22.11.2024

Соединение тэнов звездой и треугольником – Садимся за парты… Урок физики.. Статьи компании «МДК-Киев: ТЭНы на любой вкус…»

Содержание

Соединение звездой и треугольником — схема и разница трехфазного соеднинения

Питание асинхронного электродвигателя происходит от трехфазной сети с переменным напряжением. Такой двигатель, при простой схеме подключения, оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.

Концы фазных обмоток электродвигателя выведены на специальную «колодку». Выполнено это с целью удобства соединения. В электротехнике используют основных 2 метода подключения асинхронных электродвигателей: методом соединения “треугольника” и метод “звезды”. При соединении концов применяют специально предназначенные для этого перемычки.

Соединение треугольником в двигателе

Различия между «звездой» и «треугольником»

Исходя из теории и практических знаний основ электротехники, способ подключения «звезда», позволяет электродвигателю работать плавнее и мягче. Но при этом данный способ не позволяет выйти двигателю на всю мощность, представленную в технических характеристиках.

Соединив фазные обмотки по схеме «треугольник», двигатель способен быстро выйти на максимальную рабочую мощность. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта. Но у такой схемы соединения есть свой недостаток: большие пусковые токи. Для уменьшения значения токов применяют пусковой реостат, позволяя осуществить более плавный пуск двигателя.

Соединение «звездой» и его преимущества

Реверсивная схема двигателя 380 на 220 Вольт

Реверсивная схема двигателя 380 на 220 Вольт

Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.

При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.

Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.

Основные преимущества применения схемы «звезда»:

  • Устойчивый и длительный режим безостановочной работы двигателя;
  • Повышенная надежность и долговечность, за счет снижения мощности оборудования;
  • Максимальная плавность пуска электрического привода;
  • Возможность воздействия кратковременной перегрузки;
  • В процессе эксплуатации корпус оборудования не перегревается.

Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.

Подключение трехфазного двигателя к однофазной сети по схеме звезда

Подключение трехфазного двигателя к однофазной сети по схеме звезда

Соединение «треугольником» и его преимущества

Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии – конец одной обмотки с началом другой. В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования. Форму треугольника предает эргономичное размещение соединения обмоток.

При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.

Основные преимущества применения схемы «треугольник»:

  • Увеличение до максимального значения мощности электрооборудования;
  • Использование пускового реостата;
  • Повышенный вращающийся момент;
  • Большие тяговые усилия.

Недостатки:

  • Повышенный ток пуска;
  • При длительной работе двигатель сильно греется.

Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.

Подключение трехфазного двигателя к однофазной сети по схеме треугольник

Подключение трехфазного двигателя к однофазной сети по схеме треугольник

Тип соединения «звезда-треугольник»

В сложных механизмах, зачастую используется комбинированная схема «звезда-треугольник». При таком переключении резко вырастает мощность, и если двигатель по техническим характеристикам не предназначен для работы по методу «треугольника», то он перегреется и сгорит.

Двигатели с повышенной мощностью обладают большими пусковыми токами, и как следствие при пуске часто вызывают перегорание предохранителей, отключению автоматов. Для снижения линейного напряжения в обмотках статора применяют автотрансформаторы, универсальные дросселя, пусковые реостаты или соединение типа «звезда».

Схемы подключения звездой и треугольником

Схемы подключения звездой и треугольником

В этом случае напряжение на соединении каждой обмотки будет в 1,73 раза меньше, следовательно, будет меньше и протекающий в этот период ток. Дальше происходит увеличение частоты и продолжение снижения показания тока. Тогда применяя релейно-контактную схему, произойдет переключение со «звезды» на «треугольник».

В итоге, используя данную комбинацию, получим максимальную надежность и эффективную продуктивность используемого электрического оборудования, не боясь вывести ее из строя.

Переключение «звезда-треугольник» допустимо для электродвигателей с облегченным режимом пуска. Этот метод неприменим, если необходимо понизить ток пуска и одновременно не снижать большой пусковой момент. В этом случае применяют двигатель с фазным ротором с пусковым реостатом.

Основные преимущества комбинации:

  • Увеличение срока службы. Плавный пуск позволяет избежать неравномерности нагрузки на механическую часть установки;
  • Возможность создания двух уровней мощности.

Блиц-советы

  1. В момент пуска электродвигателя, его ток пуска в 7 раз больше рабочего тока.
  2. Мощность в 1,5 раза больше при соединении обмоток методом «треугольника».
  3. Для создания плавного пуска и защиты от перегрузок двигателя, часто используются частотные провода.
  4. При использовании метода соединения «звездой», особое внимание уделяют отсутствию «перекоса фаза», иначе оборудование может выйти из строя.
  5. Линейные и фазные напряжения при соединении «треугольник» – равны между собой, как и линейные и фазные токи в соединении «звездой».
  6. Для подключения двигателя к бытовой сети зачастую применяют фазосдвигающий конденсатор.

Особенности схем подключения нагрузок к тиристорному регулятору

Наиболее часто на практике используется четыре схемы подключения нагрузок к тиристорному регулятору: звезда, треугольник, звезда с рабочей нейтралью и разомкнутый треугольник.

Схемы подключения звезда и треугольник приведены на рисунке 1.

Тиристорный регулятор
Рисунок 1. Подключение нагрузки к трехфазному тиристорному регулятору по схемам звезда и треугольник

Основное достоинство этих двух схем — простота и минимальное количество силового провода, за счет чего они и получили наиболее широкое распространение. При соединении нагрузки звездой максимальное напряжение на нагрузочном сопротивлении равно фазному напряжению Uф, а при соединении треугольником — линейному Uл. Соответственно, звездой соединяют нагрузку, рассчитанную на напряжение 220 В, а треугольником — 380 В.

Кривая тока, протекающего по фазному проводу изображена на рисунке 2.

Тиристорный регулятор
Рисунок 2. Кривая тока в фазах при соединении звездой или треугольником, активная нагрузка

Однако у простоты схемы есть обратная сторона медали — напряжения на нагрузочных сопротивлениях распределяются поровну только при условии строго равенства фазных напряжения (Uа = Ub = Uс) и равенства сопротивлений нагрузок (Ra = Rb = Rc или Rab = Rbc = Rca). Как правило, на практике это условие почти никогда не выполняется и возникает небаланс напряжений: на разных сопротивления нагрузки при полностью включенных тиристорах устанавливаются неравные напряжения, например, на одном сопротивлении 210 В, на другом 215 В, на третьем 230 В.

В большинстве своем эти небалансы невелики: разброс по напряжению невелик и составляет не больше 4-8%, что вполне допустимо. Но иногда при неудачном соотношении параметров — сильном «перекосе» фаз с одновременно неравными сопротивлениями нагрузки — напряжения могут распределиться с большим разбросом, например 190, 220 и 250 В. Это ведет к неравномерному износу ТЭНов и преждевременному выгоранию одного из них.

Довольно часто бывает, что в одной из фаз постоянно выгорает ТЭН неизвестно от чего. Обычно это является следствием выше описанного явления.

В схемах подключения звезда с рабочей нейтралью и разомкнутый треугольник

(рисунок 3) это явление проявляется гораздо меньшей степени.

Тиристорный регулятор
Рисунок 3. Подключение нагрузок по схемам звезда с рабочей нейтралью и разомкнутый треугольник

При подключении нагрузки по схеме звезда с нулем максимальное напряжение на нагрузочном сопротивлении равно фазному напряжению сети, при этом ток каждой фазы определяется лишь напряжением фазы и сопротивлением нагрузочного резистора, включенного в эту фазу, и не зависит напряжений других фаз и от сопротивлений остальных нагрузочных сопротивлений, то есть Ia = Ua / Ra, Ib = Ub / Rb, Ic = Uc / Rc.

Другое важное свойство схемы — возможность выравнивания токов, напряжений и мощностей на нагрузочных сопротивлениях в случае «перекоса» фаз питающей сети. Например, тиристорный регулятор тока ТРМ-С может автоматически корректировать напряжение на нагрузке таким образом, чтобы на каждом сопротивлении нагрузки выделялась равная мощность. Это способствует продлению срока службы ТЭНов, а также энергосбережению – за счет устранения перекосов по фазам достигается дополнительная экономия электроэнергии 1-3%.

Еще один плюс этой схемы — это меньший уровень излучаемых электромагнитных помех.

Все выше сказанное также верно и для схемы разомкнутого треугольника, с той лишь разницей, что максимальное напряжение на нагрузочных сопротивлениях равно линейному, а ток нагрузки определяется линейным напряжением Iab = Uab / Rab, Ibc = Ubc / Rbc, Ica = Uca / Rca.

Недостатков у схемы звезда с нейтралью два. Первый — это необходимость подключения нулевого провода, что на практике иногда бывает затруднительно. Например, у нагревательного аппарата может быть сделано три вывода для подключения фазных проводов, а общая точка звезды — внутри аппарата и недоступна для подключения. В этом случае реализовать подключение по схемы звезды с нейтралью невозможно.

Второй недостаток — это протекание тока через нейтраль при фазо-импульсном управлении даже при полностью равных сопротивлениях нагрузки и фазных напряжениях, что проиллюстрировано на рисунке 4: в верхней его части изображены кривые токов, протекающие по фазам А, В и С, а внизу — ток в нулевом проводе.

Тиристорный регулятор
Рисунок 4. Протекание тока через нулевой проводник

При этом величина тока в нулевом проводе может быть в 1,5-2 раза больше чем ток в фазах. Это приводит к необходимости прокладки нулевого проводника увеличенным сечением, что, разумеется, увеличивает и стоимость кабельных линий. Незнание или недооценка же этого явления приводит к постепенному выходу из строя нейтрального провода.

Это иногда вызывает удивление: казалось бы, напряжения фаз равные, сопротивления фаз равные, откуда ток в нуле?! Но объясняется это явление просто. Дело в том, что при фазо-импульсном управлении тиристорами форма тока становится не синусоидальной и поэтому не происходит полной компенсации токов в нулевом проводе, как при питании трехфазной нагрузки синусоидальным током.

Отсюда вывод — чтобы ток в нулевом проводе был минимальный необходимо использовать управление пропуском периодов. В этом случае токи фаз будут синусоидальны, а значит ток в нейтрали будет определятся лишь небалансом напряжений фаз и сопротивлений. Практически, это приводит к тому, что ток в нуле становится не больше 10% от тока фазы.

Напоследок, рассмотрим схему соединения разомкнутый треугольник. У схемы есть замечательное свойство — тиристоры при таком соединении коммутируют не фазные токи, а линейные, которые меньше в 1,73 раза. Например, если ток фазы составляет 650 А, то токи в линейных проводах составляют Iл = 650 / 1,73 = 380 А. По сравнению со схемой соединения обычным треугольником, это дает возможность приобретать тиристорный регулятор на меньший номинальный ток, который соответственно дешевле и меньше в габаритах. Это показано на рисунке 5. В верхней части рисунка нагрузка соединена треугольником, при этом через тиристоры протекают токи 650 А, а значит необходимо приобретение тиристорного регулятора номинальным током не менее 700-800 А. А в нижней части нагрузка соединена разомкнутым треугольником, при этом по фазам протекает такой же ток 650 А, но поскольку тиристоры коммутируют ток 380 А, то достаточно иметь тиристорный регулятор с номинальным током 400-500 А, что в 1,5-2 раза дешевле.

Тиристорный регулятор
Рисунок 5. Сравнение схем треугольник и разомкнутый треугольник

Жаль, но несмотря на такое преимущество, эта схема не получила большого распространения. Почему? Первое, как и для звезды с нейтралью, для реализации такой схемы подключения должны быть доступны оба конца выводов нагрузок, что опять же не всегда возможно. Например, у трансформатора, первичная обмотка которого соединена треугольником чаще всего выведена только три конца, а вторые три спрятаны внутри. Второе – это увеличенная стоимость кабельного хозяйства — посмотрите внимательно на рисунок 5: при соединении разомкнутым треугольником требуется дополнительный силовой кабель («обратный» кабель от нагрузки). Учитывая высокую стоимость кабелей, можно сказать, что такая схема целессобразно лишь при небольшой длине кабельных линий до 20-30 метров при прокладке медным кабелем и до 50-70 метров при прокладке алюминиевым. При большой длине экономия, полученная от приобретения более дешевого регулятора обнуляется за счет более высокой стоимости кабельного хозяйства.

Соединение звездой и треугольником обмоток

Здравствуйте, уважаемые гости и посетители сайта «Заметки электрика».

В прошлой статье я рассказал Вам про применение асинхронного двигателя и его устройство, а также подробно познакомились с двумя разновидностями асинхронного двигателя.

Сегодня я расскажу Вам про соединение звездой и треугольником обмоток асинхронных двигателей, т.к. это один из распространенных вопросов, который мне задают на личную почту.

Вспомним вкратце принцип действия асинхронного двигателя. Питание такого двигателя осуществляется от сети трехфазного переменного напряжения. В статоре имеются 3 обмотки, которые сдвинуты относительно друг друга на 120 электрических градуса. Это сделано с целью создания вращающегося магнитного поля.

Обозначаются вывода обмоток статора асинхронных двигателей следующим образом:

С1, С2, С3 – начала обмоток, С4, С5, С6 – конец обмоток. Но сейчас все чаще применяется новая маркировка выводов по ГОСТу 26772-85. U1, V1, W1 — начала обмоток, U2, V2, W2 – конец обмоток.

Выводы фазных обмоток асинхронного двигателя выводятся на клеммник или колодку и располагаются таким образом, чтобы соединения звездой или треугольником было удобно выполнить без перекрещивания с помощью специальных перемычек.

Клеммник, его еще называют «борно», чаще всего устанавливается сверху, реже – сбоку. Некоторые клеммники можно разворачивать на 180 градусов, для удобства подводки питающих кабелей.

Всего  на клеммник может быть выведено 3 или 6 выводов фазных обмоток статора.

Разберем каждый случай отдельно.

Пример

Если в клеммник выведено 6 выводов обмоток статора, то асинхронный двигатель можно подключить в сеть на 2 разных уровня напряжения, отличающихся на величину в 1,73 раза (√3).

Для наглядности рассмотрим пример. Допустим, у нас имеется электродвигатель, на табличке которого указано напряжение 220/380 (В).

Что это значит?

А это значит, что если в сети уровень линейного напряжения составляет 380 (В), то обмотки статора необходимо соединить в схему звезды.

 

Соединение звездой

Соединение звездой фазных обмоток статора асинхронного двигателя выполняется следующим образом. Концы всех трех обмоток нужно соединить в одну точку с помощью специальной перемычки, о которой я говорил чуть выше. А на их начала подать трехфазное напряжение сети.

Из рисунка выше видно, что напряжение на фазной обмотке составляет 220 (В), а линейное напряжение между двумя фазными обмотками составляет 380 (В).

На клеммнике соединение звездой обмоток будет выглядеть следующим образом.

Соединение треугольником

Вернемся к нашему примеру.

Если в сети уровень линейного напряжения составляет 220 (В), то обмотки статора необходимо соединить в схему треугольника.

Соединение треугольником фазных обмоток статора асинхронного двигателя выполняется следующим образом.

  • конец обмотки фазы «А» C4 (U2) необходимо соединить с началом обмотки фазы «В» С2 (V1)
  • конец обмотки фазы «В» С5 (V2)  необходимо соединить с началом обмотки фазы «С» С3 (W1)
  • конец обмотки фазы «С» С6 (W2)  необходимо соединить с началом обмотки фазы «А» С1 (U1)

Места их соединения подключаются к соответствующим фазам питающего трехфазного напряжения.

Из рисунка видно, что при линейном напряжении сети 220 (В) напряжение на фазной обмотке составляет тоже 220 (В).

На клеммнике при соединении треугольником обмоток статора асинхронного двигателя специальные перемычки нужно установить следующим образом:

В нашем примере при соединении звездой и треугольником напряжение на каждой фазной обмотке асинхронного двигателя будет 220 (В).

Частный случай

Бывают ситуации, когда на клеммник асинхронного двигателя выведено всего 3 вывода, вместо 6. В этом случае соединение звездой или треугольником выполняется внутри двигателя на лобной (торцевой) его части.

Такой асинхронный двигатель можно включать в сеть только на одно напряжение, указанное на табличке с техническими данными.

В нашем примере обмотки статора асинхронного двигателя соединяются по схеме звезда и его можно включать в сеть напряжением 380 (В).

Выводы

В конце данной статьи про соединение звездой и треугольником сделаю вывод, основанный на опыте эксплуатации электродвигателей.

При соединении звездой обмоток асинхронного электродвигателя наблюдается более мягкий запуск и плавная его работа, а также возможность кратковременной перегрузки.

При соединении треугольником обмоток асинхронного электродвигателя происходит достижение его максимальной мощности, но во время пуска пусковые токи имеют большое значение. Также замечено, что при соединении треугольником двигатель больше нагревается (выявлено опытным путем с помощью тепловизора при одной и той же нагрузке).

В связи с вышесказанным, принято асинхронные двигатели средней  мощности и выше запускать по схеме звезда. При наборе номинальной частоты вращения в автоматическом режиме происходит переключение его на схему треугольника. Эту схему мы с Вами рассмотрим в ближайших статьях. Следите за обновлениями на сайте.

P.S. А что делать, когда вывода фазных обмоток асинхронного двигателя не про маркированы соответствующим образом? Об этом Вы узнаете в моей статье про определение начала и конца обмоток электродвигателя. Чтобы не пропустить выход новой статьи, то подпишитесь. Форма подписки расположена в конце статьи или в правом сайтбаре.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Звезда и треугольник принцип подключения. Особенности и работа

Для увеличения мощности передачи без увеличения напряжения сети, снижения пульсаций напряжения в блоках питания, для уменьшения числа проводов при подключении нагрузки к питанию, применяют различные схемы соединения обмоток источников питания и потребителей (звезда и треугольник).

Схемы

Обмотки генераторов и приемников при работе с 3-фазными сетями могут соединяться с помощью двух схем: звезды и треугольника. Такие схемы имеют между собой несколько отличий, различаются также нагрузкой по току.  Поэтому, перед подключением электрических машин необходимо выяснить разницу в этих двух схемах — звезда и треугольник.

Схема звезды

Соединение различных обмоток по схеме звезды предполагает их подключение в одной точке, которая называется нулевой (нейтральной), и имеет обозначение на схемах «О», либо х, у, z. Нулевая точка может иметь соединение с нулевой точкой источника питания, но не во всех случаях такое соединение имеется. Если такое соединение есть, то такая система считается 4-проводной, а если нет такого соединения, то 3-проводной.

Схема треугольника

При такой схеме концы обмоток не объединяются в одну точку, а соединяются с другой обмоткой. То есть, получается схема, похожая по виду на треугольник, и соединение обмоток в ней идет последовательно друг с другом. Нужно отметить отличие от схемы звезды в том, что в схеме треугольника система бывает только 3-проводной, так как общая точка отсутствует.

В схеме треугольника при отключенной нагрузке и симметричной ЭДС равно 0.

Фазные и линейные величины

В 3-фазных сетях питания имеется два вида тока и напряжения – это фазные и линейные. Фазное напряжение – это его величина между концом и началом фазы приемника. Фазный ток протекает в одной фазе приемника.

При применении схемы звезды фазными напряжениями являются Ua, Ub, Uc, а фазными токами являются I a, I b, I c. При применении схемы треугольника для обмоток нагрузки или генератора фазные напряжения — U, U, U, фазные токи – I ac, I , I .

Линейные значения напряжения измеряются между началами фаз или между линейных проводников. Линейный ток протекает в проводниках между источником питания и нагрузкой.

В случае схемы звезды линейные токи равны фазным, а линейные напряжения равны U ab, Ubc, U ca. В схеме треугольника получается все наоборот – фазные и линейные напряжения равны, а линейные токи равны I a, I b, I c.

Большое значение уделяется направлению ЭДС напряжений и токов при анализе и расчете 3-фазных цепей, так как его направление влияет на соотношение между векторами на диаграмме.

Особенности схем

Между этими схемами есть существенная разница. Давайте разберемся, для чего в различных электроустановках используют разные схемы, и в чем их особенности.

Во время пуска электрического мотора ток запуска имеет повышенную величину, которая больше его номинального значения в несколько раз. Если это механизм с низкой мощностью, то защита может и не сработать. При включении мощного электромотора защита обязательно сработает, отключит питание, что обусловит на некоторое время падение напряжения и перегорание предохранителей, или отключение электрических автоматов. Электродвигатель будет работать с малой скоростью, которая меньше номинальной.

Видно, что имеется немало проблем, возникающих из-за большого пускового тока. Необходимо каким-либо образом снижать его величину.

Для этого можно применить некоторые методы:
  • Подключить на запуск электродвигателя реостат, дроссель, либо трансформатор.
  • Изменить вид соединения обмоток ротора электродвигателя.

В промышленности в основном применяют второй способ, так как он наиболее простой и дает высокую эффективность. Здесь работает принцип переключения обмоток электромотора на такие схемы, как звезда и треугольник. То есть, при запуске мотора его обмотки имеют соединение «звезда», после набора эксплуатационных оборотов, схема соединения изменяется на «треугольник». Этот процесс переключения в промышленных условиях научились автоматизировать.

В электромоторах целесообразно применение сразу двух схем — звезда и треугольник. К нулевой точке необходимо подключить нейтраль источника питания, так как во время использования таких схем возникает повышенная вероятность перекоса фазных амплитуд. Нейтраль источника компенсирует эту асимметрию, которая возникает вследствие разных индуктивных сопротивлений обмоток статора.

Достоинства схем
Соединение по схеме звезды имеются важные преимущества:
  • Плавный пуск электрического мотора.
  • Позволяет функционировать электродвигателю с заявленной номинальной мощностью, соответствующей паспорту.
  • Электродвигатель будет иметь нормальный рабочий режим при различных ситуациях: при высоких кратковременных перегрузках, при длительных незначительных перегрузках.
  • При эксплуатации корпус электродвигателя не перегреется.

Основным достоинством схемы треугольника является получение от электродвигателя наибольшей возможной мощности работы. Целесообразно поддерживать режимы эксплуатации по паспорту двигателя. При исследовании электромоторов со схемой треугольника выяснилось, что его мощность повышается в 3 раза, по сравнению со схемой звезды.

При рассмотрении генераторов, схемы – звезда и треугольник по параметрам аналогичны при функционировании электродвигателей. Выходное напряжение генератора будет больше в схеме треугольника, чем в схеме звезды. Однако, при повышении напряжения снижается сила тока, так как по закону Ома эти параметры обратно пропорциональны друг другу.

Поэтому можно сделать вывод, что при разных соединениях концов обмоток генератора можно получить два разных номинала напряжения. В современных мощных электромоторах при запуске схемы – звезда и треугольник переключаются автоматически, так как это позволяет снизить нагрузку по току, возникающей при пуске мотора.

Процессы, происходящие при изменении схемы звезда и треугольник в разных случаях

Здесь, изменение схемы — имеется ввиду переключение на щитах и в клеммных коробках электрических устройств, при условии, что имеются выводы обмоток.

Обмотки генератора и трансформатора

При переходе со звезды в треугольник напряжение уменьшается с 380 до 220 вольт, мощность остается прежней, так как фазное напряжение не изменяется, хотя линейный ток увеличивается в 1,73 раза.

При обратном переключении возникают обратные явления: линейное напряжение увеличивается с 220 до 380 вольт, а фазные токи не изменяются, однако линейные токи снижаются в 1,73 раза. Поэтому можно сделать вывод, что если есть вывод всех концов обмоток, то вторичные обмотки трансформатора и генераторы можно применять на два типа напряжения, которые отличаются в 1,73 раза.

Лампы освещения

При переходе со звезды в треугольник лампы сгорят. Если переключение сделать обратное, при условии, что лампы при треугольнике горели нормально, то лампы будут гореть тусклым светом. Без нулевого провода лампы можно соединять звездой при условии, что их мощность одинакова, и распределяется равномерно между фазами. Такое подключение применяется в театральных люстрах.

Похожие темы:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *