21.11.2024

Лепестковые клапана: Лепестковый клапан — Википедия – ? | / . Official group

Лепестковые протезы клапана сердца — Википедия

Лепестковые протезы клапанов сердца — механические искусственные клапаны сердца, своей конструкцией имитирующие природную форму естественных клапанов сердца в целях максимального приближения к естественным клапанам по функциональным и гемодинамическим свойствам.

Первая однолепестковая модель механического протеза клапана сердца была создана Е. Н. Berg и J. Н. Stuckey в 1957 году [1]. Корпус клапана, выполненный из тефлона, нейлона и нержавеющей стали, имел форму кольца, к которому шарниром присоединялась тефлоновая створка. Годом позже К. У. Лиллехей в Университете Миннесоты разработал протез со створкой из органосиликонового эластомера, и в октябре 1958 года впервые успешно выполнил протезирование аортального клапана, фиксировав его к фиброзному кольцу клапана в субкоронарную позицию[2].

В марте 1960 года N. S. Braunwald впервые в мире выполнила протезирование митрального клапана собственной конструкции, состоящего из двух полиуретановых створок, армированных сеткой из дакрона, объединённых полиуретановым кольцом. Поскольку однолепестковые клапаны быстро разрушались в месте соединения створки и корпуса протеза, а двухлепестковые имели низкую пропускную способность, создающую значительный градиент давления перед клапаном и за ним, то большее распространение получили трёхлепестковые конструкции, максимально приближенные своей формой к полулунным клапанам аорты и лёгочной артерии

[3].

Двухлепестковый клапан, созданный в Висконсинском университете в Мадисоне кардиохирургом V. Gott и механиком R. Daggett, состоял из кольцевидного жёсткого корпуса из поликарбоната, который был покрыт для профилактики тромбоза графитом и гепарином, и двух гибких плоских створок в виде «крыльев бабочки» из органосиликонового эластомера, армированных тефлоновой тканью и закреплённых на перекладине, располагаемой по диаметру корпуса. В закрытом положении гибкий диск удерживался внутри корпуса распорками.

[4]. Несмотря на то, что протезы Gott-Daggett применялись в клинической практике только в 1963—1965 годах, и были запрещены из-за случаев поломок, зафиксировано их функционирование у пациентов в течение 25 лет.

В трёхлепестковых протезах, разработанных E. I. Kay и К. У. Лиллехеем в 1961 году, все три лепестка, изготавливаемые из тканого тефлона, пропитанного полиуретаном (или из тефлонового войлока, импрегнированного органосиликоновым эластомером), имели геометрические пропорции, подобные естественным полулунным клапанам сердца, и объединялись друг с другом в области комиссур

[5][6].

В 1960—1961 годах E. I. Kay и его соавторы сообщали о создании различных модификаций четырёхлепесткового митрального клапана из нескольких видов пластмасс. Протезы состояли из двух больших лепестков, имевших 4 пары хорд из тефлона, пропитанного полиуретаном, и двух промежуточных (меньших) лепестков, имевших по 1 паре хорд. Преимуществом такой конструкции считалось уменьшенное сопротивление протеза потоку крови.

Первый в СССР однолепестковый протез клапана сердца конструкции Н. В. Левашова был создан в 1958 году в Куйбышеве

[7]. Он состоял из нейлоновой губки в форме теннисной ракетки, и каркаса из капроновой жилки. Для устранения митральной недостаточности предлагалось под митральный клапан подвести протез и зафиксировать его в стенке желудочка так, чтобы свободный конец протеза перекрывал клапан в месте регургитации. Протез был имплантирован в Куйбышевском медицинском институте двум пациентам с тяжёлой недостаточностью без использования искусственного кровообращения. При улучшении состояния одного из пациентов (со сроком наблюдения после операции более года), во втором случае была зафиксирована смерть через 2 часа после операции на фоне полиорганной недостаточности
[8]
. В СССР однолепестковые клапаны в клинической практике более не использовались.

Активная работа по созданию отечественных протезов клапанов сердца началась после научной командировки осенью 1961 года делегации советских кардиохирургов в составе С. А. Колесникова (Москва), П. А. Куприянова (Ленинград) и Н. М. Амосова (Киев) в США.

Такая разработка началась в Институте грудной хирургии АМН СССР. Созданием протеза занялся сотрудник отделения хирургии приобретённых пороков сердца Г. Т. Голиков, а его изготовлением — сотрудники лаборатории полимеров института. В 1963 году было получено авторское свидетельство СССР на «Искусственный клапан сердца для аорты и лёгочной артерии»[9]

. Протез выполнялся из трёх створок, укреплённых на проволочном каркасе, повторяющей формой линию крепления естественных створок аортального и пульмонального клапанов к стенкам сосудов. Расположению комиссур соответствовали места наибольшего изгиба проволоки, на участках крепления створок и фиксации протеза в просвете лёгочной артерии или аорты проволока загибалась в виде спирали. Концы проволоки соединялись электросваркой, моделирование каркаса производилось по слепку соответствующего сосуда так, чтобы их диаметры были равны. Створки выполнялись из тефлонового трикотажа. Снаружи к пристеночным листкам створок крепилась полоска спрессованной губки из поливинилалкоголя, прорастающая соединительной тканью в местах соприкосновения со стенкой сосуда. Протез имел возможность изменять диаметр в зависимости от диаметра сосуда в разных фазах работы сердца.

В. И. Бураковский

Первая имплантация трёхлепесткового протеза конструкции Голикова была проведена в позицию лёгочной артерии 28 июня 1962 года будущим академиком РАМН, а тогда кандидатом медицинских наук В. И. Бураковским. Спустя полгода, 25 декабря 1962 года С. А. Колесников провёл операцию протезирования аортального клапана[10].

Параллельно с разработкой протеза для замещения клапана аорты в Институте грудной хирургии АМН СССР был сконструирован трёхлепестковый протез для митральной позиции. В созданной модели на жёсткий каркас (двух видов: сплошной, из фторопласта, или проволочный, с пружинящим кольцом, изменяющим диаметр во время систолы и диастолы сердца) надевалась трубка из синтетического трикотажа, фиксируемая к каркасу. Створочную часть покрывали лаком (на основе растворимых фторсодержащих полимеров), а пристеночное кольцо оставляли пористым, что позволяло фиксировать протез и способствовало прорастанию тканью реципиента. С 1963 года было начато клиническое применение этой конструкции

[11].

Другая модель трёхлепесткового протеза была разработана в Отделении грудной хирургии НИИ туберкулеза и грудной хирургии им. Ф. Г. Яновского М3 УССР в начале 1962 года инженером Ю. М. Кривчиковым. В его конструкции обшитый байкой из тефлона каркас из нержавеющей стали (в виде соединённых между собой трёх аркад и кольца) помещался между стенок двухслойной трубки из тефлоновой ткани, для удвоения которой один её конец продевался внутрь кольца, а другой выворачивался поверх каркаса. По полученным жёстким граням стенки трубки сшивались, образуя створки, которые затем вытягивали и стабилизировали в виде полулуний на специальном зажиме. В области створок протез не имел внешних стенок (их заменяли стенки самого желудочка) и поэтому не препятствовал току крови в аорту. Для операции готовили набор клапанов трёх размеров с наибольшим диаметром 35 мм и наименьшим — 26 мм

[12]. Первое в стране протезирование митрального клапана (конструкции Кривчикова) выполнил 17 января 1963 года в киевском Институте туберкулеза и грудной хирургии им Ф. Г. Яновского Н. М. Амосов[13].

К 1963 году в СССР протезированием клапанов занимались две вышеназванные клиники, имплантировавшие протезы Г. Т. Голикова и Ю. М. Кривчикова (при этом операции с искусственным кровообращением выполнялись в 10 учреждениях). Опыт их использования показал, что створки из тефлоновой ткани подвержены быстрому кальцинозу и дисфункции протезов, поэтому в 1964 году имплантация лепестковых протезов была прекращена[14].

Все лепестковые клапаны во время сердечного цикла работали на двойной изгиб. При испытании на установках, имитирующих в единицу времени количество циклов, в десятки раз превышающие число сердечных сокращений, они разрушались за период, эквивалентный 1—6 годам работы сердца

[15].

Другим отрицательным фактором являлось оседание на лепестках фибрина, отложение тромбов с последующим их замещением соединительной тканью и её минерализацией. Всё это приводило к стенозированию протезов или к разрыву их створок в организме через 1—2 года после операции. Было отмечено, что, захлопываясь, клапан создавал сильный гидравлический удар, вызывающий травму форменных элементов крови и тромбообразование[10][16].

В последние годы, с появлением новых полимерных материалов, интерес к лепестковым клапанам возрождается. Описаны новые экспериментальные клапаны сердца, изготовленные из полиэфируретанмочевины, устойчивые к кальцификации: их минерализация была в 100 раз меньше, чем у контрольного биологического протеза

[17].

В проекте полимерного клапана для уменьшения тромбообразования и избежания минерализации поверхность створок клапана модифицируется лигандами, и уделяется повышенное внимание минимизации напряжения на створках и уменьшению застойных зон[18].

  1. Berg E. H., Goodman S. E., Stuckey J. H., Newman M. E. Total replacement of the mitral valve / Surg. Forum. — 1957. — Vol. 8. — P. 363—367.
  2. Lillehei C. W., Long D. M. Total replacement of aortic and mitral valve / Circulation. — 1962. — Vol. 26. — P. 751—752.
  3. Braunwald N. S., Cooper T., Morrow A. G. Complete replacement of the mitral valve: successful clinical application of a flexible polyurethane prosthesis / J. Thorac. Cardio-valve. Surg. — 1960. — Vol. 40. — P. 1—11.
  4. Gott V., Daggett R., Wiffen Y. et al. Replacement of the canine pulmonary valve and pulmonary atery with a graphite-coated valve prosthesis / J. Thorac. Cardiovasc. Surg — 1962. — Vol. 44, № 6. — P. 713—723.
  5. Kay E. B., Mendelsohn D. et al. Surgical treatment of aortic valve disease / Prosthetic valves for cardiac Surgery / Ed. K. A. Merendino. — Springfield, 1961. — P. 485—492.
  6. Lillehei C. W., Barnard C. N. et al. Aortic valve reconstruction and replacement by total valve prosthesis / Prosthetic valves for cardiac Surgery / Ed. K. A. Merendino. — Springfield, 1961. — P. 527—575.
  7. Левашов Н. В. Протез митрального клапана с односторонней фиксацией: Авт. св. № 122249, заявл. 29.12.1958, опубл. 1959 // Бюл. изобр. 1959 № 17.
  8. Левашов Н. В. О методах хирургического исправления митральной недостаточности: Автореф. дис. …канд. мед. наук — Куйбышев, 1962. — 18 с.
  9. Голиков Г. Т. Искусственный клапан сердца для аорты и лёгочной артерии: Авт. св. № 158988, заявл. 24.10.1962, опубл. 22.11.1963 // Бюл. изобр. 1963 № 23
  10. 1 2 Опыт применения искусственного трёхстворчатого клапана при хирургическом лечении аортальной недостаточности / Колесников С. А., Цукерман Г. И., Голиков Г. Т. и др. // Грудн. хирургия. — 1964. — № 5. — С. 3—6.
  11. ↑ Полное протезирование митрального клапана / Колесников С. А., Цукерман Г. И., Голиков Г. Т. и др. // Грудн. хирургия. — 1964. — № 4. — С. 16—19.
  12. ↑ Искусственный трёхстворчатый клапан при замещении митрального клапана сердца / Кривчиков Ю. Н. // Грудн. хирургия. — 1964. — № 1. — С. 115—117.
  13. Бураковский В. И. Первые шаги. Записки кардиохирурга. — М. 1988. — 239 с.
  14. ↑ Развитие хирургии приобретённых пороков сердца в научном центре сердечно-сосудистой хирургии им. А. Н. Бакулева / Цукерман Г. И. // Грудн. хирургия. — 1999. — № 6. — С. 20—29.
  15. Цукерман В. И. (ред.) Протезирование клапанов сердца. / Научный обзор. — М. 1971.
  16. ↑ Гидро- и гемодинамика искусственных сердечных клапанов / Кузьмина Н. Б. // Грудн. хирургия. — 1964. — № 6. — С. 101—106.
  17. Bernacca G. M., Wheatley D. J. Surface modification of polyurethane heart valves: effects on fatigue life and calcification / Int. J. Artif. Organs. — 1998. — Vol. 21. № 3 — P. 814—819.
  18. Clapper D. L., Anderson A. B. Photochemical coating to improve tissue compatibility and tromboresistance of implantdevices / Mater. Technol. — 1995. — Vol. 10. № 1 — P. 147—149.
  • Вербовая Т. А., Гриценко В. В., Глянцев С. П., Давыденко В. В., Белевитин А. Б., Свистов А. С., Евдокимов С. В., Никифоров В. С. Отечественные механические протезы клапанов сердца (прошлое и настоящее создания и клинического применения). — Спб: Наука, 2011. — С. 65—72. — 195 с. — 1000 экз. — ISBN 978-5-02-025450-3.
  • Орловский П. И., Гриценко В. В., Юхнев А. Д., Евдокимов С. В., Гавриленков В. И. Искусственные клапаны сердца. — Спб: ОЛМА Медиа Групп, 2007. — С. 40—47. — 448 с. — 1500 экз. — ISBN 978-5-373-00314-8.

Для чего нужен лепестковый клапан?

Устройство, предназначенное для пропуска газообразных и жидких сред в одну сторону и блокировки их обратного хода, называется лепестковый клапан. Применение ему нашлось в осевых вентиляторах, где исключается попадание атмосферного воздуха в помещение, и в двигателях внутреннего сгорания, что предотвращает возврат топлива из цилиндра в карбюратор.

Изделие для вентиляторов состоит из корпуса, в подшипниках которого закреплены специфической формы лопатки. Подшипники поддерживают свободный ход клапана в случае работы вентилятора при отрицательных температурах. Работающий вентилятор подаёт поток воздуха на лопатки, которые постоянно пребывают в открытом положении. После прекращения работы лопатки становятся в исходное положение, за счёт чего перекрывают сечение клапана.

лепестковый клапанСуществует по-особому модифицированный клапан лепестковый. Тюльпан – его второе название, в основе его конструкции коробчатый корпус из четырёх стенок. На осях корпуса жёстко закреплены профилированные створки, выполненные из оцинкованной стали. Тип примыкания створок – замковый.

От простых, на основе одной лопатки, устройств лепестковый обратный клапан отличают низкий показатель инерционности срабатывания и меньшая стандартная скорость потока, раскрывающая его. Особенно выгодно использовать такое изделие в осевых типах вентиляторов, где скорость потока меньше в сравнении с радиальными типами.

клапан лепестковый тюльпанЧто касается двигателей внутреннего сгорания, то для владельцев транспортных средств лепестковый клапан разрешает несколько вопросов. Его лепестки изготавливаются из гибких материалов. Когда поршень идёт на сжатие смеси, то из-за разности давлений в сообщаемых камерах они, в силу своей гибкости, отгибаются, открывая отверстия в корпусе клапана, сквозь которые идёт топливная смесь. Наступление фазы продувки при движении поршня вниз создаёт направленность давления на противоположную сторону, отчего лепестки прижимаются к корпусу, перекрывая отверстия, что не позволяет смеси откатываться в обратную сторону. Среди положительных качеств изделия можно отметить следующие:
  • Экономия топлива. Поступательное движение поршня вверх образует разрежение в картерном пространстве. Затем, через карбюратор туда всасывается воздух, смешивается с бензином, отчего образуется топливная смесь. Смесь поступает до тех пор, пока поршень двигается вверх. Как только он начинает идти вниз, давление оказывает на лепестковый клапан действие, и лепестки перекрывают ход смеси обратно. Вокруг карбюратора будет чисто, да и выброса смеси в атмосферу не происходит, потери минимизируются.
  • Мощность двигателя. Лепестковый клапан позволяет увеличивать мощность на малых и средних оборотах. Секрет в том, что в картер и в цилиндр попадает больше смеси, поскольку ранее выбрасываемая в атмосферу порция используется по прямому назначению.
  • лепестковый обратный клапанПриземистость транспортного средства. Это явление — прямое следствие из предыдущего свойства – увеличения мощности.
  • Устойчивый холостой ход. Дело в том, что режим холостого хода состоит из низких оборотов двигателя. Как раз на этих оборотах эффект обратного хода смеси выражен наиболее ярко. Лепестковый клапан при каждом движении поршня пропускает в картер точное количество смеси.
  • Простой запуск двигателя. Поступление в цилиндры стабильной порции смеси позволяет заводить двигатель легче, как говорится – «с полтычка».

Двухтактный двигатель | Мото-мануалы и инструкции

Простейший двухтактный двигательЦикл работы двухтактного двигателяЦикл работы двухтактного двигателя

Двухтактный двигатель наиболее прост с технической точки зрения: в нем поршень выполняет работу распределительного органа. На поверхности цилиндра двигателя выполнено несколько отверстий. Их называет окнами, и они принципиальны для двухтактного цикла. Предназначение впускных и выпускных каналов достаточно очевидно — впускное окно позволяет топливовоздушной смеси попасть в двигатель для последующего сгорания, а выпускное окно обеспечивает отвод полученных в результате сгорания газов из двигателя. Продувочный канал служит для обеспечения перетекания из кривошипной камеры, в которую она поступила ранее, в камеру сгорания, где происходит сгорание. Здесь возникает вопрос, почему смесь поступает в пространство картера под поршнем, а не непосредственно в камеру сгорания над поршнем. Чтобы понять это, следует отметить, что в двухтактном двигателе кривошипная камера выполняет важную второстепенную роль, являясь своего рода насосом для смеси.

 Она образует собой герметичную камеру, закрытую сверху поршнем, из чего следует, что объем этой камеры, а, следовательно, и давление внутри нее, изменяется, поскольку поршень перемешается возвратно-поступательно в цилиндре (по мере того как поршень двигается вверх, объем увеличивается, и давление падает ниже атмосферного, создается разрежение; наоборот, при движении поршня вниз объем уменьшается, и давление становится выше атмосферного).

Впускное окно на стенке цилиндра большую часть времени закрыто юбкой поршня, оно открывается, когда поршень приближается к верхней точке своего хода. Созданное разрежение всасывает свежий заряд смеси в кривошипную камеру, затем, по мере того как поршень движется вниз и создает давление в кривошипной камере, эта смесь вытесняется в камеру сгорания через продувочный канал.

Данная конструкция, в которой поршень играет роль распределительного органа по очевидным причинам, является самой простой разно¬видностью двухтактного двигателя, число перемеoающихся частей в ней не значительно. Во многих отношениях это является значительным преимуществом, однако оставляет желать лучшего с точки зрения эффективности (КПД). В свое время почти во всех двухтактных двигателях поршень выполнял роль органа распределения, но в современных конструкциях эта функция отводится более сложным и эффективным устройствам

Улучшенные конструкции двухтактного двигателя

Влияние на течение газа Одна из причин неэффективности выше-описанного двухтактного двигателя-неполная очистка от отработавших газов. Оставаясь в цилиндре, они мешают проникновению всего объема свежей смеси, и, следовательно, снижают мощность. Также существует связанная с этим проблема: свежая смесь из окна продувочного канала поступает прямо в выпускной канал, и, как было упомянуто ранее, чтобы это минимизировать, окно продувочного канала направляет смесь вверх.

Дефлекторная продувкаДефлекторная продувка

Поршни с дефлектором

Эффективность очистки и топливная экономичность могут быть улучшены за счет создания более эффективного течения газа внутри цилиндра. На ранней стадии усовершенствование двухтактных двигателей было достигнуто за счет придания днищу поршня особой формы для отклонения смеси от впускного канала к головке цилиндра — данная конструкция получила название поршня с дефлектором». Однако использование поршней с дефлектором на двухтактных двигателях было непродолжительным в связи с проблемами расширения поршня. Тепловыделение в камере сгорания двухтактного двигателя обычно выше, чем у четырехтактного, потому что сгорание происходит вдвое чаше, кроме того, головка, верхняя часть цилиндра и поршня являются наиболее нагретыми частями двигателя. Это приводит к проблемам, связанным с тепловым расширением поршня. Фактически, поршню при изготовлении придается такая форма, чтобы он слегка отличался от окружности и был конусным кверху (овало-бочкообразный профиль), таким образом, когда он расширяется при изменении температуры, он становится круглыми и цилиндрическим. Добавление несимметричного металлического выступа в виде дефлектора на днище поршня, изменяет характеристики его рас¬ширения (если поршень будет чрезмерно расширяться в неправильном направлении, его может заклинить в цилиндре), а также приводит к его утяжелению со смещением массы от оси симметрии. Этот недостаток стал намного более очевидным по мере того, как двигатели усовершенствовались для работы при более высоких скоростях вращения.

Типы продувок двухтактного двигателсяТипы продувок двухтактного двигателя

Петлевая продувка

Поскольку у поршня с дефлектором слишком много недостатков, а плоское или слегка скругленное днище поршня не сильно влияет не движение поступающей смеси или вытекающих отработавших газов, был необходим другой вариант. Он был разработан в ЗО-х годах XX века доктором Е. Шнурле, который его изобрел и запатентовал (хотя, по общему признанию, он первоначально спроектировал его для двухтактного дизельного двигателя). Продувочные окна расположены напротив друг друга на стенке цилиндра и направлены под углом вверх и назад. Таким образом, поступающая смесь наталкивается на заднюю стенку цилиндра и отклоняется вверх, затем, образуя наверху петлю, падает на отработавшие газы и способствует их вытеснению через выпускное окно. Следовательно, хорошая продувка цилиндра может быть получена подбором расположения продувочных окон. Необходимо тщательно прорабатывать форму и размер каналов. Если сделать канал слишком широким,поршневое кольцо, минуя его,может попасть в окно и заклинить, тем самым вызывая поломку. Поэтому размер и форма окон выполняется так, чтобы гарантировать безударный проход колеи мимо окон, а некоторые широкие окна соединены в середине перемычкой, служащей опорой для колец. В качестве еще одного варианта можно предложить использование большего числа окон меньших размеров.

На данный момент существует множество вариантов расположения, численности и размеров окон, сыгравших большую роль в увеличении мощности двухтактных двигателей. Некоторые двигатели снабжены продувочным и окнами, служащими для единственной цели — улучшения продувки, они открываются незадолго до открытия главных продувочных окон, которые подают большую часть свежей смеси. Но пока это всё. что можно сделать для улучшения газообмена без использования дорогих в производстве деталей. Чтобы продолжать улучшать характеристики, необходимо более точно управлять фазой наполнения.

Лепестковый_клапан_Suzuki_LetsЛепестковый клапан Suzuki Lets TWСхема работы лепесткового клапанаСхема работы лепесткового клапана

Лепестковые клапана

В любой конструкции двухтактного двигателя улучшение КПД и топливной экономичности означает, что двигатель должен работать более эффективно, это требует сгорания максимального количества топлива (следовательно, получения максимальной мощности) на каждом рабочем такте двигателя. Остается проблема сложного удаления всего объема отработавшего газа и заполнения цилиндра максимальным объемом свежей смеси. До тех пор, пока процессы газообмена совершенствуются в рамках двигателя с поршнем в роли органа распределения, нельзя гарантировать полную очистку от отработавших газов, остающихся в цилиндре, при этом нельзя увеличить объем поступающей свежей смеси, чтобы способствовать вытеснению отработавших газов. Решением может служить заполнение кривошипной камеры большим количеством смеси за счет увеличения ее объема, но на практике это приводит к менее эффективной продувке. Увеличение эффективности продувки требует уменьшения объема кривошипной камеры и, таким образом, ограничения пространства, предназнеченного для заполнения смесью. Так что компромисс уже найден, и следует искать другие способы улучшения характеристик. В двухтактном двигателе, в котором роль органа газораспределения отведена поршню, часть топливовоздушной смеси, поданной в кривошипную камеру, неизбежно будет потеряна по мере того, как поршень начинает двигаться вниз в процессе сгорания. Эта смесь вытесняется обратно во впускное окно и, таким образом, теряется. Необходим более эффективный способ управления поступающей смесью. Предотвратить потери смеси можно путем использования лепесткового или дискового (золотникового) клапана или их комбинации.

Лепестковый клапан состоит из металлического корпуса клапанов и закрепленного на его поверхности седла с уплотнением из синтетического каучука. Два или более лепестковых клапана закреплены на корпусе клапанов, при нормальных атмосферных условиях эти лепестки закрыты. Кроме того, для ограничения перемещения лепестка установлены ограничительные пластины по одной на каждый лепесток клапана, служащие для предотвращения его поломки. Тонкие лепестки клапана обычно изготавливаются из гибкой (пружинной) стали, хотя все более популярными становятся экзотические материалы на основе фенольной смолы или стеклотекстолита.

Клапан открывается за счет изгиба лепестков до ограничительных пластин, которые спроектированы таким образом, что открываются, как только появляется положительный перепад давления между атмосферой и кривошипной камерой; это происходит, когда движущийся вверх поршень создает разрежение в картере, Когда смесь подана в кривошипную камеру, и поршень начинает двигаться вниз, давление внутри картера возрастает до уровня атмосферного, и лепестки прижимаются, закрывая клапан. Таким образом, подается максимальное количество смеси, и предотвращаются любые обратные выбросы. Дополнительная масса смеси более полно заполняет цилиндр, и продувка происходит более эффективно. Сначала лепестковые клапана были приспособлены для использования на существующих двигателях с поршнем в роли органа газораспределения, это привело к существенному улучшению эффективности двигателей. В отдельных случаях производители выбирали комбинацию двух конструкций: одной — когда двигатель с поршнем в роли органа газораспределения. дополненный лепестковым клапаном для продолжения процесса наполнения через дополнительные каналы в кривошипной камере после того, как поршень перекроет основной канал, если уровень давления в картере двигателя позволяет это. В другой конструкции на поверхности юбки поршня выполнялись окна, чтобы окончательно избавиться от контроля, который поршень имеет над каналами; в таком случае они открываются и закрываются исключительно под воздействием лепесткового клапана. Развитие этой идеи означало, что клапан и впускной канал могут быть перенесены из цилиндра в кривошипную камеру. Устрашающие предостережения, что на лепестках клапана образуются трещины и лепестки могут попасть внутрь двигателя, оказались в значительной степени необоснованными. Перемещение впускного канала предоставляет ряд преимуществ, главное из которых связано с тем. что течение газа в полость картера становится более свободным.и,следовательно, большее количество смеси может поступить в кривошипную камеру. Этому до некоторой степени способствует импульс (скорость и вес) поступающей смеси. При переносе впускного канала из цилиндра можно продолжать повышать эффективность путем смешения продувочного окна (окон) в оптимальное для продувки положение. Безусловно, за последние годы основное расположение лепестковых клапанов было подвергнуто тщательному исследованию, и появились сложные конструкции. содержащие двухступенчатые лепестки и многолепестковые корпуса клапанов. Последние разработки в области лепестковых клапанов связаны с материалами, используемыми для лепестков, и с расположением и размером лепестков.

Принцип действия дискового клапанаПринцип действия дискового клапана

Дисковые клапана (золотниковое распределение)

Дисковый клапан состоит из тонкого стального диска, закрепленного на коленчатому валу шпонкой

 или шлицами таким образом, что они вращаются вместе, Он располагается снаружи впускного окна между карбюратором и крыш¬кой картера так. чтобы в нормальном состоянии канал перекрывался диском, Чтобы произошло наполнение в нужной области цикла двигателя, из диска вырезается сектор. При вращении коленчатого вала и дискового клапана впускное окно открывается в момент, когда вырезанный сектор проходит мимо канала, позволяя смеси проникнуть непосредственно в кривошипную камеру. Затем канал перекрывается диском, предотвращая обратный выброс смеси в карбюратор по мере того, как поршень начинает двигаться вниз.

К очевидным преимуществам использования дискового клапана можно причислить более точное управление началом и концом процесса участок, или сектор, диска минует канал), и продолжительностью процесса наполнения (то есть величиной вырезанного участка диска, пропорциональной времени открытия канала). Также дисковый клапан допускает применение впускного канала большого диаметра и гарантирует беспрепятственный проход смеси, попадающей в кривошипную камеру. В отличие от лепесткового клапана с достаточно большим корпусом клапанов, дисковый клапан не создает никаких преград во впускном канале, и поэтому газообмен в двигателе улучшается. Другое преимущество дискового клапана проявляется на спортивных мотоциклах — это время, за которое его можно заменить для подбора рабочих характеристик двигателя под различные трассы. Главным недостатком дискового клапана являются технические трудности, требующие маленьких производственных допусков и отсутствие приспособляемости, то есть неспособность клапана реагировать на изменение потребностей двигателя подобно лепестковому клапану. Кроме того, все дисковые клапана уязвимы в отношении попадания мусора, поступающего в двигатель с воздухом (мелкие частицы и пыль оседают на уплотняющих канавках и царапают диск). Несмотря на это. на практике дисковые клапана работают очень хорошо и обычно способствуют значительному приросту мощности на низких частотах вращения двигателя по сравнению с обычным двигателем с поршнем в роли органа газораспределения.

Совместное использование лепестковых и дисковых клапанов

Неспособность дискового клапана реагировать на изменение потребностей двигателя навела некоторых производителей на мысль — использовать комбинацию дискового и лепесткового клапана для получения высокой эластичности двигателя. Поэтому.когда этого требуют условия, давление в картере двигателя закрывает лепестковый клапан, таким образом, закрывая впускной канал со стороны кривошипной камеры, даже несмотря на то, что вырезанный участок (сектор) диска все еще может открывать впускной канал со стороны карбюратора.

Использование щеки коленвала в качестве дискового клапана

Интересный вариант дискового клапана использовался в течение нескольких лет на ряде двигателей мотороллеров Vespa. Вместо применения отдельного клапанного устройства для выполнения его роли производители использовали стандартный коленчатый вал. Плоскость правой щеки маховика обработана с очень высокой точностью так, что при вращении коленвала зазор между ней и картером составляет несколько тысячных долей дюйма. Впускной канал находится прямо над маховиком (на этих двигателях цилиндр располагается горизонтально) и, таким образом,прикрывается краем маховика, Путем механической обработки выемки в части маховика можно в заданной точке цикла двигателя открыть канал аналогично тому, как это происходит при использовании традиционного дискового клапана. Хотя получаемый впускной канал оказывается менее прямым, чем мог бы быть, на практике эта система работает очень хорошо. В результате двигатель вырабатывает полезную мощность в широком диапазоне частот вращения двигателя, и по прежнему остается технически простым.

Расположение выпускного окна

во многих отношениях системы впуска и выпуска на двухтактном двигателе очень тесно связаны. В предшествующих параграфах мы обсудили способы подвода смеси и отвода отработавших газов из цилиндра. За эти годы проектировщики и испытатели обнаружили, что фазы выпуска могут иметь столь же существенное влияние на характеристики двигателя, как и фазы впуска. Фазы выпуска определяются высотой выпускного окна в стенке цилиндра, то есть когда оно закрывается и открывается поршнем по мере того, как он перемешается в цилиндре вверх и вниз. Конечно, как и во всех других случаях, нет одного единственного положения, которое охватывало бы все режимы двигателя. Во- первых, это зависит оттого, для чего двигатель должен использоваться, во-вторых, как этот двигатель используется. Например, для одного и того же двигателя оптимальная высота выпускного окна различна при низких и при высоких частотах вращения двигателя, а при углубленном рассмотрении можно сказать, что то же относится и к размерам канала, и непосредственно к размерам выпускной трубы. В результате на производстве разработаны различные системы с изменяющимися при работе двигателя характеристиками выпускных систем для соответствия изменяющимся частотам врашения. Такие системы появились у Yamaha (YPVS), Honda (АТАС). Kawasaki (KIPS), Suzuki (SAPC), Cagiva (CTS) и Aprilia (RAVE). Ниже описываются системы Yamaha, Kawasaki и Honda.

Системе с мощностным клепаном Yamaha — YPVS

В основе этой системы лежит непосредственно мощностной клапан, который по существу является роторным клапаном, установленным в гильзе цилиндра так, чтобы его нижняя кромка соответствовала верхней кромке выпускного окна. На низких частотах вращения двигателя клапан находится в закрытом положении, ограничивая эффективную высоту окна: это улучшает характеристики на низких и средних режимах Когда частота вращения двигателя достигает заданного уровня, клапан открывается, увеличивая эффективную высоту окна, что способствует улучшению характеристик на высоких скоростях. Положение мощностного клапана контролирует серводвигатель при помощи троса и шкива. Блок управления YPVSi-получает данные об угле открытия клапана от потенциометра на серводвигателе и данные о частоте вращения двигателя от блока управления зажиганием; эти данные используются для выработки правильного сигнала к механизму привода серводвигателя (см. рис. 1.86). Замечание: На внедорожных мотоциклах компании Yamaha используется несколько отличная версия системы из-за малой мощности аккумулятора: мощностной клапан приводится в действие от центробежного механизма, установленного на коленчатом валу.

Комплексная система мощностных клапанов Kawasaki — KIPS

Система Kawasaki имеет механический привод от установленного на коленчатом валу центробежного (шарикового) регулятора, Вертикальная тяга соединяет механизм привода с тягой управления мощностным клапаном, установленным в гильзе цилиндра. Два таких мощностных клапана расположены во вспомогательных каналах с обеих сторон от главного впускного окна и связаны с тягой привода посредством шестерни и зубчатой рейки. По мере того, как тяга привода перемещается «из стороны в сторону», клапана вращаются, открывая и закрывая вспомогательные каналы в цилиндре и камере резонатора, расположенной с левой стороны двигателя. Система рассчитана так, чтобы при низкой частоте вращения вспомогательные каналы были закрыты клапанами для обеспечения кратковременного открытия канала. Левый клапан открывает камеру резонатора покидающим отработавшим газам, таким образом увеличивая объем расширительной камеры. При высокой частоте вращения клапана поворачиваются, чтобы открыть оба вспомогательных канала и увеличить продолжительность открытия канала, следовательно, обеспечить большую пиковую мощность. Камера резонатора закрывается клапаном с левой стороны, снижая общий объем выпускной системы. Система KIPS обеспечивает улучшение характеристик на низких и средних частотах вращения за счет уменьшения высоты канала и большего объема выпускной системы а при высоких частотах вращения — за счет увеличения высоты выпускного окна и меньшего объема системы выпуска. В дальнейшем система была усовершенствована за счет введения промежуточной шестерни между тягой привода и одним из клапанов, обеспечивающей вращение клапанов во встречных направлениях, а также добавления плоского мощностного клапана на передней кромке выпускного окна. На моделях большего объема запуск и работа на низких частотах вращения была улучшены за счет добавления соплового профиля в верхней части клапанов.

Камера усиления крутящего момента с автоматическим управлением Honda — АТАС

Система, применяемая на моделях фирмы Honda, имеет привод от автоматического центробежного регуляторе, установленного на коленчатом валу. Механизм, состоящий из рейки и валика, передает усилие от регулятора к клапану АТАС, установленному в гильзе цилиндра. Камера HERP (Резонансная Энергетическая Труба Honda) открывается клапаном АТАС при низких частотах вращения двигателя и закрывается при высоких.

Система впрыска топлива

Судя по всему, очевидным методом решения всех проблем, связанных с наполнением камеры сгорания двухтактного двигателя топливом и воздухом, не говоря уже о проблемах высокого расхода горючего и вредных выбросов, является использование системы впрыска топлива. Однако, если топливо не подводится непосредственно в камеру сгорания, все еще остаются характерные проблемы с фазой наполнения и эффективностью двигателя. Проблема, связанная с непосредственным впрыском топлива в камеру сгорания, заключается в том. что топливо может быть подано только после того, как впускные окна будут закрыты, следовательно, остается мало времени для распыливания и полного перемешивания топлива с воздухом, находящимся в цилиндре (который поступает из кривошипной камеры, как в традиционных двухтактных двигателях). Это порождает другую проблему, так как давление внутри камеры сгорания после закрытия выпускного окна велико, и она быстро нарастает, следовательно, топливо должно подаваться при еще более высоком давлении, иначе оно просто не будет истекать из форсунки. Это требует довольно крупногабаритного топливного насоса, что влечет за собой проблемы связанные с увеличением веса, габаритов и стоимости. Aprilia решила эти проблемы, применив систему, называемую DITECH, основанную на конструкции австралийской компании, Peugeot и Kymmco разработали подобную систему. Форсунка в начале цикла двигателя подает струю топлива в отдельную закрытую вспомогательную камеру, содержащую сжатый воздух (подаваемый либо от отдельного компрессора, либо по каналу с обратным клапаном от цилиндра]. После того, как выпускное окно закрывается, вспомогательная камера сообщается с камерой сгорания через клапан или сопло, и смесь подается непосредственно к свече зажигания. Aprilia претендует на снижение вредных выбросов на 80 %, достигаемое за счет снижения не 60 % расхода масла и на 50 % расхода горючего, кроме того, скорость скутера с такой системой на 15 % выше скорости такого же скутера со стандартным карбюратором.

Главное преимущество применения непосредственного впрыска в том. что по сравнению с обыкновенным двухтактным двигателем исчезает необходимость предварительного перемешивания топлива с маслом для смазки двигателя. Смазка улучшается, поскольку масло не смывается топливом с подшипников и, следовательно, требуется меньшее количество масла, в результате чего снижается токсичность. Сгорание топлива также улучшается, а нагарообразование на поршнях, поршневых кольцах и в выпускной системе снижается. Воздух по-прежнему подается через кривошипную камеру (его расход определяется дроссельной заслонкой, связанной с ручкой газа мотоцикла) Это означает, что масло все еще сгорает в цилиндре, и смазка и смазка не столь эффективна, как хотелось бы. Однако результаты независимых испытаний говорят сами за себя. Все, что теперь необходимо-обеспечить подвод воздуха, минуя кривошипную камеру.

[kkstarratings] Share Button

Статью прочитали: 1 130

Лепестковый клапан на скутере – ремонт, замена, назначение

Большинство скутеров известных производителей являются двухтактными, ведь они имеют упрощенные характеристики. Такие скутеры имеют одну важную деталь – лепестковый клапан.

Если лепестковый клапан поломается, это грозит очень плохим последствиям для мотора вашего скутера. Ремонт лепесткового клапана весьма простая процедура, в большинстве случаев его проще заменить на новый. Но если вы новичок в ремонте двигателей, то вряд ли вы будете знать, где находиться эта деталь. Располагается лепестковый клапан во впускном коллекторе сверху двигателя, подробнее смотрите на фото.  На фото показано расположение клапана большинства японских мопедов, но есть и другие расположения.

Принцип работы лепесткового клапана

Данная деталь является очень важной в работе двигателя, ведь после получения топливной смеси в цилиндр, клапан закрывается и таким образом топливо не возвращается к карбюратору. Лепестковый клапан должен быть точно настроен и не иметь никаких дефектов, ведь когда поршень подходит к мертвой точке, он пытается выпихнуть топливную смесь наружу. Но лепестковый клапан не дает этого сделать даже в малом количестве, ведь у него хорошая герметичность.

Чем может грозить поломка лепесткового клапана?

Если эта очень важная деталь будет сломана, будет стерта, начнет пропускать воздух, топливная смесь будет обратно поступать в карбюратор. И результатом станет потеря мощности, так как двигателю просто напросто будет не хватать топлива. Далее после попадания топлива в карбюратор, бензин выкидывает в воздушный фильтр. Также одним из последствий неисправного клапана может быть отсутствие реакции на регулировку ручки газа.

лепестковый клапан на скутере

Замена лепесткового клапана

Поменять его довольно просто. Если вы заметили вышеупомянутые неисправности и считаете, что причина кроется в лепестковом клапане, снимите мотор и карбюратор. Далее вы увидите ту самую важную деталь, которая снимается более чем просто. Судя по названию можно понять, что данная деталь имеет лепестки. Поэтому часто они могут приходить в негодность. Простым решением будет, конечно же, замена полностью этой детали, купить лепестковый клапан на скутер может каждый в любом магазине и за низкую цену. Но если вы не имеете такой возможности, можно попробовать стереть верхний слой лепестков, тем самым разгладив их поверхность. Далее хорошо вытрите лепестковый клапан, не оставив ни грязи, ни стружки. Установите все в таком же порядке.

Видео: ремонт лепесткового клапана

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *