05.03.2021

Трансформатор в резонансе – Резонансный трансформатор, как расчитать и получить резонанс на трансе

Явление резонанса в силовых трансформаторах

Статьи

Явление резонанса в силовых трансформаторах

Однажды попробовал снизить напряжение, вырабатываемое силовым трансформатором ТС-160, с помощью конденсатора емкостью 10 мкФ, включенного последовательно с первичной обмоткой (рис.1). Каково же было мое удивление, когда вместо ожидаемого уменьшения напряжения получил увеличение, причем в 2 раза!

Позже попробовал маломощный трансформатор от стереомагнитофона и конденсатор емкостью 4 мкФ. Опять получил явление резонанса, но не сразу, пришлось поискать. Через несколько минут работы в резонансном режиме трансформатор пустил дымок, но не сгорел (это был наш трансформатор…). За это время я успел измерить напряжение на конденсаторе и трансформаторе. Оказалось, что сумма этих напряжений превышает сетевое в 4 раза! Следует отдать должное и конденсатору (МБГЧ-1 4 мкФ+10% х 250 В), выдержавшему в процессе эксперимента напряжение 440 В.

Практического применения данному явлению пока не придумал, но вот что интересно. Конденсатор и катушка трансформатора поворачивают фазу переменного напряжения одинаково на 90°, только в разные стороны. Получается, что в месте соединения емкости и индуктивности появляется (рис.2) виртуальный генератор переменного тока, работающий синхронно с головным (сетью). Именно накладка напряжения виртуального генератора на сетевое напряжение и приводит к увеличению амплитуды последнего на конденсаторе и индуктивности (обмотке ТС). Такое поразительное совпадение фаз возможно только с виртуальным генератором. Реальные генераторы, соединенные параллельно, выдают общие напряжение и частоту. Характеристику тока задают более мощные генераторы, а более слабые вынуждены под них подстраиваться, причем подстройка происходит сама собой без постороннего вмешательства. Это удивительное явление резонанса в реальных генераторах заметил «отец кибернетики» Норберт Винер и описал в своей книге «Кибернетика». Это же явление используют для рекуперации электроэнергии ветроэлектростанций, что позволяет использовать ВЭС с максимальной эффективностью.

(adsbygoogle = window.adsbygoogle || []).push({});

Ю. Бородатый. Ивано-Франковская обл.

 

Читайте также: Резонансный усилитель мощности тока промышленной частоты

 


Резонансный трансформатор и некоторые его применения

Резонансный трансформатор есть у каждого, но мы настолько к ним привыкли, что не замечаем как они работают. Включив радиоприемник, мы настраиваем его на радиостанцию, которую хотим принять. При надлежащем положении ручки настройки приемник будет принимать и усиливать колебания только тех частот, какие передает эта радиостанция, колебания других частот он не примет. Мы говорим, что приемник настроен.

Настройка приемника основана на важном физическом явлении резонанса. Вращая ручку настройки, мы изменяем емкость конденсатора, а стало быть и собственную частоту колебательного контура. Когда собственная частота контура радиоприемника совпадает с частотой передающей станции, наступает резонанс. Сила тока в контуре радиоприемника достигает максимума и громкость приема данной радиостанции — наибольшая

Явление электрического резонанса позволяет настраивать передатчики и приемники на заданные частоты и обеспечить их работу без взаимных помех. При этом происходит умножение электрической мощности входного сигнала в несколько раз

В электротехнике происходит то же самое

Подключим конденсатор к вторичной обмотке обычного сетевого трансформатора, при этом ток и напряжение данного колебательного контура окажутся сдвинутыми по фазе на 90°. Замечательно то, что трансформатор не заметит этого подключения и ток его потребления снизится.

Невероятная картина: машина дает ток, равный нулю, но распадающийся на два разветвления, по 80 Ампер в каждом. Не правда ли, недурной пример для первого знакомства с переменными токами?»

Максимальный эффект от применения резонанса в колебательном контуре можно получить при его конструировании с целью повышения добротности. Слово «добротность» имеет смысл не только «хорошо сделанного» колебательного контура. Добротность контура — это отношение тока, протекающего через реактивный элемент, к току, протекающему через активный элемент контура. В резонансном колебательном контуре можно получить величину добротности от 30 до 200. При этом, через реактивные элементы: индуктивность и емкость протекают токи, намного больше, чем ток от источника. Эти большие «реактивные» токи не покидают пределов контура, т.к. они противофазны, и сами себя компенсируют, но они реально создают мощное магнитное поле, и могут «работать», например в эффективность которых зависит от резонансного режима работы

Проанализируем работу резонансного контура в симуляторе

http://www.falstad.com/circuit/circuitjs.html (бесплатная программа)

Правильно построеннный резонансный контур (резонанс нужно строить, а не собирать из того что оказалось под рукой ) потребляет от сети лишь несколько ватт, при этом в колебательном контуре имеем киловаты реактивной энергии, которые можно снять для отопления дома или теплицы при помощи индукционного котла или при помощи одностороннего трансформатора

Например, имеем домашнюю сеть 220 вольт, 50 Гц. Задача: получить на индуктивности в параллельном резонансном колебательном контуре ток величиной в 70 Ампер

Закон Ома для переменного тока для цепи с индуктивностью

I = U / X L , где X L — индуктивное сопротивление катушки

Знаем, что

X L = 2πfL, где f — частота 50 Гц, L — индуктивность катушки (в Генри)

откуда найдем индуктивность L

L = U / 2πfI = 220 вольт / 2 3,14 * 50 Гц 70 Ампер = 0.010 Генри (10 мили Генри или 10mH).

Ответ: чтоб

Феррорезонанс в трансформаторе напряжения: описание явления, механизм

В электрических сетях 6-35 кВ возникает феррорезонанс в трансформаторе напряжения (ТН) при:

  • дуговом замыкании на землю,
  • работы сети с неполнофазной нагрузкой;
  • переключениях с недогруженными линиями.
  • В условиях перегрузок ТН выходит из строя, создавая аварии в сети.

Феррорезонанс особенно опасен для критических перегрузок на основной частоте (50 Гц). Возможны субгармонические резонансы на 1/3 и 1/5 от основной частоты.

Что такое феррорезонанс

Феррорезонанс— это явление резкого возрастания тока, приводящее к перегреву и повреждению преобразователя и сопутствующего электротехнического оборудования.

Вызывающий аварию резонанс наблюдается при возникновении колебательного контура с последовательным соединением индуктивности ТН и емкостью сети.

Почему появляется в трансформаторах

Явление резонанса возникает при незаземленной (изолированной) нейтрали совместно с неполнофазным режимом. При изолированной нейтрали ёмкость сети относительно земли образует последовательное соединение с индуктивностью конструкции незаземленного ТН. Неполнофазный режим возникает при частичном включении фаз, при фазовом разрыве или при коротком замыкании несимметричного типа.

Механизм возникновения явления

Вольтамперная характеристика (ВАХ)

ТН содержат катушки индуктивности с сердечниками из ферромагнитных материалов, имеющими нелинейную вольтамперную характеристику (ВАХ). На линейной ВАХ каждому значению напряжения Ui соответствует единственное значение тока I

i. На нелинейной ВАХ для определенного (резонансного) Uр реализуется режим с двумя различными величинами тока — I1 и I2.

Резонансный переход

При значении Uр на обмотках ТН сопротивление резко падает. Происходит мгновенный переход от I1 к I2, приводящий к «опрокидывание фазы» приложенного Uр, характер которого изменяется с активно-индуктивного на активно-емкостной.

Длительные колебания, вызванные резкими переходами тока в первичных обмотках ТН, вызывают тепловой пробой изоляции.

Вольтамперная характеристика (ВАХ)

Какие трансформаторы нейтрализуют эффект феррорезонанса

Для предотвращения скачкообразных токовых перегрузок защитные ТН исполняются совместно с трансформаторами нулевой последовательности (ТНП).

Такие специализированные устройства называются антирезонансными.

НАМИТ-10-2

Оборудование относится к типу ТН (Н), А — антирезонансный (А), с естественным масляным охлаждением (М), для измерительных цепей (И), трехфазный (Т), номинальным напряжением 10 кв, вариант исполнения— 2.

Измерительное оборудование состоит из двух единиц, размещенных в общем корпусе:

  • ТНКИ — это трехобмоточный ТН контроля изоляции;
  • ТНП — это двухобмоточный ТНП, выполняющий защиту ТНКИ от аварий при замыканиях отдельных фаз. Фоторезонанс компенсируется индуктивным сопротивлением ТНП в первичной цепи преобразователя.

трансформатор намит 10-2

НАМИ-10-95

Антирезонансное, масляное, измерительное оборудование состоит из:

  • трехфазного трехстержневого ТН прямой (обратной) последовательности с дополнительной вторичной обмоткой;
  • однофазного двухстержневого ТНП со вторичной обмоткой, соединенной по схеме замкнутого треугольника, снижающей сопротивление нулевой последовательности устройства до величины сопротивления рассеяния.

НАМИ-10-95 трансформатор

НАЛИ-СЭЩ-6(10)

Оборудование НАЛИ-СЭЩ -6(10) представлено литой (Л) трехфазной антирезонансной группой измерителей номинальным напряжением 6(10)кв.

Отличием литого исполнения от масляного является высокая пожаро- и взрывобезопасность, что обусловливает применение в особых условиях, например на АЭС.

НАЛИ-СЭЩ-6(10) исполнен посредством четырех активных элементов:

  • блока из трех однофазных, двухполюсных, измерительных ТН НОЛ-СЭЩ, каждый из которых содержит до трех вторичных обмоток;
  • одного ТНП-СЭЩ, выполняющего функцию защиты НОЛ-СЭЩ от скачкообразных токовых переходов.

Трансформатор НАЛИ-СЭЩ-10-6

НАЛИ-СЭЩ-1

Оборудование выполнено из однофазных ТН с литой изоляцией типа НОЛ-6(10) и ТНП на основе принципа действия и релейной схемы устройства НАМИТ-10-2.

НАЛИ-СЭЩ-2

Данный тип повторяет НАЛИ-СЭЩ-1 при исключении дополнительной вторичной обмотки, соединенной по схеме открытого треугольника, а также при исключении релейной схемы дешунтирования постоянно включенного ТНП. Явление фоторезонанса в трансформаторе напряжения НАЛИ-СЭЩ-2 не возникает при работе с пониженной рабочей индукцией. Защитная конструкция обеспечивает практически линейную ВАХ.

 

Резонансный трансформатор: конструкция и принцип работы

Резонансный трансформатор часто называют трансформатором Тесла или катушкой Тесла. Прибор был запатентован Соединенными Штатами Америки двадцать второго сентября одна тысяча восемьсот девяносто шестого года под названием «Аппарат для производства электрического тока высочайшего потенциала и частоты». Как можно понять из названия, данное устройство было изобретено знаменитым ученым Николой Тесла.

Самый простой резонансный трансформатор состоит из двух катушек без совокупного сердечника. Первичная обмотка имеет всего несколько витков (от трех до десяти). Однако эта обмотка наматывается толстым электропроводом. Вторичная обмотка такого устройства, как резонансный трансформатор, часто называется высоковольтной. Она имеет намного больше витков, чем первичная (до нескольких сотен). Однако наматывается более тонким электрическим проводом.

резонансный трансформатор

В результате такой нехитрой конструкции резонансный трансформатор обладает КТ (коэффициентом трансформации), который превышает значение отношения витков вторичной обмотки к первичной в несколько десятков раз. Выходное напряжение на таком трансформаторе может превышать миллион вольт. На основе подобной конструкции уже разработаны такие устройства, как резонансные генераторы. Также такие электрические машины часто используют в качестве демонстрационных аппаратов. Благодаря огромному напряжению на резонансной частоте такое устройство способно создавать электрические разряды прямо в воздухе. Причем их длина может быть воистину впечатляющей. В зависимости от входного напряжения, длина разряда может составлять до нескольких десятков метров.

Сама конструкция такой электрической установки, как резонансный трансформатор Тесла, довольно проста и незамысловата. Он состоит из катушек (двух – вторичной и первичной), разрядника (он же прерыватель). В состав данного устройства обязательно входят конденсаторы (как для компенсации, так и для накопления заряда). Часто используют тороидальные катушки и терминалы (для создания такого прибора, как резонансный трансформатор с усилением выходной мощности).

резонансный трансформатор с усилением выходной мощности

Как уже говорилось раньше, первичная катушка имеет традиционно немного витков, а вторичная — несколько сотен. Более того, часто встречается конструкция с плоской первичной катушкой, горизонтальной, цилиндрической, конической или вертикальной. Также в таком устройстве, как резонансный трансформатор, нет ферромагнитного сердечника (в отличие от силовых или измерительных трансформаторов). Таким образом, у него намного меньше взаимоиндукция между обмотками обеих катушек, чем у обычных традиционных трансформаторов (усиление индукционной связи как раз и достигается, благодаря наличию ферромагнитного сердечника).

резонансные генераторы

Таким образом, конденсатор и первичная катушка составляют колебательный контур. Сюда включается нелинейная составляющая – разрядник, который представляет собой два электрода с зазором. Вторичная катушка также образует подобный контур, однако вместо конденсатора тут используется тороид. Именно наличие двух связанных колебательных контуров и являет собой всю основу действия такого прибора, как резонансный трансформатор Тесла.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *