Биметаллическая пластина — Википедия
Биметалли́ческая пласти́на — пластина, изготовленная из биметалла или из механически соединённых кусков двух различных металлов. Как правило, используется как основная часть термомеханического датчика.
Если оба конца биметаллической пластины соединены заклёпками, при увеличении температуры пластина изгибаетсяБиметаллическая пластина представляет собой отрезок ленты, изготовленной из биметалла. Один конец ленты, как правило, неподвижно закреплён в устройстве, а другой — перемещается в зависимости от температуры пластины.
Встречаются устройства, состоящие из двух пластин разнородных металлов, закреплённых одними концами и соединённых (клёпкой, пайкой или сваркой) у других концов. При изменении температуры соединённый конец пластин перемещается.
Работоспособны в очень широком диапазоне температур[1].
Термостаты и защитные устройства[править | править код]
Биметаллическая пластина, используемая в реле защиты электродвигателяМогут сводить-разводить контакты постепенно (дешёвая ненадёжная конструкция — контакты искрят и обгорают), а могут срабатывать скачком (механическая бифуркация), сразу перемещая контакт на несколько миллиметров (щелчки от таких переключений слышны при работе утюгов, чайников и других подобных устройств).
Применяются как защитные устройства: для защиты от перегрева (например в электрочайнике) или от превышения силы тока (предохранители). могут быть как самовосстанавливающимися, так и требующими вмешательства персонала (предполагается, что персонал найдёт и устранит причину неполадки, и только потом вернёт предохранитель во включённое состояние).
Генераторы импульсов и реле времени[править | править код]
Биметаллическая пластина с контактом и с подогревателем (применяется обмотка из высокоомного провода либо сама пластина, по которой пропускают ток).
Применяется для переключения режимов работы устройств после их включения (например, в стартёрах люминесцентных ламп и электромоторов). В этом случае нагрев пластины продолжается всё время, пока устройство включено.
Измерительные приборы[править | править код]
Разновидность биметаллического термометра с подогревателем. В зависимости от способа включения может быть вольтметром или амперметром. При работе потребляет много энергии, однако совершенно не содержит трущихся механических частей. Просты, вибростойки, мало чувствительны к загрязнениям, как правило, самовосстанавливаются при отсыревании. До сих пор широко применяются в автомобильной электронике.
Часы[править | править код]
Применяются для термокомпенсации хода часов. Могут изменять диаметр разрезного обода баланса, сделанного из биметаллической пластины, либо изменять действующую длину пружины баланса.
Термометры[править | править код]
Схема биметаллического термометраДлинная свёрнутая спиралью лента из биметалла закрепляется в центре. Другой (внешний) конец спирали перемещается вдоль шкалы, размеченной в градусах. Такой термометр, в отличие от жидкостного (например, ртутного) совершенно нечувствителен к изменениям внешнего давления и механически более прочен.
В термографах биметаллическая пластина через систему рычагов управляет пером самописца, рисующим график изменения температуры (применяется в метеорологии).Например, в регуляторе температуры биметаллическая пластина, нагреваясь до предельно допустимой температуры, определеленным образом изгибается и размыкает цепь . В результате этого дальнейшее нагревание не происходит.
Тепловые двигатели[править | править код]
Преобразование разности температур в механическую работу. Существуют простые игрушки для демонстрации возможности работы таких двигателей
Устройства для микроперемещений[править | править код]
Предметы (типа «препарата», рассматриваемого в микроскоп) с помощью биметаллических пластин с подогревателями можно перемещать в небольших пределах. Величина перемещения регулируется дистанционно изменением тока через подогреватели.
Недостаток: величина перемещения непостоянна и зависит от условий охлаждения (окружающей температуры, сквозняков и т. п.)
В судостроении[править | править код]
Биметаллические (а также триметаллические) пластины используются для сварки разнородных металлов в целях предотвращения контактной (гальванической) коррозии. В судостроении применяются как для стыковки алюминиевой надстройки со стальным корпусом, так и для соединения декоративных элементов из нержавеющей стали с алюминиевой конструкцией.
Для работы в агрессивных средах свойствами, подобными биметаллам, обладают спаи из стёкол или керамики с различным КТР,
Изгиб (кривизна кривой, обратная величина к радиусу изгиба) биметаллической пластины[3]:
- κ=6E1E2(h2+h3)h2h3εE12h24+4E1E2h23h3+6E1E2h22h32+4E1E2h33h2+E22h34{\displaystyle \kappa ={\frac {6E_{1}E_{2}(h_{1}+h_{2})h_{1}h_{2}\varepsilon }{E_{1}^{2}h_{1}^{4}+4E_{1}E_{2}h_{1}^{3}h_{2}+6E_{1}E_{2}h_{1}^{2}h_{2}^{2}+4E_{1}E_{2}h_{2}^{3}h_{1}+E_{2}^{2}h_{2}^{4}}}}
где:
Выражение кривизны приведено для случая равенства нулю коэффициентов Пуассона сопрягаемых пластин. Общий случай рассмотрен в работе [5].
По-видимому, биметаллические пластины были созданы в XVIII веке в Англии часовщиком Джоном Харрисоном для термокомпенсации его морского хронометра «h4».[4].
- ↑ Биметаллическая лента в жидком азоте (англ.)
- ↑ Биметаллические качели (фото)
- ↑ Clyne, TW. «Residual stresses in surface coatings and their effects on interfacial debonding.» Key Engineering Materials (Switzerland). Vol. 116—117, pp. 307—330. 1996 (недоступная ссылка) (англ.), pdf, 36KB
- ↑ Sobel, Dava. «Longitude», London, Fourth Estate, 1995, ISBN 0-00-721446-4, стр. 103 (англ.)
[5] Глаголев В.В., Маркин А.А., Пашинов С.В. Биметаллическая пластина в однородном температурном поле // Механика композиционных материалов и конструкций. – 2017. – Т. 23. – № 3. – С. 331-343.
Термостат — Вікіпедія
Матеріал з Вікіпедії — вільної енциклопедії.
Термостат FLZ 541 Клапан-термостат автомобільного двигунаТермоста́т — фізичне тіло або пристрій, що забезпечує стабільність температури у системі. Термостат підтримує встановлену температуру вмикаючи/вимикаючи нагрівальний або охолоджувальний елемент, чи змінюючи потік теплоносія.
Загальна характеристика[ред. | ред. код]
Для забезпечення сталої температури в термостатах використовують стабільність температур фазових переходів, наприклад температури плавлення і кипіння чистих речовин та рівноважних сумішей, або застосовують спеціальні пристрої — терморегулятори. Термостати для кріогенних температур називаються кріостатами.
Теплоносіями в термостатах для середніх температур (200…800 К) є спирти, вода та різні оливи; в термостатах для високих температур (понад 800 К) застосовують розплавлені солі і метали. Джерелами холоду, або холодоагентами, в кріостатах служать азот, гелій, водень та інші гази (в скрапленому або отвердненому стані) з низькою температурою конденсації й замерзання.
Термостат може бути пристроєм керування в системах опалення або охолодження, або ж бути компонентом радіатора чи кондиціонера.
Термостати мають широкий вибір конструктивних схем, а також можуть використовувати велику кількість термодатчиків. Вихід термостата подається на нагрівальний/охолоджувальний орган.
Термодинаміка й статистична фізика[ред. | ред. код]
Поняття термостата часто використовується при розгляді термодинамічних систем. У цьому випадку термостатом вважається масивне тіло, з яким термодинамічна система може вільно обмінюватися енергією. Внаслідок процесів обміну встановлюється термодинамічна рівновага. Позаяк термостат вважається значно масивнішим, ніж досліджувана система, й має набагато більшу теплоємність, то саме він визначає температуру системи у рівноважному стані.
Якщо в термодинамічній системі виділити певний об’єм, розміри якого значно менші за розміри всієї системи, але досить великі для того, щоб характеризувати його термодинамічними параметрами, то решта об’єму системи виконує роль термостата щодо вибраного об’єму.
Термостат — Википедия
Термостати FLZ 541 Термостати худравҳоТермоста́т — (аз термо… ва юнонӣ statos— ноҷунбон, беҳаракат), дамопо (форсӣ: دماپا) — асбобест барои доимӣ нигоҳ доштани ҳарорат;
Термостатҳои моеъӣ (аз —60 то 500°С), спиртӣ (—60—100°С), обӣ 10—95°С), равғанӣ (100—30000), намакӣ (300—500°С)-ро истифода мебаранд. Ҳарорати аз 300 то 1200°С-ро бо ёрии кӯраҳои электрӣ танзим мекунанд. Термостате, ки ҳаророраташ аз О°С поёнро доимӣ медорад криостат ном дорад.
Мақола дар асоси маводи Энсиклопедияи Советии Тоҷик навишта шудааст.
термостат — Викисловарь
Морфологические и синтаксические свойства[править]
падеж | ед. ч. | мн. ч. |
---|---|---|
Им. | термоста́т | термоста́ты |
Р. | термоста́та | термоста́тов |
Д. | термоста́ту | термоста́там |
В. | термоста́т | термоста́ты |
Тв. | термоста́том | термоста́тами |
Пр. | термоста́те | термоста́тах |
тер-мо-ста́т
Существительное, неодушевлённое, мужской род, 2-е склонение (тип склонения 1a по классификации А. А. Зализняка).
Корень: -терм-; соединительн. связка: -о-; корень: -стат-.
Произношение[править]
Семантические свойства[править]
Значение[править]
- физ. лабораторный прибор, в котором поддерживается постоянная температура посредством автоматических регуляторов ◆ Отсутствует пример употребления (см. рекомендации).
- техн. прибор, поддерживающий постоянную температуру в термической печи, холодильном аппарате и т. п. путём воздействия на нагревательные или охладительные устройства ◆ Отсутствует пример употребления (см. рекомендации).
- автомоб. устройство для поддержания постоянной температуры воды, охлаждающей двигатель внутреннего сгорания ◆ Отсутствует пример употребления (см. рекомендации).
Синонимы[править]
Антонимы[править]
Гиперонимы[править]
- терморегулятор
Гипонимы[править]
Родственные слова[править]
Ближайшее родство | |
Этимология[править]
Происходит от нем. Thermostat, далее из др.-греч. θερµο- «тепло-», далее из др.-греч. θερµός «тёплый», далее из др.-греч. θέρμη «жара, теплота», восходит к праиндоевр. *ghwerm-/*ghworm- «тёплый».. + др.-греч. στατός «стоячий, неподвижный», восходит к праиндоевр. *sta- «стоять; ставить»..
Фразеологизмы и устойчивые сочетания[править]
Перевод[править]
Библиография[править]
Морфологические и синтаксические свойства[править]
термостат
Существительное.
Корень: —.
Произношение[править]
Семантические свойства[править]
Значение[править]
- термостат ◆ Отсутствует пример употребления (см. рекомендации).
Синонимы[править]
Антонимы[править]
Гиперонимы[править]
Гипонимы[править]
Родственные слова[править]
Ближайшее родство | |
Этимология[править]
Происходит от ??
Фразеологизмы и устойчивые сочетания[править]
Библиография[править]
Морфологические и синтаксические свойства[править]
падеж | ед. ч. | мн. ч. |
---|---|---|
Им. | термоста́т | термоста́ти |
Р. | термоста́та | термоста́тів |
Д. | термоста́тові, термоста́ту | термоста́там |
В. | термоста́т | термоста́ти |
Тв. | термоста́том | термоста́тами |
М. | термоста́ті | термоста́тах |
Зв. | термоста́те* | термоста́ти* |
термоста́т
Существительное, неодушевлённое, мужской род, тип склонения 1a.
Корень: —.
Произношение[править]
Семантические свойства[править]
Значение[править]
- термостат ◆ Отсутствует пример употребления (см. рекомендации).
Синонимы[править]
Антонимы[править]
Гиперонимы[править]
Гипонимы[править]
Родственные слова[править]
Ближайшее родство | |
Этимология[править]
Происходит от ??
Фразеологизмы и устойчивые сочетания[править]
Библиография[править]
Терморезистор — Википедия
Терморези́стор (термистор, термосопротивление) — полупроводниковый прибор, электрическое сопротивление которого изменяется в зависимости от его температуры[1].
Терморезистор был изобретён Самюэлем Рубеном (Samuel Ruben) в 1930 году[2].
Терморезисторы изготавливаются из материалов с высоким температурным коэффициентом сопротивления (ТКС), который обычно на порядки выше, чем ТКС металлов и металлических сплавов.
Конструкция и разновидности терморезисторов[править | править код]
Термисторы с аксиальными выводамиРезистивный элемент терморезистора изготавливают методом порошковой металлургии из оксидов, галогенидов, халькогенидов некоторых металлов, в различном конструктивном исполнении, например в виде стержней, трубок, дисков, шайб, бусинок, тонких пластинок, и размерами от 1—10 микрометров до нескольких сантиметров.
По типу зависимости сопротивления от температуры различают терморезисторы с отрицательным (NTC-термисторы, от слов «Negative
Терморезисторы с отрицательным ТКС (NTC-термисторы) изготовляют из смеси поликристаллических оксидов переходных металлов (например, MnO, СoOx, NiO и CuO), полупроводников типа AIII BV, стеклообразных, легированных полупроводников (Ge и Si), и других материалов. PTC-термисторы изготовляют из твёрдых растворов на основе BaTiO
Условно терморезисторы классифицируют как низкотемпературные (предназначенные для работы при температуpax ниже 170 К), среднетемпературные (от 170 до 510 К) и высокотемпературные (выше 570 К). Выпускаются терморезисторы, предназначенные для работы при температурах от 900 до 1300 К.
Терморезисторы способны работать в различных климатических условиях и при значительных механических нагрузках. Однако, с течением времени, при жёстких условиях его эксплуатации, например, термоциклировании, происходит изменение его исходных термоэлектрических характеристик, таких как:
- номинального (при 25 °C) электрического сопротивления;
- температурного коэффициента сопротивления.
Также существуют комбинированные приборы, такие как терморезисторы с косвенным нагревом. В этих приборах в одном корпусе совмещены терморезистор и гальванически развязанный от него нагревательный элемент, задающий температуру терморезистора, и, соответственно, его электросопротивление. Такие приборы могут использоваться в качестве переменного резистора, управляемого напряжением, приложенным к нагревательному элементу такого комбинированного прибора.
Температура рассчитывается по уравнению Стейнхарта — Харта:
1T=A+Bln(R)+C[ln(R)]3{\displaystyle {1 \over T}=A+B\ln(R)+C[\ln(R)]^{3}}
где T — температура, К;
R — сопротивление, Ом;
A,B,C — константы термистора, определённые при градуировке в трёх температурных точках, отстоящих друг от друга не менее, чем на 10 °С.
Одним из существенных недостатков «бусинковых» термисторов, как температурных датчиков, является то, что они не взаимозаменяемы и требуют индивидуальной градуировки[3]. Не существует стандартов, регламентирующих их номинальную характеристику сопротивление — температура. «Дисковые» термисторы могут быть взаимозаменяемыми, однако при этом лучшая допускаемая погрешность не менее 0,05 °С в диапазоне от 0 до 70 °С. Типичный 10-килоомный термистор в диапазоне 0—100 °С имеет коэффициенты, близкие к следующим значениям:
A=1,03∗10−3{\displaystyle A=1,03*10^{-3}}; B=2,93∗10−4{\displaystyle B=2,93*10^{-4}}; C=1,57∗10−7{\displaystyle C=1,57*10^{-7}}.
Режим работы терморезисторов и их применение[править | править код]
Зависимость сопротивления терморезистора от температуры: 1 — ТКС < 0; 2 — ТКС > 0Режим работы терморезисторов зависит от выбранной рабочей точки на вольт-амперной характеристике (или ВАХ) такого прибора. В свою очередь ВАХ зависит от приложенной к прибору температуры и конструктивных особенностей терморезистора.
Терморезисторы с рабочей точкой, выставленной на линейном участке ВАХ, используются для контроля за изменением температуры и компенсации параметров (электрическое напряжение или электрический ток) электрических цепей, возникших вследствие изменения температуры. Терморезисторы с рабочей точкой выставленной на нисходящем участке ВАХ (с «отрицательным сопротивлением») применяются в качестве пусковых реле, реле времени, в системах измерения и контроля мощности электромагнитного излучения на сверхвысоких частотах (или СВЧ), системах теплового контроля и пожарной сигнализации, в установках регулирования расхода жидких и сыпучих сред.
Наиболее широко используются среднетемпературные терморезисторы (с температурным ТКС от −2,4 до −8,4 %/К), работающие в широком диапазоне сопротивлений (от 1 до 106Ом).
Также существуют терморезисторы с небольшим положительным температурным коэффициентом сопротивления (или ТКС) (от 0,5 до 0,7 %/К) выполненные на основе кремния, сопротивление которых изменяется по закону близкому к линейному. Такие терморезисторы находят применение в системах охлаждения и температурной стабилизации режимов работы транзисторов в различных радиоэлектронных системах.
- Шефтель И. Т. Терморезисторы.
- Мэклин Э. Д. Терморезисторы.
- Шашков А. Г. Терморезисторы и их применение.
- Пасынков В. В., Чиркин Л. К. Полупроводниковые приборы: Учебник для вузов. — 4-е перераб. и доп. изд. — М.: Высшая школа, 1987. — С. 401—407. — 479 с. — 50 000 экз.
ТЕРМОСТАТ — это… Что такое ТЕРМОСТАТ?
термостат — термостат … Орфографический словарь-справочник
ТЕРМОСТАТ — Физический аппарат, служащий для поддержания, на более или менее продолжительное время, одинаковой температуры. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ТЕРМОСТАТ прибор, в котором постоянным регулированием… … Словарь иностранных слов русского языка
Термостат — FLZ 541 … Википедия
термостат — а, м. thermostate m. <гр. therme жар. тепло + statos неподвижный. Прибор для поддержания постоянной температуры в ограниченном объеме. СИС 1985. Я стал заниматься бактериологией. Я приобрел микроскоп Гарнака, термостат д Арсонваля и автоклав.… … Исторический словарь галлицизмов русского языка
ТЕРМОСТАТ — (от термо… и греческого states останавливающий, задерживающий), прибор, который поддерживает температуру постоянной. Простейший термостат термос представляет собой сосуд с полыми вакуумированными отражающими стенками (сосуд Дьюара). В… … Современная энциклопедия
термостат — прибор для поддержания постоянной температуры в ограниченном объеме (холодильники, тепловые камеры). В микробиол. практике Т. используются чаще всего для создания оптимальной температуры при выращивании культур микроорганизмов, для хранения… … Словарь микробиологии
термостат — криостат Словарь русских синонимов. термостат сущ., кол во синонимов: 5 • вибротермостат (1) • … Словарь синонимов
ТЕРМОСТАТ — ТЕРМОСТАТ, шкаф, в к ром поддерживается определенная, заранее установленная t°. Наиболее широкое распространение Т. получил в микробиологической практике при культивировании микроорганизмов. Т. к. большинство пат. микробов имеет optimum роста … Большая медицинская энциклопедия
ТЕРМОСТАТ — (от термо… и …стат) прибор для поддержания постоянства температуры. В интервале температур от 60 до 500 .С применяют жидкостные термостаты (теплоизолированные сосуды с жидкостью, в которой находятся нагреватель и терморегулятор): спиртовой… … Большой Энциклопедический словарь
ТЕРМОСТАТ — [тэрмостат], термостата, муж. (от греч. therme теплота и statos стоящий) (спец.). Аппарат, в котором поддерживается постоянная температура с помощью автоматических регуляторов. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
Система охлаждения двигателя внутреннего сгорания — Википедия
Система охлаждения двигателя внутреннего сгорания — совокупность устройств, обеспечивающих подвод охлаждающей среды к нагретым деталям двигателя и отвод от них в атмосферу лишней теплоты, которая должна обеспечивать наибольшую степень охлаждения и возможность поддержания в требуемых пределах теплового состояния двигателя при различных режимах и условиях работы.
В период сгорания рабочей смеси температура в цилиндре достигает 2000 °C и более. Система охлаждения предназначена для поддержания оптимального теплового состояния двигателя в пределах 80-90°C. Сильный нагрев может вызвать нарушения нормальных рабочих зазоров и, как следствие, усиленный износ, заклинивание и поломку деталей, а также снижение мощности двигателя, за счёт ухудшения наполнения цилиндров горючей смесью, самовоспламенения и детонации. Для обеспечения нормальной работы двигателя необходимо охлаждать детали, соприкасающиеся с горячими газами, отводя от них тепло в атмосферу непосредственно, либо при помощи промежуточного тела (воды, низкозамерзающей жидкости). При чрезмерно сильном охлаждении рабочая смесь, попадая на холодные стенки цилиндра конденсируется и стекает в картер двигателя, где разжижает моторное масло. Как следствие этого мощность двигателя уменьшается, а износ увеличивается. При понижении температуры масло густеет. Это является причиной того, что масло хуже подается в цилиндры и увеличивается расход топлива, уменьшается мощность. Поэтому система охлаждения должна ограничивать температурные пределы, обеспечивая наилучшие условия работы двигателя.
Система охлаждения, кроме основной функции охлаждения двигателя, выполняет ряд других функций, к которым относятся:
- нагрев воздуха в системе отопления, вентиляции и кондиционирования;
- охлаждения масла в системе смазки;
- охлаждения отработанных газов в системе рециркуляции отработавших газов;
- охлаждения воздуха в системе турбонаддува ;
- охлаждения рабочей жидкости в автоматической коробке передач.
Существует три типа систем охлаждения двигателей внутреннего сгорания: воздушная, жидкостная и гибридная.
Воздушное охлаждение[править | править код]
6-цилиндровый двигатель с естественным охлаждением на мотоцикле (Honda CBX1000, 105лс) Авиамодельный двигатель O.S. (1,7см3). Pratt and Whitney R-4360 — 28-цилиндровый авиационный двигатель с естественным воздушным охлаждением (3500лс).Воздушное охлаждение может быть естественным и принудительным. Естественное воздушное охлаждение является самым простым видом охлаждения. Тепло от двигателя с такой системой охлаждения передаётся в окружающую среду через развитое оребрение на внешней поверхности цилиндров. Недостаток системы заключается в том, что она из-за низкой теплоёмкости воздуха не позволяет равномерно отводить от двигателя большое количество тепла и, соответственно, создавать компактные мощные силовые установки. Неравномерность обдува требует дополнительных мер для исключения локальных перегревов — более развитого оребрения в аэродинамической тени, обращения более нагретых выпускных каналов вперёд по потоку, а холодных впускных — назад и т.п. Естественное воздушное охлаждение распространено на двигателях лёгкой высокоподвижной техники: мотоциклы, мопеды, авиа- и автомодели. С систематическим ростом форсировки моторов мотоциклов на наиболее совершенных моделях воздушное охлаждение уступает место жидкостному. По причине малой массы естественное воздушное охлаждение широко применялось и на поршневых авиационных двигателях, где близкие к цилиндрическим и имевшие малую окружную скорость комли лопастей винта практически не работали как вентилятор, но скорость набегающего на самолёт потока была сама по себе очень высока.
Универсальный «стационарный» двигатель воздушного охлаждения, установленный на газонокосилке.Стационарные или плотно закапотированные двигатели оснащают системой принудительного воздушного охлаждения. В них с помощью вентилятора создаётся поток воздуха, который обдувает рёбра охлаждения. Вентилятор и оребрённые поверхности, как правило, закрыты направляющим кожухом. Достоинства такого двигателя аналогичны двигателям с естественным охлаждением: простота конструкции, малый вес, отсутствие охлаждающей жидкости. Однако такие двигатели отличаются повышенным шумом при работе, большими габаритами. Кроме того, при проектировании таких двигателей возникают проблемы с охлаждением отдельных элементов конструкции двигателя из-за неравномерного обдува. На легковых автомобилях, производимых в Европе, воздушное охлаждение широко применялось в 1950-х — 1970-х годах. В основном это небольшие машины типа Volkswagen Kafer, Fiat 500, Citroën 2CV; особняком стоит представительская Tatra 613. В СССР самым известным автомобилем с воздушным охлаждением был «Запорожец». Выпускались грузовые автомобили с дизелями воздушного охлаждения (например грузовики под маркой «Татра» с момента начала выпуска и до начала 2010 годов оснащались исключительно такими двигателями). Двигатели с воздушным охлаждением имеют многие трактора (иногда — тяжёлые, например Т-330; чаще — малые, от обычных пропашных до мини-тракторов мелких частных хозяйств), для которых характерны установившиеся режимы работы двигателя и специфические требования к простоте обслуживания. В настоящее время (2015-е) принудительное воздушное охлаждение применяется на большинстве скутеров, моторизованном инструменте (бензопилы, газонокосилки и пр.), двигателях малогабаритных генераторных установок, на мотоблоках и прочих самоходных и стационарных малых сельскохозяйственных и коммунальных машинах. Для последних очень распространены унифицированные ряды простых одно-двухцилиндровых двигателей воздушного охлаждения, одинаковые у различных производителей (Briggs & Strattonruen, Honda, Subaru, китайские), в виде компактного законченного блока с креплением на горизонтальную плоскость.
Жидкостное охлаждение[править | править код]
Жидкостное охлаждение морских судов открытого типаСистемы охлаждения классифицируются в соответствии со способом использования теплоносителя в системе.
Замкнутые — в таких системах жидкость-теплоноситель циркулирует по герметичному контуру, нагреваясь от источника тепла (нагревателя) и остывая в охлаждающем контуре (охладителе). В зависимости от устройства системы, теплоноситель может закипать или полностью испаряться, вновь конденсируясь в охладителе. Незамкнутые — в незамкнутых (проточных) системах теплоноситель подается извне, нагревается у источника тепла и направляется во внешнюю среду. В этом случае она играет роль охладителя, предоставляя необходимые объем теплоносителя нужной температуры на входе и принимая нагретый на выходе. Открытые — системы, в которых нагреватель помещен в некоторый объем теплоносителя, а тот заключен в охладителе, если таковой предусмотрен конструкцией. Например, открытая система с маслом в качестве теплоносителя используются для охлаждения мощных электротрансформаторов.
К «чисто жидкостным» системам охлаждения можно отнести лишь открытые системы охлаждения речных и морских судов, где для охлаждения используется забортная вода. В некоторых стационарных двигателях начала XX века мог отсутствовать радиатор, вместо этого имелся расширительный бак большого объёма — отчасти тепло рассеивалось за счёт испарения воды, отчасти — через стенки бака, а отчасти за счёт большого объёма воды, который не успевал достаточно прогреться за время работы двигателя.
Замкнутая система (Гибридный тип)[править | править код]
Тип сочетает вышеуказанные системы: тепло от цилиндров отводится жидкостью, после чего она, на удалении от теплонагруженной части двигателя, охлаждается в радиаторах воздухом. Внутренние и наружные части цилиндров испытывают различный нагрев и обычно выполняются из отдельных частей:
- внутренняя — рабочая втулка или гильза цилиндра;
- наружная — рубашка (у двигателей воздушного охлаждения рубашка имеет рёбра для эффективного отвода тепла).
Пространство между ними называется зарубашечным, в двигателе с водяным охлаждением тут циркулирует охлаждающая жидкость.
Система охлаждения состоит из рубашки охлаждения блока цилиндров, головки блока цилиндров, одного или нескольких радиаторов, вентилятора принудительного охлаждения радиатора, жидкостного насоса, термостата, расширительного бачка, соединительных патрубков и датчика температуры. Этот тип используется на всех современных автомобилях. Охлаждающая жидкость прокачивается насосом через рубашку охлаждения двигателя, забирая от неё тепло, а затем охлаждается сама в радиаторе. В этой системе существует два круга циркуляции жидкости — большой и малый. Большой круг составляют рубашка охлаждения двигателя, водяной насос, радиаторы (в том числе — отопителя салона), термостат. В малый круг входит рубашка охлаждения двигателя, водяной насос, термостат (иногда радиатор отопителя салона входит именно в малый круг). Регулировка количества жидкости между кругами циркуляции жидкости осуществляется термостатом. Малый круг охлаждения предназначен для быстрого введения двигателя в эффективный тепловой режим. При этом охлаждающая жидкость фактически не охлаждается, так как не проходит через радиатор. Как только она нагреется до оптимальной температуры, термостат открывается, и охлаждающая жидкость начинает циркулировать также и через радиатор, где непосредственно и охлаждается набегающим потоком воздуха (а в случае длительной стоянки — принудительно вентилятором). При этом, чем сильнее нагревается охлаждающая жидкость, тем сильнее открывается термостат, и тем сильнее жидкость охлаждается в радиаторе. Это и есть принцип поддержания оптимальной температуры двигателя 85-90 °C.
Очень опасным явлением является перегрев двигателя (кипение двигателя)[источник не указан 732 дня]. При этом охлаждающая жидкость в прямом смысле вскипает в рубашке охлаждения, что очень часто приводит к серьёзным последствиям и дорогостоящему ремонту. Для предупреждения перегрева двигателя логично применять жидкости с высокой температурой кипения, однако проще всего оказалось держать всю систему под некоторым избыточным давлением (около 1,1 атм), при котором повышается температура кипения охлаждающей жидкости (около 110 °C и 120 °C для воды и антифриза соответственно). Кроме того, при превышении температуры охлаждающей жидкости более 105 °C, включается принудительный обдув радиатора вентилятором.
Основные части жидкостной системы охлаждения[править | править код]
В жидкостных системах охлаждения поршневых двигателей наземного и воздушного транспорта, а также стационарных установок охлаждающая жидкость циркулирует по замкнутому контуру, а тепло рассеивается в окружающую среду с помощью обдуваемого воздухом радиатора.
Основные части жидкостной системы охлаждения:
- Рубашка охлаждения (1) представляет собой полость, огибающую части двигателя, требующие охлаждения. Циркулирующая по рубашке охлаждения жидкость отбирает у них тепло и переносит его к радиатору.
- Насос охлаждающей жидкости, или помпа (5) — обеспечивает циркуляцию жидкости по контуру охлаждения. В некоторых двигателях, например мини-тракторов, может применяться термосифонная система охлаждения — то есть система с естественной циркуляцией охлаждающей жидкости, в которой этот насос отсутствует. Может приводиться в движение либо через ременную передачу от вала двигателя, либо от отдельного электродвигателя.
- Термостат (2) — предназначен для поддержания рабочей температуры двигателя. Термостат перенаправляет охлаждающую жидкость по малому кругу — в обход радиатора, если температура не достигла рабочей.
- Радиатор (3) имеет развитую поверхность, обдуваемую снаружи набегающим потоком воздуха. Радиатор изготавливается из материалов, хорошо проводящих тепло, чаще всего из алюминия (радиатор для охлаждения масла чаще всего делают из меди).
- Вентилятор (4) создаёт дополнительный поток воздуха для обдува радиатора, в том числе во время остановок и при движении на малой скорости. Может приводиться ременной передачей от вала двигателя, но в современных автомобилях, за исключением крупных грузовиков, он работает от электродвигателя.
- Расширительный бак содержит запас охлаждающей жидкости. С атмосферой расширительный бак сообщается через клапан, поддерживающий избыточное давление охлаждающей жидкости при работе, что позволяет двигателю работать при большей температуре, не допуская кипения охлаждающей жидкости, которое может привести к повреждению двигателя. Автомобили начала-середины XX века часто не имели расширительных бачков. В них запас охлаждающей жидкости находился в верхнем бачке радиатора. Это было вполне допустимо, так как в основном в системе охлаждения использовалась вода, и её расширение при нагреве было небольшим. С распространением антифризов на основе этиленгликоля использование расширительного бака стало обязательным. Полупрозрачный бак, расположенный в доступном месте в верхней точке системы, облегчает также контроль уровня жидкости.
В поршневой авиации также применяются двигатели, в которых цилиндры охлаждаются непосредственно набегающим воздухом, а головки цилиндров — с использованием жидкостной системы охлаждения. Такое решение позволяет снизить массу двигателя и одновременно более эффективно охлаждать головки цилиндров, которые являются наиболее теплонагруженными частями двигателя.
Охлаждение масла[править | править код]
В дополнение к основной системе охлаждения в двигателях большой мощности (на грузовиках и тепловозах), а также на двигателях с воздушным охлаждением применяется охлаждение масла. Охлаждение масла необходимо также потому, что оно поступает к па́рам трения — самым чувствительным к перегреву местам двигателя. Масло может охлаждаться охлаждающей жидкостью, либо окружающим воздухом от отдельного радиатора.
Испарительная система охлаждения[править | править код]
Также существует подвид системы охлаждения, называемый испарительной системой охлаждения. Главное отличие её от обычных водяных или этиленгликолевых — доведение температуры охлаждающей жидкости (воды) выше точки кипения, в результате чего при испарении от теплонагруженных деталей отводится большое количество тепла. Пар конденсируется в жидкость в радиаторе и цикл повторяется. Подобные системы использовались в авиастроении в 30-х годах XX века.[1] Кроме того в Китае по состоянию на 2014 год продолжают выпускаться дизели мощностью от 8 до 24 л.с. с испарительным охлаждением, предназначенные для мотоблоков и минитракторов.