14.07.2024

Пирометр принцип работы – принцип работы и коэффициент излучения прибора. Измерение температуры бесконтактным методом

Содержание

Пирометр — это… Что такое Пирометр?

Переносной пирометр инфракрасного излучения Стационарный пирометр инфракрасного излучения Оптический пирометр

Пирометр — прибор для бесконтактного измерения температуры тел. Принцип действия основан на измерении мощности теплового излучения объекта измерения преимущественно в диапазонах инфракрасного излучения и видимого света.

Назначение

Пирометры применяют для дистанционного определения температуры объектов в промышленности, быту, сфере ЖКХ, на предприятиях, где большое значение приобретает контроль температур на различных технологических этапах производства (сталелитейная промышленность, нефтеперерабатывающая отрасль). Пирометры могут выступать в роли средства безопасного дистанционного измерения температур раскаленных объектов, что делает их незаменимыми для обеспечения должного контроля в случаях, когда физическое взаимодействие с контролируемым объектом невозможно из-за высоких температур. Их можно применять в качестве теплолокаторов (усовершенствованные модели), для определения областей критических температур в различных производственных сферах.

История

Один из первых пирометров изобрёл Питер ван Мушенбрук. Изначально термин использовался применительно к приборам, предназначенным для измерения температуры визуально, по яркости и цвету сильно нагретого (раскалённого) объекта. В настоящее время смысл несколько расширен, в частности, некоторые типы пирометров (такие приборы правильнее называть инфракрасные радиометры) измеряют достаточно низкие температуры (0 °C и даже ниже).

Развитие современной пирометрии и портативных пирометров началось с середины 60-х годов прошлого столетия и продолжается до сих пор. Именно в это время были сделаны важнейшие физические открытия, позволившие начать производство промышленных пирометров с высокими потребительскими характеристиками и малыми габаритными размерами. Первый портативный пирометр был разработан и произведен американской компанией Wahl в 1967 году. Новый принцип построения сравнительных параллелей, когда вывод о температуре тела производился на основе данных инфракрасного приемника, определяющего количество излучаемой телом тепловой энергии, позволил существенно расширить границы измерения температур твердых и жидких тел.

Классификация пирометров

Пирометры можно разделить по нескольким основным признакам:

  • Яркостные. Позволяют визуально определять, как правило, без использования специальных устройств, температуру нагретого тела, путем сравнения его цвета с цветом эталонной нити.
  • Радиационные. Оценивают температуру посредством пересчитанного показателя мощности теплового излучения. Если пирометр измеряет в широкой полосе спектрального излучения, то такой пирометр называют пирометром полного излучения.
  • Цветовые (другие названия: мультиспектральные, спектрального отношения) — позволяют делать вывод о температуре объекта, основываясь на результатах сравнения его теплового излучения в различных спектрах.

Температурный диапазон

  • Низкотемпературные. Обладают способностью показывать температуры объектов, обладающих даже отрицательными значениями этого параметра.
  • Высокотемпературные. Оценивают лишь температуру сильно нагретых тел, когда определение «на глаз» не представляется возможным. Обычно имеют сильное смещение в пользу «верхнего» предела измерения.

Исполнение

  • Переносные. Удобны в эксплуатации в условиях, когда необходима высокая точность измерений, в совокупности с хорошими подвижными свойствами, например для оценки температуры труднодоступных участков трубопроводов. Обычно снабжены небольшим дисплеем, отображающим графическую или текстово-цифровую информацию.
  • Стационарные. Предназначены для более точной оценки температуры объектов. Используются в основном в крупной промышленности, для непрерывного контроля технологического процесса производства расплавов металлов и пластиков.

Визуализация величин

  • Текстово-цифровой метод. Измеряемая температура выражается в градусах на цифровом дисплее. Попутно можно видеть дополнительную информацию.
  • Графический метод. Позволяет видеть наблюдаемый объект в спектральном разложении областей низких, средних и высоких температур, выделенных различными цветами.

Вне зависимости от классификации, пирометры могут снабжаться дополнительными источниками питания, а также средствами передачи информации и связи с компьютером или специализированными устройствами (обычно через шину RS-232).

Основные источники погрешности пирометров

Самыми важными характеристиками пирометра, определяющими точность измерения температуры являются оптическое разрешение и настройка степени черноты объекта

[1].

Иногда оптическое разрешение называют показателем визирования. Этот показатель рассчитывается как отношение диаметра пятна (круга) на поверхности, излучение с которого регистрируется пирометром к расстоянию до объекта. Чтобы правильно выбрать прибор, необходимо знать сферу его применения. Если необходимо проводить измерения температуры с небольшого расстояния, то лучше выбрать термометр с небольшим разрешением, например, 4:1. Если температуру необходимо измерять с расстояния в несколько метров, то рекомендуется выбирать пирометр с большим разрешением, чтобы в поле зрения не попали посторонние предметы. У многих пирометров есть лазерный целеуказатель для точного наведения на объект.

Cтепень черноты (или коэффициент излучения) характеризует свойства поверхности объекта, температуру которого измеряет пирометр. Этот показатель определяется как отношение энергии, излучаемой данной поверхностью при определенной температуре к энергии излучения абсолютно черного тела при той же температуре. Он может принимать значения от 0,1 до близких к 1. Неправильный выбор коэффициента излучения — основной источник погрешности для всех пирометрических методов измерения температуры [2]. На коэффициент излучения сильно влияет окисленность поверхности металлов. Так, если для стали окисленной коэффициент составляет примерно 0,85, то для полированной стали он снижается до 0,075.

[3]

Применения

Теплоэнергетика — для быстрого и точного контроля температуры на участках не доступных или мало доступных для другого вида измерения.

Электроэнергетика — контроль и пожарная безопасность, эксплуатация объектов (железнодорожный транспорт — контроль температуры букс и ответственных узлов грузовых и пассажирских вагонов).

Лабораторные исследования — при проведении исследований активных веществ в активных средах, а также в тех случаях, при которых контактный метод нарушает чистоту эксперимента (например, тело настолько мало что при измерении контактным методом потеряет существенную часть теплоты, или просто слишком хрупкое для такого типа измерения). Применяется в космонавтике (контроль, опыты)

Строительство — пирометры применяют для определения теплопотерь в зданиях жилого и промышленного назначения, на теплотрассах, для эффективного нахождения прорывов теплоизоляционной оболочки.

Бытовое применение — измерение температуры тела, пищи при приготовлении, и многое другое.

Отдельная большая область применения пиросенсоров — датчики движения в системах охраны зданий. Датчики реагируют на изменение инфракрасного излучения в помещении.

Примечания

См. также

Ссылки

Литература

Книги

  • Линевег Ф. Измерение температур в технике. Справочник. — Москва «Металлургия», 1980
  • Криксунов Л. З. Справочник по основам инфракрасной техники. — М.: Советское радио, 1978. — 400 с.
  • Кременчугский Л. С., Ройцина О. В. Пироэлектрические приемники излучения. — Киев: Наук. думка, 1979. — 381 с.
  • Температурные измерения. Справочник. — Киев: Наукова думка, 1989, 703 с.
  • Рибо Г. Оптическая пирометрия, пер. с франц., М. — Л., 1934
  • Гордов А. Н. Основы пирометрии, 2 изд., М., 1971.

Журналы

  • Белозеров А. Ф., Омелаев А. И., Филиппов В. Л. Современные направления применения ИК радиометров и тепловизоров в научных исследованиях и технике. // Оптический журнал, 1998, № 6, с.16.
  • Скобло В. С. К оценке дальности действия тепловизионных систем. // Известия высших учебных заведений. Приборостроение. 2001. Т.44, № 1, с. 47.
  • Захарченко В. А., Шмойлов А. В. Приемник инфракрасного излучения // Приборы и техника эксперимента, 1979, № 3, с.220.
  • Исмаилов М. М., Петренко А. А., Астафьев А. А., Петренко А. Г. Инфракрасный радиометр для определения тепловых профилей и индикации разности температур. // Приборы и техника эксперимента, 1994, № 4, с.196.
  • Мухин Ю. Д., Подъячев С. П., Цукерман В. Г., Чубаков П. А. Радиационные пирометры для дистанционного измерения и контроля температуры РАПАН-1 и РАПАН-2 // Приборы и техника эксперимента, 1997, № 5, с.161.
  • Афанасьев А. В., Лебедев В. С., Орлов И. Я., Хрулев А. Е. Инфракрасный пирометр для контроля температуры материалов в вакуумных установках // Приборы и техника эксперимента, 2001, № 2, с.155-158.
  • Авдошин Е. С. Светопроводные инфракрасные радиометры (обзор) // Приборы и техника эксперимента, 1988, № 2, с.5.
  • Авдошин Е. С. Волоконный инфракрасный радиометр. // Приборы и техника эксперимента, 1989, № 4, с.189.
  • Сидорюк О. Е. Пирометрия в условиях интенсивного фонового излучения. // Приборы и техника эксперимента, 1995, № 4, с.201.
  • Порев В. А. Телевизионный пирометр // Приборы и техника эксперимента, 2002, № 1, с.150.
  • Широбоков А. М., Щупак Ю. А., Чуйкин В. М. Обработка тепловизионных изображений, получаемых многоспектральным тепловизором «Терма-2». // Известия высших учебных заведений. Приборостроение. 2002. Т.45, № 2, с.17.
  • Букатый В. И., Перфильев В. О. Автоматизированный цветовой пирометр для измерения высоких температур при лазерном нагреве. // Приборы и техника эксперимента, 2001, № 1, с.160.
  • Chrzanowski K., Bielecki Z., Szulim M. Comparison of temperature resolution of single-band, dual-band and multiband infrared systems // Applied Optics. 1999. Vol. 38 № 13. p. 2820.
  • Chrzanowski K., Szulim M. Error of temperature measurement with multiband infrared systems // Applied Optics. 1999. Vol. 38 № 10. p. 1998.

Принцип работы радиационного пирометра.

Содержание страницы

Одним из весьма востребованных и распространенных промышленных измерительных приборов является радиационный пирометр. Назначение устройств радиационного типа – то же, что и прочих пирометрических устройств: определение бесконтактным способом температурных показателей поверхности исследуемых объектов.

Отличительной особенностью радиационных приборов является нижнее ограничение интервала измеряемой температуры – от 400…700°С. Именно этот фактор определяет сферы возможного использования:

  • металлургическая и металлообрабатывающая отрасль;
  • стеклоплавильное и керамическое производство;
  • инженерия и строительство;
  • производство полупроводниковых элементов, пластмасс, резины, бумаги, красок и т.д.;
  • полиграфия и текстильное производство;
  • из «нестандартных» областей использования можно назвать медицину, криминалистику, охранные и спасательные системы и мероприятия;
  • прочие работы, требующие неконтактного определения температур объекта при любой спектральной частоте.

В отличие от оптических моделей, которые могут работать лишь в определенной полосе спектра, радиационные чувствительны в любом диапазоне частот – отсюда их второе название: «пирометры полного излучения».

Эти термодатчики представляют собой группу устройств с условной классификацией:

  • пирометры, определяющие температуру точки тела;
  • пирометры, измеряющие температуру некоторого участка на объекте;
  • пирометры для фиксации картины одномерного/двухмерного распределения температурной зоны на заданном участке обследования.

Эволюция радиационных термометров не стоит на месте: это класс постоянно развивающихся и совершенствующихся приборов с целью максимального повышения их точности.

Конструктивные особенности и основы использования

Работа пирометра радиационного типа основана на исследовании теплового электромагнитного излучения объекта с использованием термоэлемента. Ключевые узлы радиационного термометра:

  • объектив с окуляром для оператора;
  • термоприемник/термобатарея с включенным в электрическую цепь резистором, изменение сопротивления которого под действием лучистой энергии и фиксируется;
  • измерительное устройство.

Обязательное использование в качестве приемников термоэлементов (термопар, терморезисторов) обусловлено необходимостью восприятия не менее 90% излучения обследуемого объекта.

С помощью окуляра объектива радиационный пирометр направляется на исследуемый объект, излучение которого воздействует на термоприемник с последующим возникновением в термопарах электродвижущей силы.  Показатель этой силы замеряется измерительным устройством типа милливольтметра. Корректировка отснятых данных на величину коэффициента излучения во многих моделях осуществляется автоматически при заранее выполненных настройках.

Измерительные характеристики радиационных термодатчиков можно охарактеризовать следующим образом: достаточная точность при наибольшей (среди аналогов) чувствительности.

Наиболее популярные модели

Пирометр типа РАПИР

Основанный на принципе теплового воздействия излучения исследуемого объекта на термический элемент, этот прибор отечественного производства работает с температурами в пределах 400…2500°С. Стандартная комплектация включает в себя:

  • телескоп ТЕРА-50, являющийся первичным преобразующим излучение исследуемого тела датчиком;
  • панель сопротивлений типа ПУЭС-64, состоящую из разнотипных катушек;
  • защитная арматура типа ЗАРТ-53 для воздушного или водяного охлаждения, используемая при необходимости;
  • измерительные вторичные устройства – потенциометр или милливольтметр;
  • коробка соединительная КС-20 с проводами.

Без применения дополнительных защищающих элементов этот радиационный термодатчик может быть использован до 100°С окружающей среды. При температуре рабочего пространства свыше 1200°С предусмотрены защищающие телескоп от воздействия высоких температур экраны. Монтаж установки выполняется вертикальным способом.

Пирометр Кельвин

Является переносным, компактным прибором с оптическим разрешением, позволяющим выполнять температурные замеры объектов диаметром от 5 мм. Имеющие высокую точность и надежность в эксплуатации приборы серии Кельвин могут быть с успехом использованы в неблагоприятных условиях технических производств и климата.

Модельный ряд данной серии представляет собой несколько классов приборов:

  • Кельвин 911 – предназначенный для работы в экстремальных условиях оснащен корпусом из металла повышенной прочности с встроенным светодиодным осветителем;
  • Кельвин-Компакт – обладает дополнительным функционалом: первоначальная установка коэффициента излучения, визуальная и звуковая сигнализация при выходе полученного значения температуры за установленный предел, внутренняя память для хранения значений (до 1000 единиц), интерфейс обмена с персональным компьютером RS-232.
  • Кельвин ПЛЦ – оснащен лазерным маркером-указателем и оптическим прицелом, в дополнение к функционалу Кельвин-Компакт до 2000 единиц хранения расширена внутренняя память и присутствуют часы реального времени.

Все приборы этой серии соответствуют общепринятым стандартам, корпус имеет класс защиты IP65 (полностью пыленепроницаемый с защитой от водяных струй с любого направления).

Land RT8A

Основная сфера использования: неконтактный мониторинг, управление и измерение температурных показателей движущихся материалов или труднодоступных объектов. Имеет несколько вариантов монтажа, дополнительно комплектуется кожухом для охлаждения и оборудованием для очистки оптических линз при работе в жестких промышленных или климатических условиях.

Особенности данного инструмента:

  • настраиваемый таймер отклика;
  • длительная работа без возникновения дрейфа;
  • герметичный корпус, рассчитанный на тяжелые условия промышленного использования;
  • экономичный расход энергоресурсов;
  • аксессуары для различных вариантов монтажа.

Разностороннее применение данной модели вызвано высокой производительностью при отсутствии влияния на технологический процесс.

Видео по теме

Виды пирометров: Стационарный, Медицинский, Радиационный, Лазерный

Содержание страницы

Для измерения температур бесконтактным способом был разработан специальный прибор — пирометр, который часто именую как инфракрасный термометр. Принцип преобразования ИК- излучения от объекта положен в основу работы пирометром. В нынешнее время каждый желающий может купить этот прибор для личного пользования.

Стационарный пирометр

Был специально разработан, для массового применения в сфере промышленности. Прибор располагает широким выбором спектральных и температурных диапазонов, благодаря чему осуществляется охват практически полнейшего спектра задач температурного контроля всех технологических процессов на предприятии. Стационарные пирометры применяются в областях пищевой промышленности, транспорта, металлургии, огнеупорной промышленности, химической промышленности, машиностроения и строительной промышленности.

Медицинский пирометр

Для бесконтактного измерения температуры тела. Так же, с помощью данного прибора можно осуществлять измерение температуры жидкостей, выполнять массовое измерение температуры в коллективах, школах или больницах. Результат выводится на дисплей уже через 1-3 секунды. Прибор может воспроизводить результаты с клинической точностью в 0,18°С.

Радиационные пирометры

Основываются на тепловом действии лучей, еще называются ардометрами. Радиационные пирометры могут применяться для измерения температуры от 900 до 1800°С, некоторые модели могут измерять температуру и в 2000°С. Принцип действия оборудования заключается в том, что поток теплового излучения, который исходит от раскаленного тела, улавливается и уже фокусируется на тепловой части пирометра, которая соединена с термопарой.

Лазерный пирометр

Достаточно широко применяется в промышленности, в энергетике, сфере ЖКХ, в быту, на предприятиях.
Более детально о лазерных пирометрах можно почитать в этой статье.
В основном, действие пирометров базируется на бесконтактном измерении, но существуют модели, которые могут использоваться как пирометр контактный и бесконтактный. Контактную модель часто называют комбинированным типом, которая способна измерять мощность теплового излучения объекта преимущественно в диапазонах ИК- излучения.
Благодаря стремительному развитию технического прогресса, можно купить прибор самых различных производителей.

Известными производителями считаются Testo, Optris и Raytek.

Пирометр Testo применяется для измерения температуры на поверхностях различных объектов посредством бесконтактного способа. Прибор применяется для осуществления контроля высокотемпературных производственных процессов дистанционным способом. Данное устройство находит свое применение в быту, жилищно- коммунальной сфере и при научных исследованиях.
Следующий представитель — пирометр Оptris производится немецкой компанией и представляет собой высококачественный и инновационный прибор для бесконтактного измерения температуры. Он является достаточно компактным, портативным ручным изобретением, которое применяется в автосервисах, коммунальных хозяйствах и промышленности. Приборы получили широкое распространение благодаря набору функций, точности и высокому качеству за относительно невысокую стоимость.
Инфракрасный пирометр Raytek способен измерять высокую температуру в диапазоне от – 50°С до + 3000°С. Применяется данное устройство абсолютно во всех отраслях промышленности. Благодаря большим техническим возможностям пирометра осуществляется своевременная техническая диагностика производственных процессов и оборудования, профилактика аварий на производстве.

Термометр — Википедия

Ртутный медицинский термометр Электронный медицинский термометр Инфракрасный термометр

Термо́метр (греч. θέρμη «тепло» + μετρέω «измеряю») — прибор для измерения температуры воздуха, почвы, воды и так далее. Существует несколько видов термометров:

  • жидкостные;
  • механические;
  • электронные;
  • оптические;
  • газовые;
  • инфракрасные.

Изобретателем термометра принято считать Галилея: в его собственных сочинениях нет описания этого прибора, но его ученики, Нелли и Вивиани, засвидетельствовали, что уже в 1597 году он сделал нечто вроде термобароскопа (термоскоп). Галилей изучал в это время работы Герона Александрийского, у которого уже описано подобное приспособление, но не для измерения степеней тепла, а для поднятия воды при помощи нагревания. Термоскоп представлял собой небольшой стеклянный шарик с припаянной к нему стеклянной трубкой. Шарик слегка нагревали и конец трубки опускали в сосуд с водой. Через некоторое время воздух в шарике охлаждался, его давление уменьшалось и вода под действием атмосферного давления поднималась в трубке вверх на некоторую высоту. В дальнейшем при потеплении давление воздуха в шарике увеличивалось и уровень воды в трубке понижался при охлаждении же вода в ней поднималась. При помощи термоскопа можно было судить только об изменении степени нагретости тела: числовых значений температуры он не показывал, так как не имел шкалы. Кроме того, уровень воды в трубке зависел не только от температуры, но и от атмосферного давления. В 1657 г. термоскоп Галилея был усовершенствован флорентийскими учеными. Они снабдили прибор шкалой из бусин и откачали воздух из резервуара (шарика) и трубки. Это позволило не только качественно, но и количественно сравнивать температуры тел. Впоследствии термоскоп был изменен: его перевернули шариком вниз, а в трубку вместо воды налили бренди и удалили сосуд. Действие этого прибора основывалось на расширении тел, в качестве «постоянных» точек брали температуры наиболее жаркого летнего и наиболее холодного зимнего дня.

Изобретение термометра также приписывают лорду Бэкону, Роберту Фладду, Санториусу, Скарпи, Корнелиусу Дреббелю, Порте и Саломону де Коссу, писавшим позднее и частью имевшим личные отношения с Галилеем. Все эти термометры были воздушные и состояли из сосуда с трубкой, содержащего воздух, отделённый от атмосферы столбиком воды, они изменяли свои показания и от изменения температуры, и от изменения атмосферного давления.

Термометры с жидкостью описаны в первый раз в 1667 г. «Saggi di naturale esperienze fatte nell’Accademia del Cimento», где о них говорится как о предметах, давно изготовляемых искусными ремесленниками, которых называют «Confia», разогревающими стекло на раздуваемом огне лампы и выделывающими из него удивительные и очень нежные изделия. Сначала эти термометры наполняли водой, но они лопались, когда она замерзала; употреблять для этого винный спирт начали в 1654 году по мысли великого герцога тосканского Фердинанда II. Флорентийские термометры не только изображены в «Saggi», но сохранились в нескольких экземплярах до нашего времени в Галилеевском музее, во Флоренции; их приготовление описывается подробно.

Сначала мастер должен был сделать деления на трубке, соображаясь с её относительными размерами и размерами шарика: деления наносились расплавленной эмалью на разогретую на лампе трубку, каждое десятое обозначалось белой точкою, а другие чёрными. Обыкновенно делали 50 делений таким образом, чтобы при таянии снега спирт не опускался ниже 10, а на солнце не поднимался выше 40. Хорошие мастера делали такие термометры настолько удачно, что все они показывали одно и то же значение температуры при одинаковых условиях, однако такого не удавалось достигнуть, если трубку разделяли на 100 или 300 частей, чтобы получить большую точность. Наполняли термометры посредством подогревания шарика и опускания конца трубки в спирт, заканчивали наполнение при помощи стеклянной воронки с тонко оттянутым концом, свободно входившим в довольно широкую трубку. После регулирования количества жидкости, отверстие трубки запечатывали сургучом, называемым «герметическим». Из этого ясно, что эти термометры были большими и могли служить для определения температуры воздуха, но были ещё неудобны для других, более разнообразных опытов, и градусы разных термометров были не сравнимы между собою.

В 1703 г. Амонтон (Guillaume Amontons) в Париже усовершенствовал воздушный термометр, измеряя не расширение, а увеличение упругости воздуха, приведённого к одному и тому же объёму при разных температурах подливанием ртути в открытое колено; барометрическое давление и его изменения при этом принимались во внимание. Нулём такой шкалы должна была служить «та значительная степень холода», при которой воздух теряет всю свою упругость (то есть современный абсолютный нуль), а второй постоянной точкой — температура кипения воды. Влияние атмосферного давления на температуру кипения ещё не было известно Амонтону, а воздух в его термометре не был освобождён от водяных газов; поэтому из его данных абсолютный нуль получается при −239,5° по шкале Цельсия. Другой воздушный термометр Амонтона, выполненный очень несовершенно, был независим от изменений атмосферного давления: он представлял сифонный барометр, открытое колено которого было продолжено кверху, снизу наполнено крепким раствором поташа, сверху нефтью и оканчивалось запаянным резервуаром с воздухом.

Современную форму термометру придал Фаренгейт и описал свой способ приготовления в 1723 г. Первоначально он тоже наполнял свои трубки спиртом и лишь под конец перешёл к ртути. Нуль своей шкалы он поставил при температуре смеси снега с нашатырём или поваренной солью, при температуре «начала замерзания воды» он показывал 32°, а температура тела здорового человека во рту или под мышкой была эквивалентна 96°. Впоследствии он нашёл, что вода кипит при 212° и эта температура была всегда одна и та же при том же состоянии барометра. Сохранившиеся экземпляры термометров Фаренгейта отличаются тщательностью исполнения.

Окончательно установил обе постоянные точки, тающего льда и кипящей воды, шведский астроном, геолог и метеоролог Андерс Цельсий в 1742 г. Но первоначально он ставил 0° при точке кипения, а 100° при точке замерзания. В своей работе Цельсий «Observations of two persistent degrees on a thermometer» рассказал о своих экспериментах, показывающих, что температура плавления льда (100°) не зависит от давления. Он также определил с удивительной точностью, как температура кипения воды варьировалась в зависимости от атмосферного давления. Он предположил, что отметку 0 (точку кипения воды) можно откалибровать, зная на каком уровне относительно моря находится термометр.

Позже, уже после смерти Цельсия, его современники и соотечественники ботаник Карл Линней и астроном Мортен Штремер использовали эту шкалу в перевёрнутом виде (за 0° стали принимать температуру плавления льда, а за 100° — кипения воды). В таком виде шкала оказалась очень удобной, получила широкое распространение и используется до нашего времени.

По одним сведениям, Цельсий сам перевернул свою шкалу по совету Штремера. По другим сведениям, шкалу перевернул Карл Линней в 1745 году. А по третьим — шкалу перевернул преемник Цельсия М.Штремер и в XVIII веке такой термометр был широко распространён под именем «шведский термометр», а в самой Швеции — под именем Штремера, но известнейший шведский химик Иоганн Якоб в своем труде «Руководства по химии» по ошибке назвал шкалу М. Штремера цельсиевой шкалой и с тех пор стоградусная шкала стала носить имя Андерса Цельсия.

Работы Реомюра в 1736 г. хотя и повели к установлению 80° шкалы, но были скорее шагом назад против того, что сделал уже Фаренгейт: термометр Реомюра был громадный, неудобный в употреблении, а его способ разделения на градусы был неточным и неудобным.

После Фаренгейта и Реомюра дело изготовления термометров попало в руки ремесленников, так как термометры стали предметом торговли.

В 1848 г. английский физик Вильям Томсон (лорд Кельвин) доказал возможность создания абсолютной шкалы температур, нуль которой не зависит от свойств воды или вещества, заполняющего термометр. Точкой отсчета в «шкале Кельвина» послужило значение абсолютного нуля: −273,15° С. При этой температуре прекращается тепловое движение молекул. Следовательно, становится невозможным дальнейшее охлаждение тел.

Жидкостные термометры основаны на принципе изменения объёма жидкости, которая залита в термометр (обычно это спирт или ртуть), при изменении температуры окружающей среды.

Жидкостные термометры подразделяются на ртутные и термометры с не ртутным заполнением. Последние применяются не только из-за экономических соображений, а также из-за использования широкого диапазона температур. Так, в термометрии, в качестве нертутного заполнения термометров используются вещества: спирты (этиловый, метиловый, пропиловый), пентан, толуол, сероуглерод, ацетон, таллиевая амальгама и галлий.[1]

В связи с тем, что с 2020 года ртуть будет под запретом во всём мире[2][3] из-за её опасности для здоровья[4], во многих областях деятельности ведётся поиск альтернативных наполнений для бытовых термометров. Например, такой заменой стал галинстан (сплав металлов: галлия, индия, олова и цинка). Галлий применяют для измерения высоких температур. Также ртутные термометры все чаще с большим успехом заменяются платиновыми или медными термометрами сопротивления. Также все шире применяются и другие типы термометров.

Об удалении разлившейся ртути из разбитого термометра см. статью Демеркуризация
Механический термометр Оконный механический термометр

Термометры этого типа действуют по тому же принципу, что и жидкостные, но в качестве датчика обычно используется металлическая спираль или лента из биметалла.

Уличный электронный термометр

Принцип работы электронных термометров основан на изменении сопротивления проводника при изменении температуры окружающей среды.

Электронные термометры более широкого диапазона основаны на термопарах (контакт между металлами с разной электроотрицательностью создаёт контактную разность потенциалов, зависящую от температуры).

Домашняя метеостанция

Наиболее точными и стабильными во времени являются термометры сопротивления на основе платиновой проволоки или платинового напыления на керамику. Наибольшее распространение получили PT100 (сопротивление при 0 °C — 100Ω) PT1000 (сопротивление при 0 °C — 1000Ω) (IEC751). Зависимость от температуры почти линейна и подчиняется квадратичному закону при положительной температуре и уравнению 4 степени при отрицательных (соответствующие константы весьма малы, и в первом приближении эту зависимость можно считать линейной). Температурный диапазон −200 — +850 °C.

RT=R0[1+AT+BT2+CT3(T−100)](−200∘C<T<0∘C),{\displaystyle R_{T}=R_{0}\left[1+AT+BT^{2}+CT^{3}(T-100)\right]\;(-200\;{}^{\circ }\mathrm {C} <T<0\;{}^{\circ }\mathrm {C} ),}
RT=R0[1+AT+BT2](0∘C≤T<850∘C).{\displaystyle R_{T}=R_{0}\left[1+AT+BT^{2}\right]\;(0\;{}^{\circ }\mathrm {C} \leq T<850\;{}^{\circ }\mathrm {C} ).}

Отсюда, RT{\displaystyle R_{T}} сопротивление при T °C, R0{\displaystyle R_{0}} сопротивление при 0 °C, и константы (для платинового сопротивления) —

A=3.9083×10−3∘C−1{\displaystyle A=3.9083\times 10^{-3}\;{}^{\circ }\mathrm {C} ^{-1}}
B=−5.775×10−7∘C−2{\displaystyle B=-5.775\times 10^{-7}\;{}^{\circ }\mathrm {C} ^{-2}}
C=−4.183×10−12∘C−4.{\displaystyle C=-4.183\times 10^{-12}\;{}^{\circ }\mathrm {C} ^{-4}.}

Оптические термометры позволяют регистрировать температуру благодаря изменению уровня светимости, спектра и иных параметров (см. Волоконно-оптическое измерение температуры) при изменении температуры. Например, инфракрасные измерители температуры тела.

Инфракрасные термометры[править | править код]

Инфракрасный термометр позволяет измерять температуру без непосредственного контакта с человеком. В 2014 году Россия подписала Минаматскую конвенцию о ртути к 2030 году Россия откажется от производства ртутных термометров.[5]В некоторых странах уже давно имеется тенденция отказа от ртутных термометров в пользу инфракрасных не только в медицинских учреждениях, но и на бытовом уровне.

Технические термометры используются на предприятиях в сельском хозяйстве, нефтехимической, химической, горно-металлургической промышленностях, в машиностроении, жилищно- коммунальном хозяйстве, транспорте, строительстве, медицине, словом во всех жизненных сферах.

Выделяют такие виды технических термометров:

  • термометры технические жидкостные
  • термометры биметаллические ТБ, ТБТ, ТБИ;
  • термометры сельскохозяйственные ТС-7А-М
  • термометры максимальные СП-83;
  • термометры для спецкамер низкоградусные СП-100;
  • термометры специальные вибростойкие СП-1;
  • термометры ртутные электроконтактные ТПК;
  • термометры лабораторные ТЛ;
  • термометры для нефтепродуктов ТН;
  • термометры для испытаний нефтепродуктов ТИН.

Максимальные и минимальные термометры[править | править код]

По виду фиксации предельного значения температуры термометры разделяются на максимальные, минимальные и нефиксирующие[6]. Минимальный/максимальный термометр показывает минимальное/максимальное значение температуры, достигнутое с момента сброса. Так, медицинский ртутный термометр является максимальным — он показывает максимальное значение температуры, достигнутое в ходе измерения, благодаря узкой «шейке» между ртутным резервуаром и капилляром, в которой при уменьшении температуры столбик ртути разрывается, и ртуть не уходит обратно в резервуар из капилляра. Перед измерением фиксирующий (максимальный или минимальный) термометр должен быть сброшен (приведён к значению заведомо ниже/выше измеряемой температуры).

Газовый термометр — прибор для измерения температуры, основанный на законе Шарля.

В 1703 году Шарль установил, что одинаковое нагревание любого газа приводит к почти одинаковому повышению давления, если при этом объём остается постоянным. При изменении температуры по шкале Кельвина давление идеального газа в постоянном объёме прямо пропорционально температуре. Отсюда следует, что давление газа (при V = const) можно принять в качестве количественной меры температуры. Соединив сосуд, в котором находится газ, с манометром и проградуировав прибор, можно измерять температуру по показаниям манометра.

В широких пределах изменений концентраций газов и температур и малых давлениях температурный коэффициент давления разных газов примерно одинаков, поэтому способ измерения температуры с помощью газового термометра оказывается малозависящим от свойств конкретного вещества, используемого в термометре в качестве рабочего тела. Наиболее точные результаты получаются, если в качестве рабочего тела использовать водород или гелий.

принцип действия. Лазерный дистанционный термометр (фото)

Измерение температуры может быть контактным и дистанционным. Наиболее распространены термопары, резисторные датчики и термометры, которые нуждаются в соприкосновении с объектом, т. к. измеряют свою собственную температуру. Делают они это медленно, но стоят недорого.

Бесконтактные датчики измеряют ИК-излучение объекта, дают быстрый результат, и обычно используются для определения температуры движущихся и нестационарных тел, находящихся в вакууме и недоступных по причине агрессивности среды, особенностей формы или угрозы безопасности. Цена таких устройств относительно высока, хотя в некоторых случаях сравнима с контактными приборами.

термометр лазерный бесконтактный

Монохромная термометрия

Монохромный способ определения суммарной энергетической яркости использует заданную длину волны. Реализации варьируются от ручных зондов с простым дистанционным измерением до сложных переносных устройств, позволяющих одновременно наблюдать объект и его температуру с занесением показаний в память прибора или их распечаткой. Стационарные датчики представлены как простыми небольшими детекторами с удалённым расположением электроники, так и высокопрочными устройствами с дистанционным PID-управлением. Волоконная оптика, лазерное прицеливание, водяное охлаждение, наличие дисплея и сканера – опциональные варианты мониторинга технологических процессов и систем управления.

Конфигурация, спектральная фильтрация, диапазон рабочих температур, оптика, время отклика и яркость объекта являются важными элементами, влияющими на производительность и должны быть тщательно рассмотрены в процессе отбора.

Датчик может быть как простым двухпроводным, так и сложным износоустойчивым высокочувствительным устройством.

Выбор спектрального отклика и диапазона рабочих температур связан с конкретными задачами измерения. Короткие длины волн предназначены для высоких температур и длинные – для низких. Если объекты прозрачны, например, пластмассы и стёкла, то необходима узковолновая фильтрация. Полоса поглощения CH полиэтиленовой плёнки равна 3,43 мкм. Выделение спектра в этом диапазоне упрощает вычисление коэффициента излучения. Точно так же стеклоподобные материалы становятся непрозрачными при длине волны 4,6 мкм, что позволяет точно определить температуру поверхности стекла. Область излучения 1-4 мкм даёт возможность производить замер через смотровые отверстия вакуумных и барокамер. Альтернативный вариант – использование волоконно-оптического кабеля.

Оптика и время отклика в большинстве случаев несущественны, так как поле зрения размером 3 см на расстоянии 50 см и время отклика менее 1 с является достаточным. Для небольшого или быстро перемещающегося прерывистого объекта возникает необходимость в небольшом (3 мм в диаметре) или ещё меньшем (0,75 мм) пятне измерений. Дальнее прицеливание (3-300 м) требует оптического регулирования, так как стандартное поле зрения прибора становится слишком большим. В некоторых случаях для этого используется метод двухволновой радиометрии. Оптоволокно позволяет дистанцировать электронику от агрессивных сред, устранить влияние помех и решить проблему доступа.

Лазерный термометр в основном имеет регулируемое в диапазоне 0,2-5,0 с время ответа. Быстрый отклик может повысить уровень шума сигнала, а медленный влияет на чувствительность. При индукционном нагреве необходима мгновенная реакция, а для конвейера – более медленный отклик.

Монохромная ИК-термометрия проста и используется в случаях, когда для создания высококачественной продукции контроль температуры крайне важен.

инфракрасный лазерный термометр

Двухволновая термометрия

Для более сложных задач, где абсолютная точность измерений имеет решающее значение, и где продукт подвергается физическому или химическому воздействию, применяется двух- и многоволновая радиотермометрия. Концепция появилась в начале 1950 годов, а последние изменения в конструкции и аппаратном обеспечении повысили её производительность и снизили себестоимость.

Метод заключается в измерении спектральной плотности энергии на двух различных длинах волн. Температура объекта может быть считана непосредственно из прибора, если излучательная способность одинакова для каждой длины волны. Показания будут верными, даже если поле зрения частично перекрыто относительно холодными материалами, такими как пыль, проволочные экраны, и серые полупрозрачные окна. Теория метода проста. Если энергетическая яркость обоих длин волн одинакова (для серого тела), то коэффициент излучения сокращается и отношение становится пропорциональным температуре.

Двухволновой лазерный термометр применяется в промышленности и научных исследованиях как простой, уникальный датчик, способный сократить ошибку измерения.

Кроме того, созданы многоволновые термометры для материалов, не являющимися серыми телами, коэффициент поглощения которых изменяется с длиной волны. В этих случаях необходим подробный анализ поверхностных характеристик материала в отношении взаимосвязи этого коэффициента, длины волны, температуры и химического состава поверхности. При наличии этих данных можно создать алгоритмы расчёта зависимости спектрального излучения на различных длинах волн от температуры.

лазерный дистанционный термометр

Правила оценки

Для оценки точности измерений пользователь должен знать следующее:

  • ИК-датчики по своей природе цвета не различают.
  • Если поверхность блестящая, то прибор установит не только испускаемую, но и отражённую энергию.
  • Если объект прозрачен, необходима ИК-фильтрация (например, стекло непрозрачно при 5 мкм).
  • В девяти из десяти случаев абсолютно точное измерение не требуется. Повторное снятие показаний и отсутствие смещения обеспечат необходимую точность. Когда энергетическая яркость изменяется и обработка данных затруднена, следует остановиться на двух- и многоволновой радиометрии.

Элементы конструкции

Термометр лазерный бесконтактный работает по принципу: ИК-энергия на входе в и сигнал на выходе. Базовая цепь устройства состоит из собирающей оптики, линз, спектральных фильтров, и детектора в качестве внешнего интерфейса. Динамическая обработка осуществляется по-разному, но её можно свести к усилению, термической стабилизации, линеаризации и преобразованию сигнала. Обычное оконное стекло используется при коротковолновом излучении, кварц для средних частот, и германий или сульфид цинка для диапазона 8-14 мкм, оптоволокно — при длинах волн 0,5-5,0 мкм.

Поле зрения

Лазерный дистанционный термометр характеризуется полем зрения (ПЗ) — размером пятна контроля температуры на заданном расстоянии. Изменение диаметра поля зрения прямо пропорционально изменению дистанции между термометром и объектом измерения. Его значение зависит от изготовителя и влияет на цену прибора. Существуют модели с ПЗ менее 1 мм для точечных измерений и с оптикой дальнего действия (7 см на удалении 9 м). Рабочее расстояние не влияет на точность показаний, если объект заполняет всё пятно измерения. При этом максимальная потеря сигнала не должна превышать 1%.

Прицеливание

Обычные ИК-термометры производят замеры без дополнительных приспособлений. Это допустимо для работы с объектами большого размера, например, бумажным полотном, где точечная точность не требуется. Для небольших или удалённых объектов используется луч лазера. Создано несколько вариантов лазерного прицеливания.

  1. Луч со смещением от оптической оси. Простейшая модель применяется в устройствах с низким разрешением для больших объектов, т. к. вблизи отклонение слишком большое.
  2. Коаксиальный луч. Не отклоняется от оптической оси. Центр измерительного пятна точно указывается на любом расстоянии.
  3. Двойной лазер. Диаметр пятна маркируется двумя точками, что избавляет от необходимости угадывать или рассчитывать диаметр и не ведёт к ошибкам.
  4. Круговой указатель со смещением. Показывает поле зрения, его размер и внешнюю границу.
  5. 3-точечный коаксиальный указатель. Луч разделяется на три яркие точки, расположенные на одной линии. Средняя точка обозначает центр пятна, а внешние отмечают его диаметр.

Прицеливание оказывает эффективную помощь при направлении термометра точно на объект измерения.

термометр фото

Фильтры

В термометрах используются коротковолновые фильтры для высокотемпературных измерений (> 500 °C) и длинноволновые фильтры для низких температур (-40 °С). Кремниевые детекторы, например, стойки к нагреванию, а небольшая длина волны снижает погрешность измерения. Другие селективные фильтры используются для пластиковой плёнки (3,43 мкм и 7,9 мкм), стекла (5,1 мкм) и пламени (3,8 мкм).

Датчики

Большинство датчиков либо фотоэлектрические, генерирующие напряжение при воздействии ИК-излучения, или фотопроводящие, т. е. изменяющие своё сопротивления под действием энергии источника. Они быстрые, высокочувствительные, обладают приемлемым температурным дрейфом, который может быть преодолён, например, термисторной схемой температурной компенсации, автоматической нуль-схемой, ограничением амплитуды и изотермической защитой.

В цепи ИК-термометра выходной сигнал детектора порядка 100-1000 мкВ подвергается тысячекратному усилению, регулируется, линеаризируется, и, в итоге, представляет собой линейный сигнал тока или напряжения. Его оптимальное значение 4-20 мА, что минимизирует внешние помехи. Этот сигнал может быть подан на порт RS-232 или на ПИД-регулятор, удалённый дисплей или записывающее устройство. Другие варианты использования сигнала:

  • включение/выключение сигнализации;
  • удержание пикового значения;
  • регулируемое время отклика;
  • в схеме выборки и хранения.

Быстродействие

Инфракрасный лазерный термометр в среднем обладает временем отклика порядка 300 мс, хотя при использовании кремниевых детекторов можно достичь значения 10 мс. Во многих инструментах время отклика изменяется для того, чтобы демпфировать входящий шум и регулировать их чувствительность. Не всегда необходимо минимальное время отклика. Например, при индукционном нагреве время должно быть в диапазоне 10-50 мс.

Характеристики лазерных термометров

Etekcity Lasergrip 630 – инфракрасный 2-лазерный термометр, цена $35,99. Характеристики:

  • диапазон температур -50 … +580 °C;
  • точность +/- 2%;
  • отношение расстояния к размеру пятна 16:1;
  • излучательная способность 0,1 – 1,0;
  • время отклика <500 мс;
  • разрешение 1 °C.
лазерный термометр

Лазерный термометр (фото) также информирует о наибольшей, наименьшей и средней температуре. Измерительное пятно смещено на 2 см ниже точки прицеливания. Лазерное наведение наиболее точно в месте пересечения лучей (36 см).

Amprobe IR-710 – инфракрасный лазерный термометр, цена $49,95. Характеристики:

  • диапазон температур -50 … +538 °C;
  • минимальный размер пятна 20 мм;
  • точность +/- 2%;
  • отношение расстояния к размеру пятна 12:1;
  • излучательная способность 0,95;
  • время отклика 500 мс;
  • разрешение 1 °C.
лазерный термометр цена

Данный лазерный термометр (фото), кроме текущей температуры, также индицирует её минимальное и максимальное значения.

Термопара — Википедия

Схема термопары типа К. При температуре спая проволок из хромеля и алюмеля, равной 300 °C, и температуре свободных концов 0 °C развивает термо-ЭДС 12,2 мВ. Фотография термопары

Термопа́ра (термоэлектрический преобразователь) — устройство, применяемое в промышленности, научных исследованиях, медицине, в системах автоматики. Применяется в основном для измерения температуры.

Международный стандарт на термопары МЭК 60584 (п.2.2) даёт следующее определение термопары: Термопара — пара проводников из различных материалов, соединённых на одном конце и формирующих часть устройства, использующего термоэлектрический эффект для измерения температуры.

Для измерения разности температур зон, ни в одной из которых не находится вторичный преобразователь (измеритель термо-ЭДС), удобно использовать дифференциальную термопару: две одинаковые термопары, соединённые электрически навстречу друг другу. Каждая из них измеряет перепад температур между своим рабочим спаем и условным спаем, образованным концами термопар, подключёнными к клеммам вторичного преобразователя. Обычно вторичный преобразователь измеряет разность их ЭДС, таким образом, с помощью двух термопар можно измерить разность температур между их рабочими спаями по результатам измерения напряжения. Метод не является точным, если во вторичном преобразователе не предусмотрена линеаризация статической характеристики термопар, так как все термопары в той или иной степени имеют нелинейную статическую характеристику преобразования[1].

Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Между соединёнными проводниками имеется контактная разность потенциалов; если стыки связанных в кольцо проводников находятся при одинаковой температуре, сумма таких разностей потенциалов равна нулю. Когда же стыки разнородных проводников находятся при разных температурах, разность потенциалов между ними зависит от разности температур. Коэффициент пропорциональности в этой зависимости называют коэффициентом термо-ЭДС. У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различная. Помещая спай из металлов с отличными от нуля коэффициентами термо-ЭДС в среду с температурой T1{\displaystyle T_{1}}, мы получим напряжение между противоположными контактами, находящимися при другой температуре T2{\displaystyle T_{2}}, которое будет пропорционально разности температур: T1−T2.{\displaystyle T_{1}-T_{2}.}

Наиболее распространены два способа подключения термопары к измерительным преобразователям: простой и дифференциальный. В первом случае измерительный преобразователь подключается напрямую к двум термоэлектродам. Во втором случае используются два проводника с разными коэффициентами термо-ЭДС, спаянные в двух концах, а измерительный преобразователь включается в разрыв одного из проводников.

Для дистанционного подключения термопар используются удлинительные или компенсационные провода. Удлинительные провода изготавливаются из того же материала, что и термоэлектроды, но могут иметь другой диаметр. Компенсационные провода используются в основном с термопарами из благородных металлов и имеют состав, отличный от состава термоэлектродов. Требования к проводам для подключения термопар установлены в стандарте МЭК 60584-3.
Следующие основные рекомендации позволяют повысить точность измерительной системы, включающей термопарный датчик[2]:

— Миниатюрную термопару из очень тонкой проволоки следует подключать только с использованием удлинительных проводов большего диаметра;
— Не допускать по возможности механических натяжений и вибраций термопарной проволоки;
— При использовании длинных удлинительных проводов, во избежание наводок, следует соединить экран провода с экраном вольтметра и тщательно перекручивать провода;
— По возможности избегать резких температурных градиентов по длине термопары;
— Материал защитного чехла не должен загрязнять электроды термопары во всем рабочем диапазоне температур и должен обеспечить надежную защиту термопарной проволоки при работе во вредных условиях;
— Использовать удлинительные провода в их рабочем диапазоне и при минимальных градиентах температур;
— Для дополнительного контроля и диагностики измерений температуры применяют специальные термопары с четырьмя термоэлектродами, которые позволяют проводить дополнительные измерения сопротивления цепи для контроля целостности и надежности термопар.

Для измерения температуры различных типов объектов и сред, а также в качестве датчика температуры в автоматизированных системах управления. Термопары из вольфрам-рениевого сплава являются самыми высокотемпературными контактными датчиками температуры[3]. Такие термопары незаменимы в металлургии для контроля температуры расплавленных металлов.

Для контроля пламени и защиты от загазованности в газовых котлах и в других газовых приборах (например, бытовые газовые плиты). Ток термопары, нагреваемой пламенем горелки, удерживает в открытом состоянии газовый клапан. В случае пропадания пламени ток термопары снижается и клапан перекрывает подачу газа.

В 1920—1930-х годах термопары использовались для питания простейших радиоприемников и других слаботочных приборов. Вполне возможно использование термогенераторов для подзарядки АКБ современных слаботочных приборов (телефоны, камеры и т. п.) с использованием открытого огня.

Приёмник излучения[править | править код]

{\displaystyle T_{1}-T_{2}.} Крупный план термобатареи фотоприёмника. Каждый из проволочных уголков представляет собой термопару.

Исторически термопары представляют один из наиболее ранних термоэлектрических приёмников излучения[4]. Упоминания об этом их применении относятся к началу 1830-х годов[5]. В первых приёмниках использовались одиночные проволочные пары (медь — константан, висмут — сурьма), горячий спай находился в контакте с зачернённой золотой пластинкой. В более поздних конструкциях стали применяться полупроводники.

Термопары могут включаться последовательно, одна за другой, образуя термобатарею (англ.). Горячие спаи при этом располагают либо по периметру приёмной площадки, либо равномерно по её поверхности. В первом случае отдельные термопары лежат в одной плоскости, во втором параллельны друг другу[6].

Преимущества термопар[править | править код]

  • Высокая точность измерения значений температуры (вплоть до ±0,01 °С).
  • Большой температурный диапазон измерения: от −250 °C до +2500 °C.
  • Простота.
  • Дешевизна.
  • Надёжность.

Недостатки[править | править код]

  • Для получения высокой точности измерения температуры (до ±0,01 °С) требуется индивидуальная градуировка термопары.
  • На показания влияет температура свободных концов, на которую необходимо вносить поправку. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового датчика и автоматическое введение поправки к измеренной ТЭДС.
  • Эффект Пельтье (в момент снятия показаний необходимо исключить протекание тока через термопару, так как ток, протекающий через неё, охлаждает горячий спай и разогревает холодный).
  • Зависимость ТЭДС от температуры существенно нелинейна. Это создает трудности при разработке вторичных преобразователей сигнала.
  • Возникновение термоэлектрической неоднородности в результате резких перепадов температур, механических напряжений, коррозии и химических процессов в проводниках приводит к изменению градуировочной характеристики и погрешностям до 5 К.
  • На большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.

Технические требования к термопарам определяются ГОСТ 6616-94. Стандартные таблицы для термоэлектрических термометров — номинальные статические характеристики преобразования (НСХ), классы допуска и диапазоны измерений приведены в стандарте МЭК 60584-1,2 и в ГОСТ Р 8.585-2001.


Точный состав сплава термоэлектродов для термопар из неблагородных металлов в МЭК 60584-1 не приводится. НСХ для хромель-копелевых термопар ТХК и вольфрам-рениевых термопар определены только в ГОСТ Р 8.585-2001. В стандарте МЭК данные термопары отсутствуют. По этой причине характеристики импортных датчиков из этих металлов могут существенно отличаться от отечественных, например импортный Тип L и отечественный ТХК не взаимозаменяемы. При этом, как правило, импортное оборудование не рассчитано на отечественный стандарт.

В настоящее время стандарт МЭК 60584 пересматривается. Планируется введение в стандарт вольфрам-рениевых термопар типа А-1, НСХ для которых будет соответствовать российскому стандарту, и типа С по стандарту АСТМ[7].

В 2008 г. МЭК ввел два новых типа термопар: золото-платиновые и платино-палладиевые. Новый стандарт МЭК 62460 устанавливает стандартные таблицы для этих термопар из чистых металлов. Аналогичный Российский стандарт пока отсутствует.

Таблица ниже описывает свойства нескольких различных типов термопар[8]. В пределах колонок точности, T представляет температуру горячего спая, в градусах Цельсия. Например, термопара с точностью ±0,0025×T имела бы точность ±2,5 °C при 1000 °C.

Тип

термопары

IEC (МЭК)

Материал

положительного

электрода

Материал

отрицательного

электрода

Темп.

коэффициент,

μV/°C

Темп.

диапазон, °C

(длительно)

Темп.

диапазон,°C

(кратковременно)

Класс точности 1 (°C)Класс точности 2 (°C)IEC (МЭК)

Цветовая маркировка

KХромель

Cr—Ni

Алюмель

Ni—Al

40…410 до +1100−180 до +1300±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 1000 °C
±2,5 от −40 °C до 333 °C
±0,0075×T от 333 °C до 1200 °C
Зелёный-белый
JЖелезо

Fe

Константан

Cu—Ni

55.20 до +700−180 до +800±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 750 °C
±2,5 от −40 °C до 333 °C
±0,T от 333 °C до 750 °C
Чёрный-белый
NНихросил

Ni—Cr—Si

Нисил

Ni—Si—Mg

0 до +1100−270 до +1300±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 1000 °C
±2,5 от −40 °C до 333 °C
±0,0075×T от 333 °C до 1200 °C
Сиреневый-белый
RПлатинородий

Pt—Rh (13 % Rh)

Платина

Pt

0 до +1600−50 до +1700±1,0 от 0 °C до 1100 °C
±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 °C
±1,5 от 0 °C до 600 °C
±0,0025×T от 600 °C до 1600 °C
Оранжевый-белый
SПлатинородий

Pt—Rh (10 % Rh)

Платина

Pt

0 до 1600−50 до +1750±1,0 от 0 °C до 1100 °C
±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 °C
±1,5 от 0 °C до 600 °C
±0,0025×T от 600 °C до 1600 °C
Оранжевый-белый
BПлатинородий

Pt—Rh (30 % Rh)

Платинородий

Pt—Rh (6 % Rh)

+200 до +17000 до +1820±0,0025×T от 600 °C до 1700 °CОтсутствует
TМедь

Cu

Константан

Cu—Ni

−185 до +300−250 до +400±0,5 от −40 °C до 125 °C
±0,004×T от 125 °C до 350 °C
±1,0 от −40 °C до 133 °C
±0,0075×T от 133 °C до 350 °C
Коричневый-белый
EХромель

Cr—Ni

Константан

Cu—Ni

680 до +800−40 до +900±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 800 °C
±2,5 от −40 °C до 333 °C
±0,0075×T от 333 °C до 900 °C
Фиолетовый-белый
  • Грунин В. К. § 2.3.4. Термоэлектрические приёмники излучения // Источники и приёмники излучения: учебное пособие. — СПб.: Издательство СПбГЭТУ «ЛЭТИ», 2015. — 167 с. — ISBN 978-5-7629-1616-5.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *