25.10.2021

Насос центробежный в разрезе – назначение и особенности конструкции, принцип работы и виды устройств, популярные модели

Содержание

Конструктивная схема и принцип действия центробежного насоса

Центробежный насос (рис. 2.2) состоит из двух основных частей: вращающейся части — ротора и неподвижной части — статора (корпуса) насоса.

Ротор насоса содержит одно или несколько рабочих колес 2. Рабочее колесо представляет собой два диска, между которыми расположены изогнутые лопатки, образующие рабочие каналы колеса. Колесо насажено на вал 3 насоса, предназначенный для соединения рабочего колеса с приводящим двигателем и передачи рабочему колесу вращающего момента от двигателя. На валу насоса закреплены различные детали подшипников, уплотнений и у некоторых насосов — устройства для компенсации гидродинамических осевых сил.

Статор насоса является корпусом, имеет всасывающий 4 и напорный 5 патрубки для подвода жидкости к насосу и отвода от него и направляющий аппарат 6, предназначенный для формирования потока жидкости после выхода из рабочего колеса. Кроме того, на статоре крепятся детали уплотнений, подшипников, креплений к фундаменту, устройства и системы, обусловленные спецификой работы конкретного насоса (необходимостью подогрева или охлаждения, обеспечения повышенной герметичности и др.).

Принцип действия центробежного насоса заключается в следующем. Жидкость, находящаяся во вращающемся рабочем колесе 2, движется вместе с ним. За счет центробежных сил частицы жидкости в колесе устремляются от центра к периферии. В центральной части колеса, в его всасывающей полости, уходящие к периферии частицы замещаются всасываемыми из всасывающего патрубка насоса. Давление во всасывающем патрубке насоса устанавливается пониженным (возникает разрежение), достаточным для обеспечения непрерывного поступления перекачиваемой к колесу насоса жидкости. У частиц жидкости, приближающихся к периферии рабочего колеса, за счет повышения окружной скорости растет кинетическая энергия, а за счет центробежных сил — потенциальная (давление). Выходя из рабочего колеса, жидкость попадает в направляющий аппарат (спиральную камеру с диффузором в корпусе насоса или специальный лопаточный аппарат), охватывающий рабочее колесо. Из направляющего аппарата жидкость, обладающая большей удельной механической энергией, чем во всасывающем патрубке насоса, проступает в напорный патрубок насоса.

В напорном патрубке давление жидкости превышает давление во всасывающем патрубке.

Центробежный насос не обладает свойством сухого всасывания. Перед пуском насос и всасывающий трубопровод должны быть заполнены перекачиваемой жидкостью.

Судовые центробежные насосы в зависимости от конструктивной схемы классифицируются по расположению вала, числу и способу соединения рабочих колес.

Вал насоса может располагаться вертикально или горизонтально. Насосы с вертикально расположенным валом называют вертикальными, с горизонтально расположенным валом — горизонтальными.

Насос может иметь одно или несколько рабочих колес. Насосы, имеющие одно рабочее колесо, называются одноступенчатыми и однопроточными. У насосов, имеющих несколько рабочих колес, колеса могут быть соединены последовательно (жидкость из первого рабочего колеса попадает во всасывающую полость второго и т. д.), параллельно (жидкость в насосе равномерно распределяется между всасывающими полостями рабочих колес) или параллельно-последовательно. Насосы с последовательно соединенными колесами (или группами колес) называются многоступенчатыми. Насосы с параллельно соединенными колесами называются многопроточными.

Характеристики центробежных насосов

Характеристиками центробежного насоса называют графики зависимости напора Н, к.п.д. ɳ и мощности N от его подачи Q. Вид характеристики зависит от конструкции рабочего колеса и проточной части насоса.

На рис. 2.3 приведены характеристики одноступенчатого насоса ВцН-90а. На горизонтальной оси характеристик отложена подача Q, на вертикальной — напор Н, мощность N и к.п.д. ɳ. С увеличением подачи напор монотонно падает. К.п.д. насоса с увеличением подачи растет до определенной величины, а затем начинает уменьшаться.

Кривая к.п.д. позволяет судить, какой из режимов работы насоса наиболее экономичен. Насосы проектируют таким образом, чтобы к.п.д. насоса был наибольшим при номинальной подаче. Мощность насоса возрастает с увеличением производительности.

Характеристики каждого насоса при номинальной частоте вращения приводятся в формулярах насосов. Имея характеристики насосов при номинальной частоте вращения п

я, можно с достаточно высокой для практических целей точностью определить параметры его работы на промежуточных частотах вращения п, полагая, что при прочих равных условиях расход прямо пропорционален частоте вращения, напор — квадрату ее, а мощность — кубу:

Параллельная и последовательная работа центробежных насосов

Каждую из корабельных систем обслуживает один или несколько насосов. При наличии в системе нескольких насосов и исходя из заданного режима работы системы, они могут быть соединены как независимо (каждый насос на автономный участок системы), так и параллельно или последовательно на одну магистраль. При параллельной или последовательной работе насосов суммарная характеристика их работы, т. е. зависимость напора, создаваемого насосами от подачи, может быть получена геометрическим сложением характеристик насосов. Параллельное соединение насосов используют для увеличения подачи при неизменном напоре.

На рис. 2.4, а изображена схема двух параллельно соединенных насосов, откачивающих по одной магистрали воду за борт. На рис. 2.4, б показаны отдельно характеристики каждого насоса 1 и 2 и суммарная характеристика 3 их работы. Суммарная характеристика получается сложением абсцисс Q характеристик каждого насоса при неизменной ординате Н. Построение характеристики проиллюстрировано на примере построения точки d. Для построения точки d проведена горизонтальная линия Н

1 = const. Из точки с, соответствующей подаче насоса 2, вправо откладывается отрезок cd=aв, соответствующий производительности насоса 1. Отрезок ad будет соответствовать суммарной производительности обоих насосов при напоре Н.

При параллельной работе большего числа насосов абсциссы их аналогично суммируются. Насосы соединяются последовательно для увеличения развиваемого напора при неизменной подаче или в случаях, когда из-за условий всасывания более рационально использование двух насосов вместо одного (например, конденсатный или бустерный насос и последовательно им питательный). На рис. 2.4, а изображена схема такого соединения двух насосов, откачивающих по одной магистрали воду из трюма за борт. На рис. 2.4, б показаны характеристики 1, 2 каждого насоса и их суммарная характеристика 3, которая получается сложением ординат Н характеристик каждого насоса при неизменной абсциссе Q.

Последовательное соединение насосов или ступеней насосов позволяет получить большие напоры и подавать воду в область, где давление значительно превышает предельный напор одного насоса или одной ступени.

Проанализировать параллельную или последовательную работу насосов на конкретную систему можно с помощью суммарной характеристики работы насосов и характеристики системы.

Особенности конструктивных элементов и узлов центробежных насосов

Судовые центробежные насосы обычно устанавливают вертикально. Причем электродвигатель размещают вертикально и выше насоса исходя из соображений влагозащищенности.

Уплотнение валов. Считается, что у вертикальных насосов уплотнение вала целесообразно осуществлять только у верхнего выходного конца вала. Это дает следующие преимущества:

  • При мягкой набивке — простоту ухода за сальником;
  • При установке механического сальника — удобство наблюдения за ним.

В большинстве насосов уплотнение производится мягкой набивкой на небольшую высоту, т. е. примерно в четыре-пять слоев. Сальники насосов (за исключением питательных и циркуляционных) при правильной их установке работают под небольшим давлением. Если приемная линия насоса работает в условиях вакуума, то в этих случаях за сальником дополнительно размещают кольцевое уплотнение с консистентной смазкой. Все чаще стали применять механические сальники. На рис. 2.29 показаны сальники обоих типов.

Важно отметить, что смазывающая или охлаждающая среда подводится к механическому сальнику от самой нижней точки нагнетательной стороны насоса с целью обеспечения поступления жидкости к подшипнику даже в момент заполнения насоса перед пуском. Необходимо исключать возможность образования воздушных мешков и попадания механических частиц в трубопровод охлаждения и смазки подшипника. Кроме того, в некоторых механических сальниках рабочая поверхность торцов втулок цементируется, и, следовательно, возможно проявление электролитического действия. С этой точки зрения в насосах забортной воды мягкое уплотнение предпочтительнее.

Несколько конструкций подшипников, устанавливаемых на вертикальных насосах, показано на рис. 2.30. Существует тенденция обходиться без нижнего подшипника. Но если по конструкции подшипник снизу необходим, то его выполняют внутренним во избежание установки нижнего уплотнения.

Охлаждение и смазку этих подшипников можно производить перекачиваемой жидкостью, если она имеется в изобилии во время работы насоса. При работе насоса в сухих условиях внутренние подшипники можно успешно применять, регулярно набивая их консистентной смазкой. Если период сухой работы кратковременный, как, например, у насосов охлаждения пресной воды, то можно обойтись без подвода смазки к подшипнику.

Особенности обслуживания центробежных насосов

Приготовление к пуску центробежного насоса кроме общих для всех механизмов мероприятий (внешний осмотр, проверка систем смазки и охлаждения, проворачивание вручную и т. д.) предусматривает проверку заполнения всасывающей магистрали водой или приготовление к действию разрежающего самовсасывающего насоса, а также проверку полного открытия клапанов на всасывающем трубопроводе.

Пуск производят при закрытом отливном клапане. Это улучшает всасывающую способность насоса и снижает величину пускового тока. Разрежающий насос отключается после полного удаления воздуха из всасывающей магистрали.

При работе насоса кроме контроля за общим состоянием работающего механизма необходимо контролировать величину напора (по манометрам на всасывании и нагнетании), величину разрежения на всасывании. При увеличении разрежения на всасывании или при повышении температуры перекачиваемой воды возникает кавитация, которая приводит к полному срыву в работе насоса. В этом случае насос должен быть обязательно остановлен и пущен вновь после устранения причины срыва.

Остановку насоса производят после закрытия отливного клапана, иначе при отсутствии в системе невозвратных клапанов вода будет перетекать в обратном направлении.

После остановки насос и обслуживающую систему приводят в исходное состояние.

Литература

Вспомогательные механизмы и судовые системы. Э. В. КОРНИЛОВ, П. В. БОЙКО, Э. И. ГОЛОФАСТОВ (2009)

Похожие статьи

Центробежный секционный насос (ЦНС): модели и производители

Содержание   

Центробежные многоступенчатые насосы для воды предназначены для монтажа при строительстве конструкций обеспечения водой паровых котлов, в установках повышенного давления, а также на производстве.

Центробежный секционный насос (ЦНС)Центробежный секционный насос (ЦНС)

Центробежный секционный насос (ЦНС)

В этой статье мы расскажем о назначении и устройстве секционных насосов для воды 180, 90 98, 1050, 63, 400, 85, 128, 360 и других моделей, рассмотрим преимущества, принципе работы и расскажем об эксплуатации и ремонте ЦНС.

Назначение и устройство

Насосы типа ЦНС 330, 88, 100, 420, 120 для воды и других моделей предназначены для работы подачи холодной воды. Важно, чтобы жидкость была нейтральной по химическому составу, а ее температура составляла от 1 до 45 градусов. Также одним из требований ЦНС 38, 60, 500, 600 , 1422, 13 или 1900 является наличие не более чем 0.2% механических примесей в воде, а размер частиц, которые в ней содержатся, не должен превышать 0.2 мм. Что касается микротвердости, то она должна быть не более 1.46 гПа.

Читайте также: основные виды и характеристики химических насосов.

Секционные многоступенчатые конструкции необходимы для работы получения больших напоров. Такие устройства небольшой массы могут быть оснащены несколькими рабочими колесиками, установленными на валу, в ряд.

Базовая конструкция насоса типа ЦНС-2Базовая конструкция насоса типа ЦНС-2

Базовая конструкция насоса типа ЦНС-2

Эксплуатация агрегатов 180, 90 98, 1050, 63, 400, 85, 128, 360 и других моделей на сегодняшний день осуществляется в промышленной и муниципальной отрасли, а также сельском хозяйстве. Принцип действия позволяет подключать модели 330, 88, 100, 420, 120 для подачи жидкости на большие высоты, к примеру, при необходимости тушения пожара в горах.

Эксплуатационные свойства:

  1. Устройства и небольшая масса, а также размеры моделей 38, 60, 500, 600 , 1422, 13, 1900 и других позволяет использовать насосы на небольшой площади. Производителей очень много.
  2. Конструкции, у которых размеры и небольшая масса устройств производительностью около 300 м³/ч представляют собой горизонтальную конструкцию, где мотор соединяется с насосом посредством вала, установленного на станине.

Перейдем к устройству агрегатов. Многоступенчатый центробежный агрегат модели 180, 90 98, 1050, 63, 400, 85, 128, 360 подает весь объем жидкостей поочередно, от одного колеса к другому, в результате чего можно добиться увеличения общего напора. Небольшие по размерам колеса ЦНС установлены на самом валу, а корпус монтируется из отдельных элементов. Именно из-за того, что конструкция моделей 330, 88, 100, 420, 120 и других секционная, это позволяет увеличивать или снижать уровень напора , при этом не меняя его подачи.

Устройство насоса ЦНС (вид в разрезе)Устройство насоса ЦНС (вид в разрезе)

Устройство насоса ЦНС (вид в разрезе)

Любой центробежный многоступенчатый ЦНС, будь то модель 38, 60, 500, 600 , 1422, 13 или 1900, оснащается валом, на котором монтируется распорная втулка. Также на нем устанавливаются колеса, так называемая рубашка вала, дистанционная втулка, регулировочные элементы и вал гидравлической пяты. Все компоненты устанавливаются благодаря гайке ротора. Схема устройства такова, что в качестве опор схемы устройства выступают подшипники, монтированные на кронштейнах.

Отверстия для подшипников закрываются при помощи крышек, обустроенных таким образом, что в них заполняется сама смазка для этих деталей. В качестве уплотнения в данном случае выступают манжеты, монтированные на крышках. Задний кронштейн также закрывается крышкой. Уплотнение вала ротора достигается благодаря сальнику.

Сами кольца сальника монтируются на диске с небольшим смещением разрезов, а также поджимаются втулкой. Чтобы предотвратить попадание воды в камеры, в качестве уплотнения используются кольца. Каждый центробежный секционный агрегат оснащается уплотнением вала в виде двойного мягкого сальника.

к меню ↑

Принцип работы

Как работает насос ЦНС 300 240, 180, 90 98, 1050, 63, 400, 85, 128 или 360, вы узнаете далее. Принцип функционирования центробежной конструкции от любого производителя основан на взаимодействии лопастей вращающегося диска и перекачки воды. Диск, когда вращается, позволяет жидкости перемещаться к внешнему выходу, а свободная плоскость опять заполняется водой, которая попадает в устройство из всасывающей трубы под давлением.

Когда вода выходит из конструкции 88, 330, 100, 420, 120, 38, 60, 500, 600 , 1422, 13 или 1900, она попадает в каналы направляющего аппарата, после чего во все последующие колеса под давлением. Впоследствии вода в нагнетательный трубопровод.

Вне зависимости от производителя и производительности насоса, в ходе его работы давление жидкости производит усилие, которое пытается сместить ротор в сторону всасывания. Чтобы уравновесить этот показатель, конструкция оснащается разгрузочным элементом, в состав которого входят вал, кольца и несколько втулок.

Принцип работы ротора устройства моделей 240, 180, 90 98, 1050, 63, 400, 85, 128 или 360, основан на вращении электромотором. Он подключен к самому насосу посредством втулочной муфты. Направление вращения устройства осуществляется по часовой стрелке, если наблюдать со стороны мотора.
к меню ↑

Преимущества и недостатки

Теперь рассмотрим преимущества и недостатки, которыми обладают модели 88, 100, 420, 120, 38, 60, 500, 600 , 1422, 13, 1900 и других от разных производителей.

Насос ЦНС 300х300Насос ЦНС 300х300

Насос ЦНС 300×300

Начнем с плюсов:

  1. Эти устройства, если верить производителям, создаются с использованием высокотехнологичных методов компьютерного моделирования, что позволяет оптимизировать характеристики и снизить виброактивность.
  2. КПД. В целом практически все модели, в том числе 240, 180, 90 98, 1050, 63, 400, 85, 128, 360, обладают хорошим КПД. КПД позволяет осуществлять все возложенные на конструкцию функции. Устройства оснащаются наплавками, которые позволяют не только увеличить КПД, но и понизить вероятность эрозионного износа.
  3. Большинство моделей, в том числе 330, 88, 100, 420, 120, 38, 60, 500, 600 , 1422, 13 или 1900 выполняются из прочной стали, что позволяет увеличить ресурс эксплуатации устройства в целом. В частности, это дает возможность избежать ремонта при механическом воздействии.
  4. Все уплотнительные компоненты обычно оснащаются износостойкими наплавками, что также в большинстве случаев позволяет избежать ремонта и продлить срок службы конструкции.

Что касается минусов:

  1. Перед тем, как запустить устройство в работу, его необходимо заполнить водой.
  2. Центробежные конструкции, ограничены в работе для небольших производительностей, из-за низкого КПД. В частности, низкий КПД характерно для небольших устройств. Помимо КПД, это обусловлено сложностью изготовления ЦНС с узкими каналами.
Насосы ЦНС Насосы ЦНС

Насосы ЦНС

к меню ↑

Как не допустить поломки?

Как показывается практика, модели 330, 600, 1422, 13, 1900 и другие чаще всего ломаются и нуждаются в ремонте по следующим причинам:

  1. Зачастую необходимость ремонта обусловлена недостаточностью нужного уровня перекачиваемой жидкости. Также слабый напор способствует поломке устройств. Эта причина считается одной из наиболее распространенных, однако, она не единственная.
  2. Если вы заметили, что уплотнения недостаточно выполняют свою первостепенную функцию, то следует прекратить эксплуатацию устройства до замены уплотнения. Со временем это может стать причиной потери герметизации.
  3. Необходимость ремонта может появиться в результате выхода из строя подшипниковой опоры моторчика конструкции. Это обычно приводит к ухудшению смазки, загрязнению вещества со временем, в целом снижению уровня охлаждения. Кроме того, в ходе эксплуатации насоса появится новый неестественный звук.
  4. Если при производстве насоса были допущены ошибки в изготовлении корпуса, то со временем могут появиться новые шумы, а также вибрации.

Непредвиденных поломок поможет избежать только плановый ремонт конструкции. Особенно, если вы можете правильно, а главное вовремя осуществить диагностику устройства. Как правило, ремонт агрегатов производится совместно с их модернизацией, по крайней мере, это практикуют специалисты.

Насосы типа ЦНС-180 для систем ППДНасосы типа ЦНС-180 для систем ППД

Насосы типа ЦНС-180 для систем ППД

Если вы столкнулись с одной из вышеописанных проблем, то мы советуем не заниматься ремонтом самостоятельно, а доверить эту процедуру профессионалам. При отсутствии опыта и навыков вы можете только усугубить ситуацию, часто это приводит к тому, что агрегат становится полностью неработоспособным.

Чтобы не допустить этого, соблюдайте все правила эксплуатации, а ремонт доверяйте только профессионалам.
 Главная страница » Насосы

Центробежный насос в разрезе

Содержание

Устройство насоса лопастного типа принципиально аналогично, но наиболее широким разнообразием отличаются центробежные насосы.

Для того, чтобы разобраться в чём же секрет высокой эффективности и большой популярности центробежных аппаратов, необходимо разобраться в устройстве и принципе действия насоса.

Устройство и работа насоса

Центробежный насос состоит из следующих элементов. Лопастное колесо поз.2 представляет собой ограниченную двумя поверхностями вращения камеру, в которой расположена система лопастей. При вращении колеса лопасти приводят протекающий поток во вращательное движение, увеличивая этим его механическую энергию.

Корпус поз.3 служит для конструктивного объединения всех элементов в насосе, для подвода жидкости к лопастному колесу, отвода потока от него и для преобразования скоростной энергии потока, выходящего из колеса, в давление.

Для исключения обратного возврата жидкости из области нагнетания в область всасывания, через пространство между колесом и корпусом служит уплотнение 1. Зазор в этом уплотнении делается возможно маленьким, поэтому обратный ток жидкости сводится к минимуму

Лопастное колесо закреплено на валу поз.4. Вал служит как проводник механической энергии от двигателя к колесу. Вал и двигатель соединены муфтой поз. 6.

В месте выхода вала из корпуса с рабочим колесом наружу установлено сальниковое уплотнение. Уплотнение выполняет функция блокировки выхода жидкости из корпуса наружу.

Вал держится на подшипниках поз.5. Подшипники воспринимают как радиальную (перпендикулярно валу), так и осевую (по оси вала) нагрузки, возникающие вследствие действия гидравлических сил и веса.

Наряду с одним рабочим колесом в центробежном насосе могут быть установлено и два. Такое устройство насоса позволяет существенно расширить область его применения и вносит ряд конструктивных преимуществ. Каждое лопастное колесо в насосном агрегате фактически является элементарным насосом.

Принцип работы центробежного насоса состоит в следующем. При пуске корпус насоса должен быть заполнен капельной жидкостью. При быстром вращении рабочего колеса его лопасти оказывают непосредственное силовое воздействие на частицы жидкости. Кроме того, создается поле центробежных сил в жидкости, находящейся в межлопастном пространстве рабочего колеса. Таким образом, жидкость, подвергаясь силовому воздействию лопастей рабочего колеса, с большой скоростью перемешается от центра к периферии, освобождая межлопастные каналы рабочего колеса.

Поэтому в центральной части рабочего колеса давление снижается и под действием внешнего, чаще всего атмосферного давления, жидкость входит во всасывающий патрубок и вновь подводится к центральной части рабочего колеса.

Жидкость, выходящая из каналов рабочего колеса по его выходному диаметру, попадает в межлопастное пространство неподвижного направляющего аппарата.

В направляющем аппарате жидкость, имеющая большую скорость, как бы тормозится и ее энергия частично преобразуется в энергию давления через каналы направляющего аппарата.

Большинство насосов оборудованы спиральными корпусами. Спиральная форма корпуса насоса обусловлена следующим: в корпусе насоса по направлению вращения рабочего колеса собирается все больший объем жидкости. Вся эта жидкость направляется к нагнетательному патрубку и отводится в трубопровод. Спиральная форма обеспечивает увеличение внутреннего объема корпуса насоса, примерно пропорциональное количеству жидкости направляющейся к нагнетательному патрубку. Поэтому скорость жидкости, проходящей через корпус насоса, во всех сечениях примерно одинакова.

Когда вода выходит наружу, середина рабочего колеса формирует участок пониженного атмосферного давления, что приводит к засасыванию внутрь новой порции жидкости. Такого рода цикл повторяется бесконечно, пока насос находится в работе.

Узнав принцип действия центробежного насоса, например насоса для отопления, нетрудно догадаться и о слабом месте таких приспособлений: они могут работать только при стабильном притоке жидкости. Устройство центробежного насоса не предусмотрено для работы без жидкости. В таком случае перестает формироваться поток жидкости, происходит разрыв потока и как следствие пропадает расход жидкости в трассе – рабочее колесо вращается в воздухе.

При работе насоса без жидкости пропадает и возможность смазывать и охлаждать вращающиеся элементы, такие как уплотнения и подшипники, в результате эти элементы перегреваются и выходят из строя.

Для исключения поломок такого типа предусмотрены специальные датчики-поплавки, которые не позволят вам запустить устройство, если воды в источнике не хватает. Устройство центробежного насоса предусматривает разные варианты назначения. Насосы могут быть не только погружными, но и поверхностными, причем в этом случае риск поломки был бы весьма высок, если бы не предусмотрительность инженеров, благодаря которой конструкция поверхностного водяного насоса дополнена обратными клапанами и автоматическими системами контроля. Они отключают механизмы, как только обнаруживают сухой ход.

Центробежные насосы — и погружные, и поверхностные — все же лучше справляются с подкачкой воды при нормальных условиях работы. Однако это не означает, что их нельзя использовать при слабом напоре воды.

Устройство погружного насоса

Устройство погружного насоса предусматривает его использование как помощника в загородном доме или коттедже. Такие насосы необходимы для подъема воды из скважины и колодца или откачки жидкости из водоема.

Исходя из назначения погружные насосы подразделяют на:
— скважинные — способны поднимать воду с большой глубины
— колодезные – в сравнении со скважинными отличаются меньшей производительностью и напором, но могут работать в воде, содержащей мелкие частицы песка или извести
— дренажные — предназначены для работы в загрязненной воде. Используются для откачки жидкости из, водоема или откачки из подвала дома.

Устройство погружного насоса в зависимости от исполнения и области применения оборудования бывает.
— вибрационного типа
— центробежного типа
— вихревого типа
— шнекового типа

Устройство вибрационного погружного насоса включает в себя
силовой агрегат, внутри которого располагается электрический магнит;
камера для набора воды, соединенная с выводящим патрубком;
всасывающая камера. Отсек, куда в первую очередь попадает вода из источника;
вибратор или вторая часть электромагнита, приводящего в действие ходовой поршень;
амортизатор, необходимый для обеспечения плавного хода рабочего поршня;
В продаже есть устройства, не оснащенные амортизаторами. Однако они быстро выходят из строя, так как резкие движения поршня приводят к механическим повреждениям.
шайбы, влияющие на производительность погружного устройства. За счет увеличения или уменьшения количества шайб можно самостоятельно изменять мощность насоса;
шток или основа для движения поршня;
обратный клапан. Устройство устанавливается для того, чтобы предотвращать обратный отток жидкости из насоса. За счет обратного клапана можно увеличить номинальную производительность оборудования;
гайка, необходимая для фиксации поршня на штоке;
поршень, являющийся основным рабочим элементом насоса;
каналы, предназначенные для перевода воды из сборной камеры в водопроводную систему.

Основные элементы оборудования вибрационного типа

Работа погружного насоса вибрационного типа происходит за счет движения поршня. При подаче электрического питания создается электромагнитное поле в силовом агрегате, и вибратор притягивается, придавая поршню движение. В это время в наборной и всасывающей камерах создается разряженное давление, и свободное пространство заполняется водой через обратные клапаны. Аналогичным образом жидкость проходит через каналы и попадает в трубопровод.

За секунду происходит несколько движений поршня, что обуславливает напор воды в трубопроводе.

Центробежные насосы

Устройство погружного насоса центробежного типа уже описано выше.
Напорный трубопровод, передающий воду от насоса к системе водопровода;
Обратный клапан, предотвращающий выход воды из насоса в источник;
Защитная сетка, необходимая для предохранения рабочей части насоса от примесей, негативно влияющих на работу устройства.

Эксплуатация погружных насосов центробежного типа, оснащенных защитной сеткой, возможна и в слегка загрязненной воде.

Устройство вихревого и шнекового насоса

Вихревые насосы

Теперь рассмотрим, как работает погружной насос вихревого типа. Устройство и принцип работы оборудования аналогичен центробежному насосу. Различия заключаются в следующих аспектах:
рабочее колесо вихревого насоса является цельным, а центробежная сила, создающая вихревой поток, образуется в результате движения ребер жесткости;
вода, поступающая через обратный клапан, накапливается в ячейках и именно из них переводится в напорный трубопровод.

Вихревые насосы в силу своей конструкции способны выдавать больший напор жидкости при небольших энергетических затратах.

Шнековые насосы

Шнековые насосы их еще называют винтовыми работают за счет вращения рабочего винта, расположенного внутри неподвижного корпуса.

От скорости вращения шнека зависит производительность насоса.

Управление погружным насосом любого типа может производиться вручную или с помощью автоматической системы, которая устанавливается дополнительно. Любой насос можно оснастить поплавком, предотвращающим работу в «сухом» режиме, недопустимую при использовании погружных устройств.

Для исключения перепадов напряжения электрической сети, способной вывести оборудование из строя, используются стабилизаторы. Чтобы усовершенствовать конструкцию погружного насоса и максимально продлить срок его службы, в систему водоснабжения дома встраивается гидроаккумулятор.

Устройство насосов на видео

Устройство любого – топливного, маслянного центробежных, вакуумного или водяного насоса это сложная взаимосвязь различных составляющих его узлов.

Основные узлы это:
рабочее колесо на валу и направляющий аппарат, которые составляют гидравлическую часть
ротор и электродвигатель, которые составляют электрическую часть.

И множество других узлов, таких как отводящие и подводящие патрубки, подшипники, уплотнения и многие другие о которых подробно написано на соседних статьях этого раздела.

Жидкость в насосе поступает к рабочему колесу вдоль его оси вращения, а затем направляется непосредственно в межлопаточный канал. Жидкая среда, которая находится в межлопаточном канале, при вращении рабочего колеса отбрасывается лопастями к периферии, далее выходит в отвод и затем – в напорный трубопровод, а в многоступенчатых насосах – подается к входу следующего рабочего колеса. Отвод предназначается для сбора жидкости, исходящей из рабочего колеса.

В отводе кинетическая энергия потока жидкости преобразуется в потенциальную энергию (в энергию давления). Это происходит таким образом: движение жидкости в отводе замедляется, поэтому (согласно закону Бернулли) давление ее возрастает. Такое преобразование энергии должно осуществляться с минимальными гидравлическими потерями. На практике это достигается благодаря специальной форме отвода (чаще всего имеющей спиральную форму). Иногда отвод оборудуется специальным направляющим аппаратом, обеспечивающим наиболее оптимальные условия для всасывания насосом жидкости. Такой направляющий аппарат состоит из двух кольцевых дисков, между этими дисками размещаются направляющие лопасти (они изгибаются в сторону, которая противоположна направлению изгибов лопастей рабочего колеса).

Направляющие аппараты конструктивно являются более сложными устройствами, по сравнению со спиральными отводами. Гидравлические потери в направляющих аппаратах довольно существенны, и поэтому их применение ограничивается только некоторыми моделями многоступенчатых насосов. Жидкость в них отбрасывается рабочим колесом к периферии, благодаря чему в центральной части (перед входом в рабочее колесо) создается область пониженного давления, и под воздействием атмосферного давления каждая новая порция жидкости из источника водоснабжения попадает в насос через всасывающий трубопровод. Таким вот образом создается беспрерывный поток жидкости.

Перед запуском в насос необходимо залить воду. Если предварительно не залить в насос жидкость, то на входе не создастся низкое давление, необходимое для всасывания жидкости, и в таком случае насос будет просто работать вхолостую. С целью удержания воды в центробежном насосе, производители обычно рекомендуют перед входным патрубком устанавливать специальный обратный клапан. Выпускаются модели центробежных насосов, в которых обратный клапан уже встроен в насос.

Центробежные насосы являются самыми распространённым насосами в мире. Благодаря своей конструкции и стабильной работе этот тип насосов нашел широкое применение, как для решения бытовых задач, так и для основных технологических процессов в самых различных отраслях промышленности. В данной статье будет дано полное описание центробежных насосов, рассказано как работает центробежный насос, его классификация и основные области использования.

Принцип действия центробежного насоса

Основным элементом центробежного насоса является рабочее колесо (импеллер), расположенное внутри спирального корпуса (улитка), которое имеет лопасти, направленные в обратную сторону относительно вращению самого колеса. Импеллер устанавливается на вал, который соединен с приводом насоса. При старте работы агрегата рабочее колесо начинает вращаться, и жидкость через всасывающий патрубок поступает вдоль оси вращения колеса.

Под действием центробежной силы, жидкость перемещается по каналам между лопастями в радиальном направлении (от центра импеллера к его периферии) в спиральную камеру корпуса насоса, а затем и в нагнетательный патрубок насоса. На периферии рабочего колеса располагается зона повышенного давления. В центре же давление понижено, что обеспечивает постоянное поступление жидкости в насос.

Конструкция центробежных насосов

Центробежный насос состоит из следующих основных частей:

  • Всасывающий патрубок
  • Нагнетательный патрубок
  • Спиральный корпус (проточная часть насоса)
  • Рабочее колесо (импеллер)
  • Уплотнение вала
  • Картер насос

Классификация центробежных насосов

Центробежные насосы можно классифицировать по конструктивным исполнениям его основных элементов, по типу установки и назначению.

По расположению патрубков насосов

  • Насос «ин-лайн» типа. У данного типа насоса всасывающий и нагнетательный патрубок находятся на одной линии друг напротив друга. Перекачиваемая жидкость проходит сквозь насос. Насос устанавливается на прямых участках трубопровода.

Насос ин-лайн

  • Консольные насосы. Жидкость поступает в центр рабочего колеса (импеллера). Патрубки расположены под 90˚С относительно друг друга.

Консольные насосы

По количеству ступеней насоса

  • Одноступенчатый насос. Насос с одним рабочим колесом на валу. Данные насосы используются при задачах, где не требуется обеспечивать высокий напор. Максимальный напор у одноступенчатых насосах обычно не превышает.

Одноступенчатый насос

  • Многоступенчатый насос имеет на валу более одного последовательно соединённых колес. Такой тип насосов используется для обеспечения высокого напора при сравнительно небольшом расходе. Высокий напор создается благодаря сумме напоров, создаваемых каждым отдельным колесом. Перекачиваемая жидкость переходит последовательно от одной ступени к другой.
  • Многоступенчатый насос
  • По типу уплотнения вала

    Для защиты от попадания перекачиваемой жидкости в окружающую среду и в механическую часть центробежного насоса используются различные уплотнительные системы. По типу применяемой системы насосы можно разделить на:

    • Центробежные насосы с сальниковым уплотнением (ссылка на сальниковое уплотнение)
    • Центробежные насосы с торцевым уплотнением (одинарным или двойным) (ссылка на торцевое уплотнение)
    • Центробежные насосы с магнитной муфтой (ссылка на магнитную муфту)
    • Центробежные насосы герметичные с мокрым ротором (ссылка на мокрый ротор)
    • Центробежные насосы с динамическим уплотнением (ссылка на динамическое уплотнение)

    По типу соединения с электродвигателем

    Центробежные насосы разделяются также по типу соединения гидравлической части насоса с электродвигателем. Выделяют типы:

      Насос с соединительной муфтой. Упругая муфта — это элемент, позволяющий соединить вал электродвигателя и вал, на котором крепится рабочее колесо. Для этого используется, как обычная муфта, так и муфта с промежуточным элементом. Использование промежуточного элемента позволяет не отсоединять электродвигатель при техническом обслуживании насоса, например при замене торцевого уплотнения.

    Обычная муфта

    Муфта с промежуточным элементом
    Моноблочный насос. У данного типа насосов рабочее колесо крепится либо сразу на удлиненном валу электродвигателя, либо для соединения вала двигателя и насоса используется неподвижная постоянная глухая муфта. Центробежный насос с глухой муфтой

    По назначению

    Благодаря своим конструкционным возможностям назначение центробежного насоса может быть самым различным. По данному показателю выделяют следующие типы центробежных насосов:

    • Дренажные
    • Скважинные
    • Фекальные
    • Шламовые
    • Пищевые
    • Санитарные
    • Пожарные
    • Самовсасывающие

    Материальное исполнение центробежных насосов

    Центробежные насосы применяются практически во всех отраслях промышленности, перекачивают самые различные жидкости, начиная с воды и заканчивая высоко агрессивными и абразивными суспензиями.

    Поэтому выбор материалов для основных элементов центробежных насосов очень широкий и чаще всего он основывается на стойкости данного материала к свойствам перекачиваемой жидкости (ссылка на таблице хим. стойкости) и условиям работы самого насоса.

    Можно выделить следующие основные материалы:

    Металлическое исполнение

    • Чугун
    • Бронза
    • Углеродистая сталь
    • Нержавеющая сталь
    • Дуплекс
    • Супер-дуплекс
    • Титан
    • И.т.д

    Футерованные и пластиковые исполнения

    При работе с высоко агрессивными жидкостями, например с кислотами, металлическое исполнение не всегда может обеспечить необходимой коррозионной защиты. Либо применения сверхстойких сплавов может привести к значительному удорожанию всей конструкции.

    Поэтому широкое распространение приобрело использования самых различных пластиков, в качестве основного материала контактирующего со средой в центробежных насосах.

    Можно выделить два основных типа:

    • Футерованные насосы. Футеровка – это процесс нанесения пластикового покрытия на металлический корпус насоса. Все элементы контактирующие с перекачиваемой средой покрыты слоем полимера, что значительно увеличивает коррозионною устойчивость всей проточной части. Современные технологии обеспечивают отличное сцепление между покрытием и корпусом, т.к при отливке полимер заполняет все полости и зазоры.

    • Пластиковые центробежные насосы. Основные элементы насоса, контактирующие со средой, выполнены из цельного пластика, обработанного на специальных станках.

    Материалы для футерованных и пластиковых насосов:

    • PP — полипропилен
    • PVDF- поливинилденефлуорид
    • PE – полиэтилен
    • PVC – поливинилхлорид
    • PFA – перфторалкоксил
    • PTFE – политетрафторэтилен
    • ETFE – этилентетрафторэтилен (Tefzel)
    • FEP – фторэтиленпропилен

    Материалы уплотнительных колец

    В качестве уплотнительных колец в центробежных насосах чаще всего используют следующие эластомеры:

    • EPDM — Этилен-пропиленовые каучук
    • NBR — Бутадиен-нитрильный каучук
    • FPM/FKM/Viton — Фторкаучук
    • FFKM — Каучук перфторированный

    Преимущества и недостатки центробежных насосов

    Преимущества:

    • Простая конструкция
    • Немного движущихся частей, большой срок службы
    • Высокий КПД
    • Высокие показатели производительности
    • Постоянная подача, без пульсаций
    • Регулировка производительности с помощью дроссельного клапана на линии нагнетания или частотного преобразователя

    Недостатки

    • Невозможность «самовсасывания»
    • Большой риск кавитации
    • Производительность сильно зависит от напора
    • Наиболее эффективны только в одной заданной рабочей точке. При регулировании подачи с помощью частотного преобразователя эффективность понижается
    • Не может работать с мультифазными жидкостями с содержанием воздуха или газа
    • При перекачки абразивных жидкостей возможный быстрый износ основных элементов из-за высокой скорости вращения рабочего колеса (около 1500 об/мин).
    • Не может работать с высоковязкими жидкостями (макс. 150 сСт)

    Области применения

    Центробежные насосы применяются практически во всех отраслях промышленности.

    Основные из них:

    Водоснабжение и водоотведение

    Нефтяная и газовая промышленность

    Основные производители

    Крупных игроков на рынке центробежных насосов можно также разбить по отраслям в которых они наиболее сильны:

    Центробежный насос: область применения — AQUEO.RU

    Насосы используются практически во всех сферах промышленного, городского, сельского и домашнего хозяйства. Работа насосов заключается в откачке или перекачке жидкости. Потребность в такой функции объясняет повышенный интерес к данному виду оборудования.

    Насосы

    Центробежные насосы

    Принцип действия

    За счёт разности давления выполняется забор жидкости из скважины или колодца, и она попадает в устройство. Вращение рабочего колеса с лопастями создает центробежную силу, которая увеличивается по мере отдаления её от центра. Середина разряжается благодаря вытеснению жидкости к периферии, где создается высокое давление. После этого жидкость выталкивается под напором в трубопровод. За счет разряженного центра, где образовалась пустота, выполняется всасывание новой порции жидкости. Из-за высокой частоты вращения колеса, этот процесс работает беспрерывно. Рабочее колесо может быть одно или несколько, но от этого принцип работы не меняется.

    Рабочее колесо задает вращение воды, после чего она попадает к выходу. Если водяной насос многосекционный, то вода попадает в следующую секцию, затем в третью. После выхода из последней секции жидкость нагнетается в трубопровод.

    ЦНС перекачивает воду температурой до + 45 0С. Для перекачки горячей воды применяется водяной ЦНС с индексом «г». Кислотную жидкость перекачивают ЦНС с индексом «к». Также существуют агрегаты для перекачки нефти и масел, эти ЦНС имеют индексы «н» и «м» соответственно.

    Схема

    Схема работы центробежного насоса

    Высота всасывания центробежного насоса будет больше за счет того, что потери на преодоление инерционных сил отсутствуют. В этом показателе поршневой агрегат уступает.

    Давление, создаваемое насосом, зависит от частоты вращения и диаметра колеса с лопастями. Чем выше частота и больше диаметр, тем сильнее образуется давление.

    Устройство

    Схема

    Схема центробежного водяного насоса (ЦНС)

    • 1 – подшипник, выполняет функцию опоры для вращающегося вала;
    • 2 – крышка, которая скрывает сальник и препятствует попаданию воды;
    • 3 – втулка, выполняет защитную функцию от истирания;
    • 4 – диск гидравлической пяты, предназначен для стабилизации оборудования;
    • 5 – колесо рабочее, при вращении образует центробежную силу;
    • 6 – секции, в которых располагаются механизмы;
    • 7 – лопаточный отвод, раскручивает поток после рабочего колеса;
    • 8 – набивка сальниковая, используется для лучшего уплотнения и герметизации;
    • 9 – подшипник, используется как опора для вала;
    • 10 – муфта, передает вращательные движения вала;
    • 11 – втулка гидрозатвора, защищает вал от истирания;
    • 12 – вал, выполняет функцию оси вращения;
    • 13 и 14 – уплотняющее кольцо, предотвращает утечку воды.
    Насос

    Центробежный насос в разрезе

    При помощи электромотора приводится в движение вал, на котором расположены рабочие колеса с лопастями. Может быть одно колесо или несколько. Попадая в устройство, жидкость при вращении рабочего колеса набирает центробежную силу и выталкивается в напорный водопровод.

    Плюсы и минусы

    Плюсы:

    • Надежность.
    • Высокий КПД.
    • Возможность подключения дополнительных устройств.
    • Плавное снижение давления.
    • Имеют самовсасывающую функцию.
    • Возможность перекачки не только чистой воды.
    • Доступная стоимость.
    • Простота устройства и эксплуатации.

    Минусы:

    • Перед запуском нужно залить воду.
    • Возможна кавитация (процесс парообразования жидкости, в результате чего происходит разрыв подачи).
    • Если перекачивается вязкая жидкость, падает КПД.

    Благодаря современным технологиям КПД центробежного насоса достигает по уровню КПД поршневого аналога.

    Классификация

    По степени образуемого давления:

    • низкого;
    • среднего:
    • высокого давления.

    По конструкции:

    • с вертикально расположенным валом;
    • с горизонтально расположенным валом.

    В зависимости от количества колес с лопастями:

    • одноступенчатое;
    • многоступенчатое оборудование.

    Виды насосов

    • Помпа возвратно-поступательного действия.

    Поршневой всасывающий насос. Забор воды осуществляется за счет возвратно-поступательных движений поршня.

    Мембранный агрегат имеет такой же принцип работы, только его работа выполняется за счет мембранного элемента. Эта схема работы имеет много преимуществ, но довольно быстро может выйти из строя. Мембранный насос имеет компактные габариты и прост в эксплуатации.

    В эту группу входит сильфонный насос. В его конструкции имеется гармошка, которая исполняет функцию помпы. Такая схема применяется в баках с питьевой водой.

    • Роторный насос. Его принцип действия – вытеснение жидкости.

    Шестеренный. Имеет несколько шестеренок. Жидкость, попадая в водяной агрегат, проходит через зубья шестеренки и выходит в напорную полость.

    Винтовой. Движение жидкости осуществляется по направлению оси. Винтовой насос имеет принцип вытеснения жидкости с помощью шнека. Применяются винтовые устройства для перекачки жидкости, различной вязкости, пара и газа. Преимуществом винтового агрегата является равномерная подача жидкости, образование высокого давления и бесшумная работа. Но винтовые механизмы сложно регулировать, к тому же их нельзя пускать без жидкости.

    Коловратный. Двухвальный роторный агрегат.

    Пластинчатый. Может иметь одну или несколько плоских пластин, которые обеспечивают замещение жидкости.

    Роликовый. Нагнетание жидкости осуществляется вращающимися поршнями, расположенными эксцентрично.

    • Центробежный насос. Образует давление жидкости с помощью центробежной силы.

    Лопастной. Работа осуществляется с помощью колеса с лопастями.

    Вихревой насос. Его преимуществом является то, что это самовсасывающий насос.

    • Специальный насос. Он предназначен для специфического применения.

    Струйный. Наиболее простую конструкцию имеет струйный насос. Такая схема работы не требует вращательных элементов, а забор осуществляется за счет разности давления. Струйный насос использовался еще, когда не было электричества.

    Электромагнитный. Агрегат предназначен для перекачки жидкого металла.

    Бустер. Бустерные установки применяются для промывки теплообменников (бойлеров, котлов, систем отопления и водоснабжения). Бустерные установки могут быть как промышленные, так и бытовые. Принцип действия заключается в использовании химических реагентов, которые разрушают накипь и отложения. Бустерные установки с применением химических веществ экономят затраты электроэнергии.

    Вакуумный. Применение вакуумного устройства ограничено спецификой его действия. К услугам вакуумного агрегата чаще всего прибегают для чистки вентиляционных и холодильных систем. Также их используют для выкачки газа из вакуумного сосуда. Работа вакуумного агрегата практически бесшумна.

    • Консольный насос является классическим представителем ЦСН. Такой вид наиболее распространён. Рабочий элемент состоит из двух колес, объединенных лопастями и работающими как один механизм. При вращении колеса на жидкость действует центробежная сила и под её действием жидкость выбрасывается в трубопровод.
    • Горизонтальный агрегат предназначен для перекачки чистой воды. Применяется для насосных станций. К такому виду агрегатов относится ЦНС.
    Насосы

    Все виды насосов

    • Погружные помпы. Применяются для выкачки воды из артезианских скважин. Заменой погружному может стать инжекторный насос. Его назначение – подъем воды из скважины или колодца глубиной более 8 метров.
    • Вертикальная помпа предназначена для подачи бытовой воды населению и промышленным предприятиям.
    • Химический агрегат предназначен для перекачки жидкостей, по химическому составу отличающихся от воды.
    • Специальный агрегат применяется в специфических сферах деятельности, но из-за высокой стоимости не обрел широкого распространения.
    • Конденсатные агрегаты применяются для откачки конденсата, отработанного пара из паровых турбин.
    • Нефтяные агрегаты перекачивают нефть и нефтепродукты.
    • Морские помпы устанавливаются на морских суднах.
    • Питательные агрегаты предназначены для питания отопительных котлов водой без примесей.
    • Массный агрегат перекачивает древесноволокнистые массы.
    • Песчаные и грунтовые агрегаты предназначены для перекачки песка и грунта соответственно и прочих абразивных смесей.
    • Фекальные помпы используют для выкачки фекальных вод.
    • Агрегаты для взвешенных частиц применяют при перекачке грунтовых и гравийно-глинистых вод.
    • Вихревой насос применяется для перекачки чистой воды и других жидкостей. Он оснащен вихревым колесом в виде плоского диска с короткими лопастями. Вихревой насос обладает самовсасывающей способностью. К агрегатам такого типа относится насос СВН, его назначение – перекачка чистой жидкости без примесей.
    • Бензиновый агрегат перекачивает бензин, керосин и дизельное топливо.
    • Осевые агрегаты применяются в промышленности и для оросительных систем.
    • Маслонасосы относятся к оборудованию объемного типа. В эту группу входят винтовые и роторные помпы. Рабочим элементом являются шнеки с винтовой нарезкой или кулачки различного профиля.

    Самодельный насос. Видео

    Самодельный центробежный насос можно изготовить из подручных материалов. Как это сделать, расскажет видео ниже.

    Центробежные устройства широко применяются в быту, тяжелой и легкой промышленности, сельском хозяйстве, на строительстве т.д. Наиболее часто для населения используется консольный, горизонтальный, погружной и вихревой агрегаты. Другие виды больше используются на предприятиях или в сельском хозяйстве, из-за чего они менее распространены. К тому же многие модели насосов, предназначенных для перекачки воды, можно использовать при работе с топливом, газом и другими жидкостями.

    Facebook

    Twitter

    Вконтакте

    Одноклассники

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *