С объемные расходы возрастают на 6 и 12 %, соответственно (рис. 2).
Рис. 2. Зависимость относительного объемного расширения от температуры теплоносителя:
а – вода; б – водный раствор моноэтиленгликоля 45 %
А в системах ГВС с бойлером косвенного нагрева можно применять только нетоксичный, но, увы, более дорогой пропиленглиголь. Коэффициент теплового расширения его растворов, значительно отличающийся от водяного, близок к соответствующим значениям моноэтиленгликолевых водных растворов (табл.2).
Опасный воздух
Переход на антифриз может приводить к завоздушиванию отопительных систем: ведь он имеет более высокий по сравнению с водой коэффициент объемного расширения и емкости расширительного бака, рассчитанного на ее использование, что может оказаться недостаточно. Поэтому при нагреве теплоносителя до рабочих температур (в среднем 85 ˚С) его излишек может быть сброшен через предохранительный клапан. Затем при снижении тепловой нагрузки потребуется подпитка системы, которая обычно осуществляется водой. Растворенные в ней газы выделятся при нагреве и приведут к образованию воздушных пробок, появление которых чревато уже серьезными авариями.
Минимально необходимый объем расширительного бака в закрытой системе отопления можно рассчитать по формуле:
где V1b – начальный объем теплоносителя в баке при холодной системе отопления, м 3 ; ∆Vr – значение расширения теплоносителя при нагреве до рабочей температуры, м 3 ; P2 – давление в расширительном баке при рабочей температуре, бар; P1 – давление в расширительном баке до заполнения системы теплоносителем, бар.
Значение ∆Vr рассчитывается как произведение общего объема теплоносителя в системе, среднего в рабочем температурном диапазоне коэффициента объемного расширения (k) и этого диапазона. Его значение обычно принимается равным 60 ˚С (∆t =»» tср – t =»» 80 – 20, ˚С).
При переходе с воды на антифриз важно соотношение V2b/V1b, где V2b и V1b –соответственно, объемы расширительного бака для низкотемпературного теплоносителя и воды. Замена ее на гликолевые растворы концентрацией 40–45 % и, соответственно, с температурой начала кристаллизации 30–35 ˚С в отопительных системах мощностью до 100 кВт потребует увеличения номинальных объемов расширительных баков на 5–15 %, в более производительных системах коррекцию лучше проводить, используя графики зависимости объема от мощности и типа теплоносителя (рис.3) или таблицы пересчета.
Рис. 3. Зависимость объема расширительного бака от мощности системы отопления:
а – вода; б – водный раствор моноэтиленгликоля 45 %
Важнейший параметр для антифризов – максимальные рабочие температуры. Кипеть при атмосферном давлении большинство гликолевых растворов начинает при 104–112 °C. Однако некоторые производители заявляют рабочие температуры значительно выше, до 150 ˚С и даже больше, вполне приемлемые для гелиосистем. Принципиальное значение этот параметр имеет потому, что в отличие от воды при превышении допустимой температуры происходит необратимое разложение гликолевых растворов.
Поэтому выбор расширительного бака с запасом на запредельное увеличение температуры смысла не имеет: даже небольшой локальный перегрев приводит к столь серьезным деструктивным изменениям, что должен в принципе потребовать замены всего гликолевого теплоносителя.
Очень важно то, что гликолевые смеси имеют повышенную по сравнению с водой проницаемость или текучесть. Причем вероятность возникновения протечек тем больше, чем больше в отопительной системе соединений. А течи часто обнаруживаются при ее остывании, когда возникают проницаемые для антифриза микроканалы. Поэтому все соединения, выполненные ранее при установке расширительного бака, должны быть доступны для ревизии, не скрыты под облицовкой или замоноличены.
Таблица. 1. Физические характеристики теплоносителей
>
ТЕПЛОНОСИТЕЛИ ЖИДКОСТНЫХ СИСТЕМ Новости | Компания Теплодом
29.09.2013 00:59Характеристика теплоносителей жидкостных систем охлаждения
|
|
|
Назначение охлаждающих жидкостей ДВС – воспринимать и отводить тепловой поток от тех зон и деталей двигателя, перегрев которых вызывает нарушение нормальной работы двигателя или его разрушение.
Эффективность функционирования систем жидкостного охлаждения во многом определяется физическими и химическими свойствами охлаждающей жидкости. Процесс отвода теплоты от двигателя и передача его в окружающую среду зависят от теплоемкости и теплопроводности жидкости: чем выше эти показатели, тем интенсивнее охлаждается двигатель. С увеличением теплоемкости возрастает количество теплоты, которую жидкость способна воспринять при заданном повышении температуры, а с увеличением ее теплопроводности теплота отводится быстрее.
Таким образом, с увеличением теплоемкости можно уменьшить количество жидкости, циркулирующей в системе, а увеличением теплопроводности уменьшить скорость ее циркуляции и получить более равномерную ее температуру и сократить затраты мощности на привод насосов системы охлаждения.
В жидкостных системах охлаждения современных транспортных двигателей внутреннего сгорания применяют два основных типа охлаждающих жидкостей: воду и низкозамерзающие жидкости (антифризы).
Вода как охлаждающая жидкость по многим свойствам превосходит другие известные жидкости. Вода из известных нам теплоносителей обладает самой высокой теплоемкостью (4200 Дж/(кг*К)) и является идеальной тепловоспринимающей жидкостью.. Из десяти теплоносителей, среди которых были натрий, сплав 75% калия и 25% натрия, ртуть, вода, антифризы А-40 и А-65, фреон-12, дизельное топливо, масло М-10Г2 и метиловый спирт, по теплогидравлической эффективности вода уступает только натрию и сплаву калия и натрия, применение которых для охлаждения сопряжено со значительными трудностями, и превосходят все остальные теплоносители. Кроме того, применение таких теплоносителей, как ртуть и фреон-12, недопустимо экологически.
Вода обладает очень большой уделенной теплотой парообразования, что иногда используется в испарительной (пароводяной) системе охлаждения. Исключительная доступность воды, ее практически повсеместные запасы (реки, озера и др.) делают воду очень удобной и дешевой для применения.
Однако вода как охлаждающая жидкость обладает и существенными недостатками, затрудняющими ее применение.
При 0 ºС вода кристаллизуется со значительным увеличением объема (примерно на 10%), в результате чего в системе возникают давления до 200-300 Мпа, способные привести к серьезным повреждениям («размораживанию») системы.
Вода имеет сравнительно низкую температуру кипения (100 ºС при p=0,101 Мпа), что приводит иногда к ее закипанию в радиаторе, поэтому рабочая температура воды в открытой системе охлаждения не должна превышать 90 ºС. При более высоких температурах вода интенсивно испаряется. В разряженной атмосфере ее температура кипения понижается. Поэтому в горных районах с возрастанием высоты понижается предельная температура воды в радиаторе.
Вода хорошо растворяет многие вещества: соли, кислоты, щелочи и газы, такие как кислород, азот углекислоту и др. Поэтому в природе вода, никогда не встречается в абсолютно чистом виде. Большая часть растворенных в ней веществ представляет собой углекислые, хлористые и серно-кислые соли натрия, кальция и магния (до 94%), соли азотной, фосфорной, кремнивой кислот и другие.
Из различных солей, находящихся в растворенном состоянии в воде, особое значение имеют соли кальция и магния. Они придают ей свойства, которые принято называть жесткостью. За единицу жесткости принимают миллиграмм-эквивалент солей на 1л воды (1 мг-экв отвечает содержанию 20,04 мг/л Са++ или 12,16 мг/л Mg++).
Вода, предназначенная для приготовления охлаждающей жидкости, должна удовлетворять требованиям, предъявляемым к технической воде. Для сравнения в табл. 2.1. приведены свойства питьевой и дистиллированной воды.
Прочерк означает, что данный показатель не регламентируется.
Если в качестве эталона принять физико-химический состав воды Онежского озера, наиболее близкий к требованиям инструкций по эксплуатации , то окажется, что вода Азовско-Донского и Волжско-Камского водно-транспортных бассейнов обладает наихудшим составом, что требует принять специальных мер по ее приготовлению, а также совершенствованию технического обслуживания систем охлаждения дизелей в целом ряде основных регионов России.
Высокая температура замерзания воды и большое объемное расширение ее при замерзании сильно усложняют эксплуатацию двигателей с водяным охлаждением в зимнее время. Поэтому при эксплуатации в условиях низких температур в качестве теплоносителя системы охлаждения вместо воды используется специальные низкозамерзающие жидкости, получившие общее название «антифризы».
Растворение различных неорганических и органических солей в воде позволяет значительно понизить ее температуру замерзания.
Таблица 2.1
Характеристики дистиллированной питьевой
Показатель | Вода дистиллированная (ГОСТ 6709-72) | Вода питьевая (ГОСТ 2874-82) | Вода техническая (котловая) (ГОСТ 200995-75) |
Водородный показатель, рН | 5,4-6,6 | 6-9 | 5-6 |
Жесткость общая, мг-экв/л, не более | 0 | 7 | 1,5-3,0 |
Остаток после выпаривания, мг/л, не более | 1 | 1000 | 15 |
Остаток после прокаливания, мг/л, не более | 1 | — | 1 |
Содержание химических веществ мг/л, не более: | |||
нитраты | 0,2 | 45 | — |
сульфаты | 0,5 | 500 | — |
хлориды | 0,02 | 350 | < 30 |
алюминий | 0,05 | 0,5 | — |
железо | 0,05 | 0,3 | — |
медь | 0,02 | 1,0 | — |
мышьяк | — | 0,05 | — |
свинец | 0,05 | 0,03 | — |
стронций | — | 7,0 | — |
цинк | 0,2 | 5,0 | — |
Наиболее низкую температуру замерзания дают водные растворы хлористого кальция, хлористого магния и лактата натрия (до – 45 ºС). Солевые растворы обладают высокой электропроводностью и вызывают значительную коррозию металлов системы охлаждения. До настоящего времени не найдено ни одного ингибитора, устраняющего коррозию, вызываемую солевыми антифризами. В качестве антифризов применялись водо-глицириновые смеси, которые обладают высокой температурой кипения. Вследствие высокой стоимости глицерина применение таких смесей экономически нецелесообразно. Кроме того, водо-глицириновые смеси имеют повышенную вязкость, что затрудняет циркуляцию, особенно при запуске холодного двигателя. В качестве антифризов использовались также водные растворы метилового, этилового и изопропилового спиртов. Недостатком их является сильная испаряемость, что вызывает большие потери спирта, и повышение температуры замерзания водо-спиртовой смеси в процессе эксплуатации.
Имеются замедлители испарения, состоящие из смеси минеральных масел с терпентиловыми спиртами. Водно-спиртовые охлаждающие жидкости из-за высокой стоимости и склонности к испарению не получили распространения. Самой распространенной низкозамерзающей жидкостью является смесь воды с двухатомным спиртом – этиленгликолем (СН2-СН2ОН или С2Н4(ОН)2). Смешивается в любых отношениях с водой, спиртами и многими другими растворителями. Не смешивается с бензолом, эфиром, хлороформом. Очень гигроскопичен. Замерзает не четко при температурах от – 12,5 до – 25 ºС, образуя звездчатые или перистые кристаллы.
Теплоемкость чистого этиленгликоля (ЭГ) при разных температурах с достаточной точностью можно вычислить по формуле Нейма и Курлянкина:
Ср=0,5388+0,00112 t, кДж/(кг*К),
где Ср– теплоемкость чистого ЭГ; t – температура, ºС.
Технический этиленгликоль применяют в качестве высококипящей жидкости для охлаждения двигателей, работающих в напряженном тепловом режиме.
При использовании этиленгликолевого охлаждения рабочая температура жидкости в системе может быть повышена до 120-130 0С. Этим создается значительно большой перепад температур охлаждающей жидкостиужающего воздуха, чем при применении воды, что способствует более интенсивному охлаждению двигателя.
К недостаткам этиленгликоля как высококипящей охлаждающей жидкости относятся:
- низкая температура вспышки и в связи с этим пожароопасность;
- повышенная гигроскопичность, вследствие чего в процессе эксплуатации постепенно увеличивается содержание воды в ЭГ и понижается его температура кипения;
- высокая подвижность (проницаемость) ЭГ, что повышает требования к соединениям и уплотнениям системы охлаждения двигателя.
Отрицательным свойствам этиленгликоля как составной части антифриза является его коррозийное действие на материалы, для предотвращения которого требуется введение соответствующих присадок.
Теплофизические свойства воды и этиленгликоля приведены в табл. 2.2.
Теплоемкость и теплопроводность ЭГ значительно меньше тех же показателей воды. Коэффициент объемного расширения несколько больший. Это еще раз подтверждает, что в чистом виде ЭГ применять для охлаждения двигателей нецелесообразно.
Смеси с водой обладают свойством эвтектических растворов, т.е. их температура застывания ниже, чем у каждого компонента смеси в отдельности. На рис. 2.1. показана эвтектическая диаграмма различных (по соотношению компонентов) смесей воды и этиленгликоля. На диаграмме отчетливо видно, что самую низкую температуру застывания (-75 ºС) имеет смесь, содержащая 33% воды и 67% этиленгликоля. Этим свойством эвтектических растворов пользуются при приготовлении антифризов. Образующий гидрат также имеет низкую температуру застывания. Этиленгликоль весьма устойчив при высокой температуре, распад наступает при t>520 ºС. Термическая устойчивость этиленгликоля и явилась одной из причин широкого применения его в качестве охлаждающей жидкости.
Таблица 2.2
Теплофизические характеристики воды и этиленгликоля
Показатель | Вода | ЭГ |
Формула | Н2О | С2Н4(ОН)2 |
Молекулярная масса | 18,01 | 62,07 |
Плотность при 20ºС, кг/м3 | 998,2 | 1113,2 |
Коэффициент рефракции nd20 | — | 1,4318 |
Температура замерзания, ºС | 0 | -11,5 |
Температура кипения при 0,1Мпа, ºС | 100 | 197,7 |
Удельная теплоемкость, кДж/(кг*ºС) при 20 ºС при º0С | 4,184 2,04 | 2,422 — |
Упругость насыщенного пара при 105ºС, мм рт.ст. | — | 18 |
Удельная теплопроводность, кДж/(ч*м*ºС) | 2,179 | 0,955 |
Вязкость при 20ºС, мм2/с | 1,0 | 19-20 |
Удельная теплота испарения, Дж/кг | 2258 | 800 |
Удельная теплота плавления, Дж/кг | 532,7 | 182,3 |
Коэффициент объемного расширения (в пределах 0-100ºС) | 0,00046 | 0,00062 |
Температура вспышки, ºС в открытом тигле в закрытом тигле | — | 116 122 |
Температура воспламенения, ºС | — | 140 |
Температура самовоспламенения на воздухе, ºС | — | 416 |
Смешивание ЭГ с водой сопровождается выделением теплоты. Теплота образования гидрата этиленгликоля С2Н4(ОН)2*2Н2О составляет 2,5 Дж/моль. Максимальный тепловой эффект достигается при смешивании 37% (масс.) ЭГ и 63% воды. Чистый этиленгликоль и его водные растворы имеют строго определенный коэффициент рефракции, который используется как показатель, характеризующий состав. Зависимость между концентрацией ЭГ в водных растворах и коэффициентом рефракции линейная.
В нашей стране выпускаются два типа автомобильных ОЖ: Тосол-А40М и Тосол-А-65М (используется исключительно в районах с очень низкой температурой в зимний период). Первый имеет температуру кристаллизации не выше -400С, второй – не выше -650С. Состав ОЖ Тосол-А40М: этиленгликоль – 53%, вода – 44%, присадки 3%. Состав ОЖ Тосол-А-65М: этиленгликоль – 63%, вода – 33%, присадки 4%.
Показатель концентрации ионов водорода рН антифриза должен быть не выше 7,5-8,5. Жидкости, имеющие повышенную щелочную реакцию, вызывают коррозию алюминиевых и латунных двигателей системы охлаждения. Кислая реакция охлаждающих жидкостей также недопустима. Такие жидкости вызывают коррозию всех металлов системы охлаждения.
Склонность жидкости к вспениванию может послужить препятствием к ее применению в качестве теплоносителя, так как при вспенивании возможно нарушение нормальной работы системы охлаждения и утечки жидкости из системы, поэтому в антифризе содержится пеногаситель.
Коррекция объема расширительного бака
Во многих регионах России устойчивая работа автономной системы теплоснабжения в осенне-зимний период обеспечивается применением теплоносителя с низкой температурой замерзания. В подавляющем большинстве случаев используются гликолевые смеси, физико-химические характеристики которых отличаются от параметров воды.
Подписаться на статьи можно на главной странице сайта.
Уже более полутораста лет назад в России стали широко применяться системы отопления с теплоносителем. В большинстве случаев это было водяное или паровое отопление. Еще примерно через сто лет начался переход от открытых систем отопления к закрытым, важным элементом которых стал расширительный бак (экспансомат), назначение которого состояло в компенсации температурного расширения теплоносителя (рис.1).
Рис. 1. Конструкция современных мембранных баков
В том случае, если автономная система теплоснабжения была изначально спроектирована в расчете на использование в качестве теплоносителя воды, исходя из ее физических параметров подбирался тип и главное объем расширительного бака. Однако гликолевые смеси имеют другой коэффициент объемного теплового расширения, кинематическую вязкость и теплоемкость (табл.1). Поэтому смена типа теплоносителя с переходом на гликолевые смеси требует и корректировки отопительной системы, в частности, проверки емкости расширительного бака и при необходимости ее коррекции (замены бака).
Для определения массового расхода (М) теплоносителя требуется рассчитать необходимое отопительной системой количества тепла. Затем расход определяется по формуле:
M = 3,6 × ΣQi/c × ∆t), кг/ч,
где ΣQi – требуемый тепловой поток , Вт; с – удельная теплоемкость теплоносителя, кДж/кг•˚С, ∆t = t1т – t2т – разность температур теплоносителя на входе и выходе из системы, ˚С.
Объемный расход в м3/ч определяется делением полученного значения на удельный вес теплоносителя. При смене теплоносителя значение имеет увеличение объемного расхода относительно воды – Va/Vв, где Vа и Vв – соответственно, объемы гликолевой смеси и воды. Причем объем первой зависит также от типа гликоля и его концентрации, которые в свою очередь подбираются, исходя из условий эксплуатации. Например, при понижении температуры замерзания смеси на основе этиленгликоля от –20 до –67 ˚С объемные расходы возрастают на 6 и 12 %, соответственно (рис. 2).
Рис. 2. Зависимость относительного объемного расширения от температуры теплоносителя:
а – вода; б – водный раствор моноэтиленгликоля 45 %
А в системах ГВС с бойлером косвенного нагрева можно применять только нетоксичный, но, увы, более дорогой пропиленглиголь. Коэффициент теплового расширения его растворов, значительно отличающийся от водяного, близок к соответствующим значениям моноэтиленгликолевых водных растворов (табл.2).
Опасный воздух
Переход на антифриз может приводить к завоздушиванию отопительных систем: ведь он имеет более высокий по сравнению с водой коэффициент объемного расширения и емкости расширительного бака, рассчитанного на ее использование, что может оказаться недостаточно. Поэтому при нагреве теплоносителя до рабочих температур (в среднем 85 ˚С) его излишек может быть сброшен через предохранительный клапан. Затем при снижении тепловой нагрузки потребуется подпитка системы, которая обычно осуществляется водой. Растворенные в ней газы выделятся при нагреве и приведут к образованию воздушных пробок, появление которых чревато уже серьезными авариями.
Минимально необходимый объем расширительного бака в закрытой системе отопления можно рассчитать по формуле:
Vb = (V1b + ∆Vr) × (P2 + 1)/( P2 + P1), м3,
где V1b – начальный объем теплоносителя в баке при холодной системе отопления, м3; ∆Vr – значение расширения теплоносителя при нагреве до рабочей температуры, м3; P2 – давление в расширительном баке при рабочей температуре, бар; P1 – давление в расширительном баке до заполнения системы теплоносителем, бар.
Значение ∆Vr рассчитывается как произведение общего объема теплоносителя в системе, среднего в рабочем температурном диапазоне коэффициента объемного расширения (k) и этого диапазона. Его значение обычно принимается равным 60 ˚С (∆t = tср – t0 = 80 – 20, ˚С).
При переходе с воды на антифриз важно соотношение V2b/V1b, где V2b и V1b –соответственно, объемы расширительного бака для низкотемпературного теплоносителя и воды. Замена ее на гликолевые растворы концентрацией 40–45 % и, соответственно, с температурой начала кристаллизации 30–35 ˚С в отопительных системах мощностью до 100 кВт потребует увеличения номинальных объемов расширительных баков на 5–15 %, в более производительных системах коррекцию лучше проводить, используя графики зависимости объема от мощности и типа теплоносителя (рис.3) или таблицы пересчета.
Рис. 3. Зависимость объема расширительного бака от мощности системы отопления:
а – вода; б – водный раствор моноэтиленгликоля 45 %
Важнейший параметр для антифризов – максимальные рабочие температуры. Кипеть при атмосферном давлении большинство гликолевых растворов начинает при 104–112 °C. Однако некоторые производители заявляют рабочие температуры значительно выше, до 150 ˚С и даже больше, вполне приемлемые для гелиосистем. Принципиальное значение этот параметр имеет потому, что в отличие от воды при превышении допустимой температуры происходит необратимое разложение гликолевых растворов.
Поэтому выбор расширительного бака с запасом на запредельное увеличение температуры смысла не имеет: даже небольшой локальный перегрев приводит к столь серьезным деструктивным изменениям, что должен в принципе потребовать замены всего гликолевого теплоносителя.
Очень важно то, что гликолевые смеси имеют повышенную по сравнению с водой проницаемость или текучесть. Причем вероятность возникновения протечек тем больше, чем больше в отопительной системе соединений. А течи часто обнаруживаются при ее остывании, когда возникают проницаемые для антифриза микроканалы. Поэтому все соединения, выполненные ранее при установке расширительного бака, должны быть доступны для ревизии, не скрыты под облицовкой или замоноличены.
Таблица. 1. Физические характеристики теплоносителей
Параметр |
Единица измерения |
Вода |
Моноэтиленгликоль 45 % |
Моноэтиленгликоль 60 % |
---|---|---|---|---|
Температура замерзания |
°С |
0 |
–30 |
–48 |
Плотность* |
кг/м3 |
972 |
1029 |
1048 |
Теплоемкость* |
кДж/кг×°С |
4,2 |
3,7 |
3,5 |
Кинематическая вязкость* |
сСт |
0,37 |
1,4 |
1,8 |
Коэффициент объемного теплового расширения |
°С-1 |
4,5×10-4 |
5,3×10-4 |
6,0×10-4 |
*При t = 80 °С
Таблица 2. Физические характеристики водного раствора пропиленгликоля 47 %
Параметр |
Единица измерения |
Значение |
---|---|---|
Температура замерзания |
°С |
–30 |
Плотность* |
кг/м3 |
999 |
Теплоемкость* |
кДж/кг×°С |
3,82 |
Коэффициент расширения |
°С-1 |
6,73×10–4 |
Статья опубликована в журнале «Аква-Терм» №3 (87) 2015, рубрика «Мастер-класс»
Опубликовано: 02 ноября 2015 г.
вернуться назад
Читайте так же:
АБС пластик | 1300…2300 |
Аглопоритобетон и бетон на топливных (котельных) шлаках | 840 |
Алмаз | 502 |
Аргиллит | 700…1000 |
Асбест волокнистый | 1050 |
Асбестоцемент | 1500 |
Асботекстолит | 1670 |
Асбошифер | 837 |
Асфальт | 920…2100 |
Асфальтобетон | 1680 |
Аэрогель (Aspen aerogels) | 700 |
Базальт | 850…920 |
Барит | 461 |
Береза | 1250 |
Бетон | 710…1130 |
Битумоперлит | 1130 |
Битумы нефтяные строительные и кровельные | 1680 |
Бумага | 1090…1500 |
Вата минеральная | 920 |
Вата стеклянная | 800 |
Вата хлопчатобумажная | 1675 |
Вата шлаковая | 750 |
Вермикулит | 840 |
Вермикулитобетон | 840 |
Винипласт | 1000 |
Войлок шерстяной | 1700 |
Воск | 2930 |
Газо- и пенобетон, газо- и пеносиликат, газо- и пенозолобетон | 840 |
Гетинакс | 1400 |
Гипс формованный сухой | 1050 |
Гипсокартон | 950 |
Глина | 750 |
Глина огнеупорная | 800 |
Глинозем | 700…840 |
Гнейс (облицовка) | 880 |
Гравий (наполнитель) | 850 |
Гравий керамзитовый | 840 |
Гравий шунгизитовый | 840 |
Гранит (облицовка) | 880…920 |
Графит | 708 |
Грунт влажный (почва) | 2010 |
Грунт лунный | 740 |
Грунт песчаный | 900 |
Грунт сухой | 850 |
Гудрон | 1675 |
Диабаз | 800…900 |
Динас | 737 |
Доломит | 600…1500 |
Дуб | 2300 |
Железобетон | 840 |
Железобетон набивной | 840 |
Зола древесная | 750 |
Известняк (облицовка) | 850…920 |
Изделия из вспученного перлита на битумном связующем | 1680 |
Ил песчаный | 1000…2100 |
Камень строительный | 920 |
Капрон | 2300 |
Карболит черный | 1900 |
Картон гофрированный | 1150 |
Картон облицовочный | 2300 |
Картон плотный | 1200 |
Картон строительный многослойный | 2390 |
Каучук натуральный | 1400 |
Кварц кристаллический | 836 |
Кварцит | 700…1300 |
Керамзит | 750 |
Керамзитобетон и керамзитопенобетон | 840 |
Кирпич динасовый | 905 |
Кирпич карборундовый | 700 |
Кирпич красный плотный | 840…880 |
Кирпич магнезитовый | 1055 |
Кирпич облицовочный | 880 |
Кирпич огнеупорный полукислый | 885 |
Кирпич силикатный | 750…840 |
Кирпич строительный | 800 |
Кирпич трепельный | 710 |
Кирпич шамотный | 930 |
Кладка «Поротон» | 900 |
Кладка бутовая из камней средней плотности | 880 |
Кладка газосиликатная | 880 |
Кладка из глиняного обыкновенного кирпича | 880 |
Кладка из керамического пустотного кирпича | 880 |
Кладка из силикатного кирпича | 880 |
Кладка из трепельного кирпича | 880 |
Кладка из шлакового кирпича | 880 |
Кокс порошкообразный | 1210 |
Корунд | 711 |
Краска масляная (эмаль) | 650…2000 |
Кремний | 714 |
Лава вулканическая | 840 |
Латунь | 400 |
Лед из тяжелой воды | 2220 |
Лед при температуре 0°С | 2150 |
Лед при температуре -100°С | 1170 |
Лед при температуре -20°С | 1950 |
Лед при температуре -60°С | 1700 |
Линолеум | 1470 |
Листы асбестоцементные плоские | 840 |
Листы гипсовые обшивочные (сухая штукатурка) | 840 |
Лузга подсолнечная | 1500 |
Магнетит | 586 |
Малахит | 740 |
Маты и полосы из стекловолокна прошивные | 840 |
Маты минераловатные прошивные и на синтетическом связующем | 840 |
Мел | 800…880 |
Миканит | 250 |
Мипора | 1420 |
Мрамор (облицовка) | 880 |
Настил палубный | 1100 |
Нафталин | 1300 |
Нейлон | 1600 |
Неопрен | 1700 |
Пакля | 2300 |
Парафин | 2890 |
Паркет дубовый | 1100 |
Паркет штучный | 880 |
Паркет щитовой | 880 |
Пемзобетон | 840 |
Пенобетон | 840 |
Пенопласт ПХВ-1 и ПВ-1 | 1260 |
Пенополистирол | 1340 |
Пенополистирол «Пеноплекс» | 1600 |
Пенополиуретан | 1470 |
Пеностекло или газостекло | 840 |
Пергамин | 1680 |
Перекрытие армокерамическое с бетонным заполнением без штукатурки | 850 |
Перекрытие из железобетонных элементов со штукатуркой | 860 |
Перекрытие монолитное плоское железобетонное | 840 |
Перлитобетон | 840 |
Перлитопласт-бетон | 1050 |
Перлитофосфогелевые изделия | 1050 |
Песок для строительных работ | 840 |
Песок речной мелкий | 700…840 |
Песок речной мелкий (влажный) | 2090 |
Песок сахарный | 1260 |
Песок сухой | 800 |
Пихта | 2700 |
Пластмасса полиэфирная | 1000…2300 |
Плита пробковая | 1850 |
Плиты алебастровые | 750 |
Плиты древесно-волокнистые и древесно-стружечные (ДСП, ДВП) | 2300 |
Плиты из гипса | 840 |
Плиты из резольноформальдегидного пенопласта | 1680 |
Плиты из стеклянного штапельного волокна на синтетическом связующем | 840 |
Плиты камышитовые | 2300 |
Плиты льнокостричные изоляционные | 2300 |
Плиты минераловатные повышенной жесткости | 840 |
Плиты минераловатные полужесткие на крахмальном связующем | 840 |
Плиты торфяные теплоизоляционные | 2300 |
Плиты фибролитовые и арболит на портландцементе | 2300 |
Покрытие ковровое | 1100 |
Пол гипсовый бесшовный | 800 |
Поливинилхлорид (ПВХ) | 920…1200 |
Поликарбонат (дифлон) | 1100…1120 |
Полиметилметакрилат | 1200…1650 |
Полипропилен | 1930 |
Полистирол УПП1, ППС | 900 |
Полистиролбетон | 1060 |
Полихлорвинил | 1130…1200 |
Полихлортрифторэтилен | 920 |
Полиэтилен высокой плотности | 1900…2300 |
Полиэтилен низкой плотности | 1700 |
Портландцемент | 1130 |
Пробка | 2050 |
Пробка гранулированная | 1800 |
Раствор гипсовый затирочный | 900 |
Раствор гипсоперлитовый | 840 |
Раствор гипсоперлитовый поризованный | 840 |
Раствор известково-песчаный | 840 |
Раствор известковый | 920 |
Раствор сложный (песок, известь, цемент) | 840 |
Раствор цементно-перлитовый | 840 |
Раствор цементно-песчаный | 840 |
Раствор цементно-шлаковый | 840 |
Резина мягкая | 1380 |
Резина пористая | 2050 |
Резина твердая обыкновенная | 1350…1400 |
Рубероид | 1500…1680 |
Сера | 715 |
Сланец | 700…1600 |
Слюда | 880 |
Смола эпоксидная | 800…1100 |
Снег лежалый при 0°С | 2100 |
Снег свежевыпавший | 2090 |
Сосна и ель | 2300 |
Сосна смолистая 15% влажности | 2700 |
Стекло зеркальное (зеркало) | 780 |
Стекло кварцевое | 890 |
Стекло лабораторное | 840 |
Стекло обыкновенное, оконное | 670 |
Стекло флинт | 490 |
Стекловата | 800 |
Стекловолокно | 840 |
Стеклопластик | 800 |
Стружка деревянная прессованая | 1080 |
Текстолит | 1470…1510 |
Толь | 1680 |
Торф | 1880 |
Торфоплиты | 2100 |
Туф (облицовка) | 750…880 |
Туфобетон | 840 |
Уголь древесный | 960 |
Уголь каменный | 1310 |
Фанера клееная | 2300…2500 |
Фарфор | 750…1090 |
Фибролит (серый) | 1670 |
Циркон | 670 |
Шамот | 825 |
Шифер | 750 |
Шлак гранулированный | 750 |
Шлак котельный | 700…750 |
Шлакобетон | 800 |
Шлакопемзобетон (термозитобетон) | 840 |
Шлакопемзопено- и шлакопемзогазобетон | 840 |
Штукатурка гипсовая | 840 |
Штукатурка из полистирольного раствора | 1200 |
Штукатурка известковая | 950 |
Штукатурка известковая с каменной пылью | 920 |
Штукатурка перлитовая | 1130 |
Штукатурка фасадная с полимерными добавками | 880 |
Шунгизитобетон | 840 |
Щебень и песок из перлита вспученного | 840 |
Щебень из доменного шлака, шлаковой пемзы и аглопорита | 840 |
Эбонит | 1430 |
Эковата | 2300 |
Этрол | 1500…1800 |
Стоит ли заливать антифриз в систему отопления? —
Скажу сразу, что на этот вопрос невозможно ответить однозначно, тем более дать ответ сразу и для всех. Подбирать жидкость для системы отопления следует только посоветовавшись со специалистом и взвесив все плюсы и минусы применительно к вашим требованиям и используемому оборудованию. Также стоит заметить, что в виду того, что антифризы и вода имеют различные свойства, такие как вязкость, текучесть, температурное расширение, теплоемкость и теплопроводность, вся система отопления должна изначально расчитываться под планируемый к использованию теплоноситель.
В современных системах отопления теплоносителем может выступать не только вода, но и специальная жидкость — антифриз. Его применение особенно актуально в российских условиях: холодная зима плюс периодические отключения электроэнергии могут спровоцировать настоящую катастрофу. Вода в батареях перемерзает, «рвет» трубы, в итоге всю систему приходится менять — что, как правило, стоит и денег, и времени. Антифриз — жидкость с более низкой, чем у воды, температурой замерзания. Такой теплоноситель не разорвет батареи, даже если они заморожены до экстремально низких температур. Разновидностей антифризов немало — они различаются по составу, текучести, порогу замерзания, составу присадок (специальных добавок, влияющих на свойства этого теплоносителя: например, можно защитить от коррозии трубы или уплотнители). В России в основном распространены антифризы на основе этиленгликоля. Температура замерзания, в зависимости от концентрации вещества, колеблется в диапазоне от -10 до -68 градусов по Цельсию.
Но не стоит думать, что антифриз это панацея.
- Нельзя безбоязненно оставлять в зиму дом с заправленной антифризом системой. дело в том, что антифриз при сильных отрицательных температурах не замерзает а гелизуется. И зачастую циркулляционные насосы неспособны прокачать систему при запуске ее в мороз.
- При намерении оставлять систему на зимовку, стоит подумать о системе водоснабжения, ведь в нее антифриз уже не закачаешь.
- Антифризы не подходят для использования в системах с теплоаккумуляторами в связи с очень большой стоимостью таких реализаций и очень плохой теплоемкости.
- В паспорте любого котла отопления имеется хитрая запись, теплоноситель — вода. Это означает что использование антифриза автоматически лишает котел как сосбтвенно и любое другое оборудование которое не предназначено для работы с конкретным типом антифриза. Некоторые производители ради маркетинга добавляют приписки что разрешается использование некоторых антифризов, но зачастую там же указывают, что неисправность вызванная им будет являться негарантийной. По нашей практике наиболее чувствительными к применению антифризов являются электрокотлы.
- Антифризы необходимо периодически заменять, так как после прошествии определенного времени они начинают разлагаться и терять свойства. И самое неприятное, что утилизируется он как опасное вещество. Кстати на приложенной картинке как раз показан случай пренебрежения данным правилом.
Также, в дополнение вышесказанному, не ставя в данной публикации рекламных целей и не проводя конкурентных сопоставлений «незамерзающих» теплоносителей различных производителей, необходимо дать объективную оценку особенностей их применения в различных инженерных системах, информировать и подготовить потребителя к тем проблемам, которые возникают при их эксплуатации.
В качестве «незамерзающего» теплоносителя наиболее часто используется довольно широкий спектр водных смесей на основе моноэтиленгликоля с комплексными присадками, обеспечивающими стабильность свойств, низкую коррозионную активность, антивспенивающиеся, антиокислительные свойства и безнакипный режим работы системы. Вместе с тем, в основном, гидравлические и тепловые расчеты инженерных систем здания выполняются для воды, а достаточно высокие концентрации моноэтиленгликоля в теплоносителе существенно изменяют его наиболее важные физические свойства:
— вязкость;
— теплоемкость;
— плотность;
— теплопроводность;
— коэффициент объемного расширения и др.
Нарушение гидравлического режима работы системы отопления потребитель начинает обнаруживать как по косвенным признакам – интенсивно забиваются сетчатые фильтры системы отопления, зарастает шламовыми отложениями крыльчатка циркуляционных насосов, так и по снижению теплоотдачи отдельных отопительных приборов из-за гидравлической разрегулировки и попадания воздуха в систему, по сбоям в работе теплогенератора, сопровождающимся падением его тепловой мощности или даже разрушением поверхностей нагрева вследствие образования внутренних отложений. Для правильной оценки влияния специфических свойств водногликолевых теплоносителей (ВГТ) на работу инженерных систем здания необходимо проанализировать и систематизировать гидравлические процессы и теплообмен в них по самым важным параметрам работы – температурному уровню и удельным тепловым потокам. Так, для первой группы оборудования – теплоутилизаторов и воздухоохладителей систем вентиляции и кондиционирования воздуха, гелиоприемников, отопительных приборов и элементов теплых полов, теплообменников закрытых систем горячего водоснабжения – режимы работы ВГТ характеризуются относительно низкими температурами и теплообменными процессами, по своей интенсивности близкими к свободной конвекции. Процессы же нагрева теплоносителя во второй группе оборудования – электронагревателях, котлах и теплогенераторах (особенно проточного типа) – сопровождаются значительными градиентами температур и мощными удельными тепловыми потоками.
Обозначения |
DР – потери давления, Па t – температура, °C w – скорость движения теплоносителя, м/с r – плотность теплоносителя, кг/м3 l – коэффициент теплопроводности, Вт/м•°C c – изобарная массовая теплоемкость, КДж/кг•°C n – кинематический коэффициент вязкости, м2/с dэ – эквивалентный диаметр, м a – коэффициент конвективной теплоотдачи, Вт/м2•°C F – поверхность теплообмена, м2 Q – тепловой поток, Вт в – вода т – водногликолевый теплоноситель вн – внутренний н – наружный ст – при температуре стенки |
Попытки анализа влияния на теплогидравлический режим работы системы отопления свойств водногликолевого теплоносителя проводились многими авторами, и, в частности, в работе [1] наиболее полно проведено сравнение расходов теплоносителя, потерь давления и особенностей выбора объема расширительного сосуда в системе отопления на примере ВГТ Dixis-30 и Dixis-65. Вместе с тем в указанной работе сделаны не вполне корректные количественные выводы о росте гидравлического сопротивления только по величине потерь давления на трение в гидравлически гладких трубах, без учета местных сопротивлений и для условий постоянной температуры сопоставления свойств воды и ВГТ, равной 80 °C. Столь высокий температурный уровень практически имеет место в подающих магистралях радиаторных систем отопления в периоды с низкими отрицательными температурами наружного воздуха, близкими к расчетным температурам отопления. Поэтому при сопоставлении не следовало ограничиваться одним значением температуры, далеко не самым характерным в режимах эксплуатации, а рассмотреть и «крайние» режимы, например, режим запуска после останова, с температурой теплоносителяt=20 °C. В этом случае рост потерь давления в системе отопления при сопоставлении с налогичной величиной при использовании воды с температурой 80 °C составит уже не 1,54 (при расчете по методике изложенной в [1]), а значение:
т. е. гидравлические потери в системе возрастут почти в два раза.
Однако для относительно «вялых» гидравлических режимов и условий теплообмена в оборудовании первой группы и, в частности, в отопительных приборах наибольшее термическое сопротивление имеет место на внешней поверхности. Так, внешний коэффициент теплоотдачи при естественной конвекции в воздухе aн не превышает 20 Вт/м2•°C, а внутренний коэффициент теплоотдачи со стороны теплоносителя aвн ~ 400–600 Вт/м2•°C. Поэтому даже существенное ухудшение условий теплообмена на внутренней поверхности не окажет решающего влияния на процесс теплопередачи (не более чем на 2–3 %).
|
||
Рис. 1. Внешний вид комбинированного (двухконтурного) теплообменника проточного газового котла |
Совершенно иначе обстоит дело в поверхностях нагрева теплогенераторов систем отопления, где отдельные участки поверхностей нагрева в топке имеют весьма значительные удельные тепловые напряжения (qF, Вт/м2) как со стороны дымовых газов (часто развитые оребренные поверхности), так и приведенные к внутренней поверхности, охлаждаемой теплоносителем. Например, для настенного газового котла Saunier Duval SD-235 полная геометрическая поверхность оребренного проточного двухконтурного теплообменника (рис. 1) составляетF=4,9м2 при внутренней поверхности гладких труб теплообменника FTP = 0,12 м2. Работа котла в номинальном режиме Q=35 кВт характеризуется средним удельным тепловым напряжением полной поверхности нагрева:
а аналогичная величина в расчете на гладкую поверхность охлаждаемой трубки теплообменника составляет:
Столь значительные тепловые потоки для трубок теплообменника приводят к существенным перепадам температур по толщине стенки и между стенкой и потоком теплоносителя, в значительной степени зависящим от условий охлаждения. Чем эффективнее охлаждение, т. е. чем больше значение коэффициента теплоотдачи от стенки к теплоносителю, тем ниже температура металла стенки при идентичной тепловой нагрузке. Поэтому при осуществлении перевода теплогенератора на ВГТ необходимо, прежде всего, предварительно оценить изменение условий теплообмена на внутренней стороне тепловоспринимающей поверхности котла. Для сравнительной оценки используется уравнение подобия [2] для турбулентного течения (Re > 10 000) жидкости в гладких трубах:
Nu = 0,021 Re0,8 Pr0,43(Pr/PrСТ)0,25,
в котором за определяющий размер принят эквивалентный диаметр (dэ), за определяющую температуру – средняя температура жидкости.
Nu = a dэ /l – число Нуссельта;
Re = w dэ /v – критерий Рейнольдса;
Pr = v cr/l – критерий Прандтля.
Для идентичных условий течения теплоносителей (одинаковый объемный расход, а следовательно, и скорость движения теплоносителя) в аналогичных поверхностях нагрева котлов, после записи входящих величин в явных переменных, можно получить относительные значения искомых величин:
aT /aB = (lT / lB)0,57 • (nB /nT)0,37• (rT /rB)0,43 • (cT /cB)0,43.
Последняя зависимость получена при допущении, что характер изменения теплофизических свойств теплоносителей в рассматриваемом диапазоне температур примерно такой же и соотношение не оказывает существенного влияния (оценивается не более 3–5 %) на конечный результат. Для проведения количественной оценки в расчетах для воды и ВГТ на основе моноэтиленгликоля (с температурой начала кристаллизации -30 °C) использовались приведенные ниже значения физических величин (см. табл.).
|
Соотношение коэффициентов конвективной теплоотдачи для ВГТ (aT) и воды (aв) при принятых значениях составляет:
aT /aB = (0,169/0,669)0,57 • (0,366•10-6/1,351•10-6)0,37 •
(1,029/0,972)0,43 • (3,680/4,195)0,43 = 0,488.
Таким образом, использование ВГТ (-30) вместо воды при идентичных условиях приводит к снижению коэффициента конвективной теплоотдачи более чем в два раза, что обуславливает рост температуры металла стенки и теплоносителя в пограничном, пристенном слое потока ВГТ. Используя то же уравнение подобия можно определить необходимое увеличение скорости движения ВГТ (-30) для достижения идентичных с водой условий конвективного теплообмена:
aT = aB , или aT /aB = 1 при wT~2,4wB.
Полученное значение показывает, что для достижения одинаковых условий теплоотдачи на поверхности, скорость потока ВГТ (-30) должна почти в 2,5 раза превосходить скорость движения воды. Столь существенный рост скорости движения теплоносителя вызывает увеличение гидравлического сопротивления системы (участка):
DР ~ f (w2) ~ (2,4)2 ~ 5,8 раз.
С учетом выводов, сформулированных в работе [1], полученное значение роста гидравлического сопротивления по отношению к гидравлическому сопротивлению системы при использовании воды должно быть увеличено для более вязкого ВГТ (-30) еще в ~1,5 раза. Таким образом, при замене в системе теплоснабжения и в теплогенераторе воды на водногликолевый теплоноситель (в данном примере ВГТ на основе моноэтиленгликоля, с температурой начала кристаллизации -30 °C), для сохранения условий теплообмена в источнике теплоты расход теплоносителя через него должен быть увеличен в ~2,5 раза, что потребует питательный насос с напором, в ~8,7 раза превышающим напор, развиваемый аналогичным насосом при использовании воды. Ухудшение теплообмена на поверхностях нагрева котлов приводит к перегреву стенки и росту температуры ВГТ в примыкающих к поверхности теплообмена слоях теплоносителя, что, несмотря на использование присадок в ВГТ, при температуре около 150 °C приводит к деструкции моноэтиленгликоля, сопровождающейся образованием отложений на поверхности нагрева и последующим частичным переносом их в объем теплоносителя. Начало процесса отложения продуктов деструкции моноэтиленгликоля вызывает еще больший перегрев стенки котла, сопровождающийся дальнейшей интенсификацией негативных процессов.
|
||||||
Рис. 2. Поперечный разрез комбинированного теплообменника в зоне внутренних отложений |
Полученные результаты показывают, что для теплогенераторов с высоконапряженными топками невозможна простая замена воды на ВГТ. Это, в первую очередь, относится к проточным конструкциям котлов (одно- и двухконтурные термоблоки), с наиболее форсированными тепловыми режимами в теплообменниках с высокой степенью оребрения. В то же время необходимо учитывать и режимные особенности работы котлов. Так, для проточных (малоинерционных) котлов, включая настенные, характерно позиционное регулирование «включено/выключено» с максимальными нагрузками, сопровождающими режимы пуска/останова циркуляции теплоносителя, при которых имеют место кратковременные перегревы стенок теплообменника. Это еще более остро ставит задачу исключения перегрева теплоносителя, поэтому в проточных котлах (в том числе одно- и двухконтурных термоблоках) практически однозначно необходимо исключить использование ВГТ.
|
||
Рис. 3. Продольный разрез комбинированного теплообменника в зоне отложений (смешанные отложения накипи и продуктов деструкции моноэтиленгликоля), отопительный контур |
Особое внимание к условиям работы теплогенератора на ВГТ нужно уделять при эксплуатации чугунных котлов, очень чувствительных к перегреву металла и воздействиям термической деформации на секционную конструкцию. Для них наиболее «жесткими» оказываются режимы запуска системы из относительно холодного состояния при низких температурах теплоносителя, сопровождающиеся повышенной вязкостью ВГТ. Так, используя приведенные в таблице данные по теплофизическим свойствам теплоносителя ВГТ (-30) и воды при температуре 20 °C, можно провести оценку снижения коэффициента теплоотдачи в ВГТ (-30). Сравнение показывает, что если даже допустить турбулентное течение теплоносителя, коэффициент теплоотдачи на поверхности нагрева котла будет более чем в два раза ниже (как и для 80 °C) из-за пропорционального роста вязкости воды и ВГТ (-30). Однако более чем 3,5-кратный рост вязкости ВГТ (-30) при 20 °C существенно снижает подачу циркуляционного насоса, что не позволяет до прогрева системы обеспечить требуемый для надежного охлаждения поверхностей нагрева котла расход теплоносителя. Поэтому запуск чугунных котлов при использовании ВГТ необходимо производить на минимальной мощности топочного устройства с постепенным выходом на режим. Процессы образования отложений продуктов термической деструкции моноэтиленгликоля на поверхностях нагрева емкостных котлов связаны с низкими рабочими скоростями движения в них теплоносителя (обусловленными большим живым сечением котла, что характерно как для стальных жаротрубных, так и для чугунных секционных котлов) – порядка 0,01–0,05 м/с, сопоставимыми с естественной конвекцией в стесненных условиях. В этом случае локальный перегрев возможен на участках с максимальными тепловыми потоками, т. е. в топке котла в зонах максимальных температур факела и повышенной турбулентности газового потока продуктов сгорания высокой температуры. Образование локальных отложений продуктов деструкции моноэтиленгликоля приводит не только к перегреву стенки котла, но и к смыванию потоком теплоносителя части отложений и переносу их в фильтры и грязевики систем теплоснабжения, зарастанию теплообменников, налипанию на крыльчатку циркуляционного насоса, приводящему к дальнейшему ухудшению циркуляции теплоносителя. Поэтому в ряде случаев весьма ограничена возможность применения теплоносителей на основе моноэтиленгликоля, а в случае их использования необходима регулярная замена теплоносителя (не реже одного раза в два года) в связи со «старением» и уменьшением активности пакета присадок.
Еще более осторожно необходимо подходить к применению незамерзающих жидкостей на основе пропиленгликоля – они экологически более безопасны, но имеют еще большую вязкость при меньшей теплопроводности по отношению к теплоносителям, содержащим моноэтиленгликоль.
таблицы при различных температуре и давлении
Приведены таблицы значений удельной теплоемкости воды H2O и водяного пара в зависимости от температуры и давления. В первой таблице дана удельная теплоемкость воды в жидком состоянии при нормальном атмосферном давлении и температуре от 0,1 до 100°С.
Во второй таблице значения теплоемкости указаны в интервале температуры от 0 до 800°С и давлении от 0,1 до 100 бар. Вода в этих условиях может находится в жидком или газообразном состоянии, поскольку с понижением давления и (или) с ростом температуры она переходит в пар.
Жидкая вода обладает значительной величиной массовой удельной теплоемкости, по сравнению с другими жидкостями. При атмосферном давлении и температуре до 100°С она находится в виде жидкости и ее теплоемкость изменяется в диапазоне от 4174 до 4220 Дж/(кг·град).
При температуре 20 градусов Цельсия и нормальном атмосферном давлении удельная теплоемкость воды равна 4183 Дж/(кг·град). При температуре 100°С эта величина достигает значения 4220 Дж/(кг·град).
Изменение давления и температуры воды существенно влияет на ее удельную теплоемкость. Зависимость теплоемкости воды от температуры при атмосферном давлении не линейна. При нагревании воды до 30°С теплоемкость уменьшается, затем в интервале температуры 30…40°С значение этой величины остается практически постоянным (следует отметить, что в этом диапазоне температуры вода обладает наименьшей теплоемкостью). При температуре выше 40°С ее удельная теплоемкость увеличивается и достигает своего максимума при температуре кипения.
t, °С | 0,1 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
---|---|---|---|---|---|---|---|---|---|---|
Cp, Дж/(кг·град) | 4217 | 4191 | 4187 | 4183 | 4179 | 4174 | 4174 | 4174 | 4177 | 4181 |
t, °С | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
Cp, Дж/(кг·град) | 4182 | 4182 | 4185 | 4187 | 4191 | 4195 | 4202 | 4208 | 4214 | 4220 |
Если продолжить нагрев воды до перехода ее в пар, то тогда, при дальнейшем нагреве пара при атмосферном давлении, величина теплоемкости будет снижаться до некоторого предела, а затем снова начнет увеличиваться. Эта точка перегиба кривой теплоемкости определяется значениями соответствующих температуры и давления.
Как видно по данным в таблице, с повышением давления удельная теплоемкость воды уменьшается, но увеличивается также и температура кипения воды, например, при давлении в 100 бар (атмосфер) она находится в жидком состоянии даже при температуре 300°С. Удельная теплоемкость воды при этом составляет величину 5700 Дж/(кг·град). При продолжении нагрева воды, например до 320°С, она переходит в пар, который имеет большую теплоемкость.
Однако, при низких давлениях, вода начинает кипеть и переходит в пар при температурах гораздо ниже 100°С. Например, по данным таблицы, при давлении 0,1 бар и температуре 50°С, вода уже находится в виде водяного пара и его теплоемкость при этих условиях составляет величину, равную 1929 Дж/(кг·град).
↓ t, °С | P, бар → | 0,1 | 1 | 10 | 20 | 40 | 60 | 80 | 100 |
---|---|---|---|---|---|---|---|---|
0 | 4218 | 4217 | 4212 | 4207 | 4196 | 4186 | 4176 | 4165 |
50 | 1929 | 4181 | 4179 | 4176 | 4172 | 4167 | 4163 | 4158 |
100 | 1910 | 2038 | 4214 | 4211 | 4207 | 4202 | 4198 | 4194 |
120 | 1913 | 2007 | 4243 | 4240 | 4235 | 4230 | 4226 | 4221 |
140 | 1918 | 1984 | 4283 | 4280 | 4275 | 4269 | 4263 | 4258 |
160 | 1926 | 1977 | 4337 | 4334 | 4327 | 4320 | 4313 | 4307 |
180 | 1933 | 1974 | 2613 | 4403 | 4395 | 4386 | 4378 | 4370 |
200 | 1944 | 1975 | 2433 | 4494 | 4483 | 4472 | 4461 | 4450 |
220 | 1954 | 1979 | 2316 | 2939 | 4601 | 4586 | 4571 | 4557 |
240 | 1964 | 1985 | 2242 | 2674 | 4763 | 4741 | 4720 | 4700 |
260 | 1976 | 1993 | 2194 | 2505 | 3582 | 4964 | 4932 | 4902 |
280 | 1987 | 2001 | 2163 | 2395 | 3116 | 4514 | 5250 | 5200 |
300 | 1999 | 2010 | 2141 | 2321 | 2834 | 3679 | 5310 | 5700 |
320 | 2011 | 2021 | 2126 | 2268 | 2649 | 3217 | 4118 | 5790 |
340 | 2024 | 2032 | 2122 | 2239 | 2536 | 2943 | 3526 | 4412 |
350 | 2030 | 2038 | 2125 | 2235 | 2504 | 2861 | 3350 | 4043 |
360 | 2037 | 2044 | 2127 | 2231 | 2478 | 2793 | 3216 | 3769 |
365 | 2040 | 2048 | 2128 | 2227 | 2462 | 2759 | 3134 | 3655 |
370 | 2043 | 2050 | 2128 | 2222 | 2446 | 2725 | 3072 | 3546 |
375 | 2046 | 2053 | 2127 | 2218 | 2428 | 2690 | 3018 | 3446 |
380 | 2049 | 2056 | 2127 | 2212 | 2412 | 2657 | 2964 | 3356 |
385 | 2052 | 2059 | 2126 | 2207 | 2396 | 2627 | 2913 | 3274 |
390 | 2056 | 2061 | 2125 | 2202 | 2381 | 2600 | 2867 | 3201 |
395 | 2059 | 2065 | 2125 | 2200 | 2369 | 2575 | 2826 | 3137 |
400 | 2062 | 2068 | 2126 | 2197 | 2358 | 2553 | 2789 | 3078 |
405 | 2066 | 2071 | 2127 | 2195 | 2349 | 2534 | 2756 | 3025 |
410 | 2069 | 2074 | 2128 | 2193 | 2340 | 2517 | 2727 | 2979 |
415 | 2072 | 2077 | 2129 | 2192 | 2334 | 2501 | 2700 | 2936 |
420 | 2076 | 2080 | 2131 | 2192 | 2327 | 2487 | 2675 | 2898 |
425 | 2079 | 2083 | 2132 | 2190 | 2321 | 2474 | 2653 | 2863 |
430 | 2082 | 2086 | 2134 | 2190 | 2316 | 2462 | 2632 | 2830 |
440 | 2089 | 2093 | 2138 | 2190 | 2307 | 2441 | 2596 | 2773 |
450 | 2095 | 2099 | 2141 | 2191 | 2300 | 2424 | 2565 | 2726 |
460 | 2102 | 2106 | 2146 | 2192 | 2294 | 2409 | 2538 | 2684 |
480 | 2116 | 2119 | 2154 | 2196 | 2286 | 2385 | 2496 | 2618 |
500 | 2129 | 2132 | 2164 | 2201 | 2281 | 2368 | 2464 | 2569 |
520 | 2142 | 2146 | 2175 | 2208 | 2280 | 2357 | 2441 | 2531 |
540 | 2156 | 2159 | 2185 | 2216 | 2280 | 2349 | 2423 | 2502 |
560 | 2170 | 2173 | 2197 | 2226 | 2285 | 2349 | 2416 | 2487 |
580 | 2184 | 2187 | 2208 | 2233 | 2285 | 2342 | 2401 | 2465 |
600 | 2198 | 2200 | 2219 | 2240 | 2287 | 2336 | 2389 | 2445 |
620 | 2212 | 2213 | 2230 | 2250 | 2291 | 2334 | 2381 | 2431 |
640 | 2226 | 2227 | 2243 | 2260 | 2298 | 2337 | 2379 | 2423 |
660 | 2240 | 2241 | 2256 | 2272 | 2307 | 2343 | 2381 | 2421 |
680 | 2254 | 2255 | 2270 | 2286 | 2317 | 2352 | 2388 | 2424 |
700 | 2268 | 2270 | 2283 | 2299 | 2330 | 2362 | 2398 | 2429 |
800 | 2339 | 2341 | 2352 | 2364 | 2389 | 2414 | 2440 | 2465 |
Примечание: В таблице синим цветом показаны значения удельной массовой теплоемкости воды в жидком состоянии, а черным – значения теплоемкости водяного пара.
Источники:
- Михеев М. А., Михеева И. М. Основы теплопередачи.
- Варгафтик Н. Б. Справочник по теплофизическим свойствам газов и жидкостей