Тепловые солнечные коллекторы
Для чего используются тепловые солнечные коллекторы? Где можно их использовать — сферы применения, варианты применения, плюсы и минусы коллекторов, технические характеристики, эффективность. Можно ли сделать самому и насколько это оправдано. Схемы применения и перспективы.
к содержанию ↑Назначение
Коллектор и солнечная батарея два разных устройства. Батарея использует преобразование солнечной энергии в электрическую, накапливающуюся в аккумуляторах и применяющуюся для бытовых нужд. Солнечные коллекторы, как и тепловой насос, предназначены для сбора и накапливания экологически чистой энергии Солнца, преобразование которой используется для нагрева воды либо отопления. В промышленных масштабах стали широко использоваться солнечные тепловые электростанции, преобразующую тепло в электроэнергию.
Устройство
Коллекторы состоят из трех основных частей:
- панели;
- аванкамера;
- накопительный бак.
Панели представлены в виде трубчатого радиатора, помещенного в короб с наружной стенкой из стекла. Их необходимо располагать на любом хорошо освещенном месте. В радиатор панели поступает жидкость, которая затем нагревается и передвигается в аванкамеру, где холодная вода замещается горячей, что создает постоянное динамическое давление в системе. При этом холодная жидкость поступает в радиатор, а горячая в накопительный бак.
Стандартные панели легко приспособить к любым условиям. При помощи специальных монтажных профилей их можно устанавливать параллельно друг другу в ряд в неограниченном количестве. В алюминиевых монтажных профилях просверливают отверстия и крепят к панелям снизу на болты или заклепки. После завершения работы панели солнечных абсорберов вместе с монтажными профилями представляют собой единую жесткую конструкцию.
Система солнечного теплоснабжения делится на две группы: с воздушным и с жидкостным теплоносителем. Коллекторы улавливают и поглощают излучение, и, совершая преобразование ее в тепловую энергию, передают в накопительный элемент, из которой тепло распределяется по помещению. Любая из систем может дополняться вспомогательным оборудованием (циркуляционный насос, датчики давления, предохранительные клапаны).
Принцип работы
В дневное время тепловое излучение передается теплоносителю (вода или антифриз), циркулирующему через коллектор. Нагретый теплоноситель передает энергию в бак водонагревателя, расположенного выше его и собирающего воду для горячего водоснабжения. В простой версии циркуляция воды осуществляется естественным образом благодаря разности плотности горячей и холодной воды в контуре, а для того, чтобы циркуляция не прекращалась, используется специальный насос. Циркуляционный насос предназначен для активной прокачки жидкости по конструкции.
В усложненном варианте коллектор включен в отдельный контур, наполненный водой или антифризом. Насос помогает им начать циркулировать, передавая при этом сохраненную солнечную энергию в теплоизолированный бак-аккумулятор, который позволяет запасать тепло и брать его в случае необходимости. Если энергии недостаточно, предусмотренный в конструкции бака электрический или газовый нагреватель, автоматически включается и поддерживает необходимую температуру.
Виды
Тем, кто хочет, чтобы в его доме была система солнечного теплоснабжения, для начала следует определиться с наиболее подходящим типом коллектора.
к содержанию ↑Коллектор плоского типа
Представлен в виде коробки, закрытой закаленным стеклом, и имеющий особый слой, поглощающий солнечное тепло. Этот слой соединен с трубками, по которым ведется циркуляция теплоносителя. Чем больше энергии он будет получать, тем выше его эффективность. Уменьшение тепловых потерь в самой панели и обеспечение наибольшего поглощения тепла на пластинах абсорбера позволяет обеспечить максимальный сбор энергии. При отсутствии застоя плоские коллекторы способны нагреть воду до 200 °C. Они предназначены для подогрева воды в бассейнах, бытовых нужд и отопления дома.
Коллектор вакуумного типа
Представляет собой стеклянные батареи (ряд полых трубок). Наружная батарея имеет прозрачную поверхность, а внутренняя батарея покрыта специальным слоем, который улавливает излучение. Вакуумная прослойка между внутренними и внешними батареями помогает сохранить около 90% поглощаемой энергии. Проводниками тепла являются специальные трубки. При нагревании панели происходит преобразование жидкости, находящейся в нижней части батареи в пар, который поднимаясь, предает тепло в коллектор. Этот тип системы имеет больший КПД по сравнению с коллекторами плоского типа, так как его можно использовать при низких температурах и в условиях плохой освещенности. Вакуумная солнечная батарея позволяет нагреть температуру теплоносителя до 300 °C, при использовании многослойного стеклянного покрытия и создании в коллекторах вакуума.
Тепловой насос
Системы солнечного теплоснабжения наиболее эффективно работают с таким устройством, как тепловой насос. Предназначен для сбора энергии из окружающей среды вне зависимости от погодных условий и может устанавливаться внутри дома. В качестве источника энергии здесь могут выступать вода, воздух либо грунт. Тепловой насос может работать, используя лишь солнечные коллекторы, если достаточно солнечной электроэнергии. При использовании комбинированной системы «тепловой насос и солнечный коллектор», не имеет значения тип коллектора, однако наиболее подходящим вариантом будет солнечная вакуумная батарея.
Что лучше
Система солнечного теплоснабжения может устанавливаться на крышах любого вида. Более прочными и надежными считаются плоские коллекторы, в отличие от вакуумных, конструкция которых более хрупкая. Однако при повреждении плоского коллектора придется заменить всю абсорбирующую систему, тогда как у вакуумного замене подлежит лишь поврежденная батарея.
Эффективность вакуумного коллектора гораздо выше, чем плоского. Их можно использовать в зимнее время и они производят больше энергии в пасмурную погоду. Достаточно большое распространение получил тепловой насос, несмотря на свою высокую стоимость. Показатель выработки энергии у вакуумных коллекторов зависит от величины трубок. В норме размеры трубок должны составлять в диаметре 58 мм при длине от 1,2-2,1 метра. Достаточно сложно установить коллектор своими руками. Однако обладание определенными знаниями, а также следование подробным инструкциям по монтажу и выбору места системы, указанными при покупке оборудования существенно упростит задачу и поможет принести в дом солнечное теплоснабжение.
Оцените статью:
Загрузка…Поделитесь с друзьями:
mirenergii.ru
виды, принцип работы, устройство системы
Тепловые насосы черпают энергию из грунта, воды или воздуха, согретых солнцем. Котлы используют тепло, высвобождающееся при сгорании топлива, которое в конечном итоге тоже является продуктом преобразования солнечной энергии в ходе длительной эволюции Земли. Гелиоколлекторы в некотором смысле уникальны: они получают энергию непосредственно от солнца.
Чтобы завтра иметь возможность абсолютно бесплатно нагревать воду для ГВС или отапливать свой дом, сегодня придется все-таки потратиться на приобретение солнечных коллекторов. С учетом немалой стоимости подобного оборудования очень важно не допустить ошибку при выборе. А значит, следует заранее получить хотя бы общие представления о специфике гелиоколлекторов и нюансах их работы.
Специфика использования солнечных коллекторов
Главной особенностью гелиоколлекторов, отличающей их от теплогенераторов других типов, является цикличность их работы. Нет солнца – нет и тепловой энергии. Как следствие, в ночное время подобные установки пассивны.
Среднесуточная выработка тепла напрямую зависит от продолжительности светового дня. Последняя же определяется, во-первых, географической широтой местности, и во-вторых, временем года. В летний период, на который в северном полушарии приходится пик инсоляции, коллектор будет работать с максимальной отдачей. Зимою же его продуктивность падает, достигая минимума в декабре-январе.
В зимний период эффективность гелиоколлекторов снижается не только из-за уменьшения продолжительности светового дня, но и из-за изменения угла падения солнечных лучей. Колебания производительности солнечного коллектора в течение года следует учитывать при расчетах его вклада в систему теплоснабжения.
Еще один фактор, который может повлиять на продуктивность солнечного коллектора, – климатические особенности региона. На территории нашей страны есть немало мест, где 200 и более дней в году солнце скрыто за толстым слоем туч или за пеленой тумана. В пасмурную погоду производительность гелиоколлектора не падает до нуля, поскольку он способен улавливать рассеянные солнечные лучи, но существенно снижается.
Принцип работы и виды солнечных коллекторов
Настала пора сказать несколько слов об устройстве и принципе работы солнечного коллектора. Основным элементом его конструкции является адсорбер, представляющий собой медную пластину с приваренной к ней трубой. Поглощая тепло падающих на нее солнечных лучей, пластина (а вместе с ней и труба) быстро нагревается. Это тепло передается циркулирующему по трубе жидкому теплоносителю, а тот в свою очередь транспортирует его далее по системе.
Способность физического тела поглощать или отражать солнечные лучи зависит, прежде всего, от характера его поверхности. Например, зеркальная поверхность отлично отражает свет и тепло, а вот черная, напротив, поглощает. Именно поэтому на медную пластину адсорбера наносится черное покрытие (простейший вариант – черная краска).
Принцип работы солнечного коллектора
1. Солнечный коллектор.
2. Буферный бак.
3. Горячая вода.
4. Холодная вода.
5. Котроллер.
6. Теплообменник.
7. Помпа.
8. Горячий поток.
9. Холодный поток.
Увеличить количество получаемого от солнца тепла можно и путем правильного подбора стекла, прикрывающего адсорбер. Обычное стекло недостаточно прозрачно. Кроме того, оно бликует, отражая часть падающего на него солнечного света. В гелиоколлекторах, как правило, стараются использовать специальное стекло с пониженным содержанием железа, что повышает его прозрачность. Для снижения доли отраженного поверхностью света на стекло наносят антибликовое покрытие. А чтобы внутрь коллектора не попадали пыль и влага, которые тоже снижают пропускную способность стекла, корпус делают герметичным, а иногда даже заполняют инертным газом.
Несмотря на все эти ухищрения, КПД солнечных коллекторов все же далек от 100%, что связано с несовершенством их конструкции. Часть полученного тепла нагретая пластина адсорбера излучает в окружающую среду, нагревая контактирующий с ней воздух. Чтобы свести к минимуму теплопотери, адсорбер необходимо изолировать. Поиск эффективного способа теплоизоляции адсорбера привел инженеров к созданию нескольких разновидностей солнечных коллекторов, самыми распространенными из которых являются плоские и трубчатые вакуумные.
Плоские солнечные коллекторы
Плоские солнечные коллекторы.
Конструкция плоского солнечного коллектора предельно проста: это металлический короб, покрытый сверху стеклом. Для теплоизоляции дна и стенок корпуса, как правило, используется минеральная вата. Вариант этот далеко не идеален, поскольку не исключен перенос тепла от адсорбера к стеклу посредством воздуха, находящегося внутри короба. При большой разнице температур внутри коллектора и снаружи потери тепла бывают довольно существенными. В результате плоский гелиоколлектор, прекрасно функционирующий весной и летом, зимой становится крайне неэффективным.
Устройство плоского солнечного коллектора
1. Впускной патрубок.
2. Защитное стекло.
3. Абсорбционный слой.
4. Алюминиевая рама.
5. Медные трубки.
6. Теплоизолятор.
7. Выпускной патрубок.
Трубчатые вакуумные солнечные коллекторы
Трубчатые вакуумные солнечные коллекторы.
Вакуумный солнечный коллектор представляет собой панель, состоящую из большого количества сравнительно тонких стеклянных трубок. Внутри каждой из них расположен адсорбер. Чтобы исключить перенос тепла газом (воздухом), трубки вакуумированы. Именно благодаря отсутствию газа вблизи адсорберов, вакуумные коллекторы отличаются низкими теплопотерями даже в морозную погоду.
Устройство вакуумного коллектора
1. Теплоизоляция.
2. Корпус теплообменника.
3. Теплообменник (коллектор)
4. Герметичная пробка.
5. Вакуумная трубка.
6. Конденсатор.
7. Поглощающая пластина.
8. Тепловая трубка с рабочей жидкостью.
Области применения солнечных коллекторов
Главное назначение солнечных коллекторов, как и любых других теплогенераторов, – отопление зданий и подготовка воды для системы горячего водоснабжения. Осталось выяснить, какой именно тип гелиоколлекторов лучше подходит для выполнения той или иной функции.
Плоские солнечные коллекторы, как мы выяснили, отличаются хорошей производительностью в весенне-летний период, но малоэффективны зимой. Из этого следует, что использовать их для отопления, потребность в котором появляется именно с наступлением холодов, нецелесообразно. Это, однако, не означает, что для данного оборудования вовсе не найдется дела.
У плоских коллекторов есть одно неоспоримое преимущество – они существенно дешевле вакуумных моделей, поэтому в тех случаях, когда планируется использовать солнечную энергию исключительно летом, имеет смысл приобретать именно их. Плоские гелиоколлекторы прекрасно справляются с задачей подготовки воды для ГВС в летний период. Еще чаще их используют для подогрева до комфортной температуры воды в открытых бассейнах.
Трубчатые вакуумные коллекторы более универсальны. С приходом зимних холодов их производительность снижается не столь существенно, как в случае плоских моделей, а значит, они могут использоваться круглогодично. Это дает возможность задействовать подобные гелиоколлекторы не только для горячего водоснабжения, но и в системе отопления.
Сравнение плоских и вакуумных солнечных коллекторов.
Расположение солнечных коллекторов
Эффективность гелиоколлектора напрямую зависит от количества солнечного света, попадающего на адсорбер. Из этого следует, что коллектор должен располагаться на открытом пространстве, куда никогда (или, по крайней мере, максимально долго) не падает тень от соседних зданий, деревьев, расположенных вблизи гор и т. д.
Большое значение имеет не только расположение коллектора, но и его ориентация. Самой «солнечной» стороной в нашем северном полушарии является южная, а значит, в идеале «зеркала» коллектора должны быть развернуты строго на юг. Если технически сделать этого невозможно, то следует выбрать направление, максимально приближенное к южному, – юго-запад или юго-восток.
Не следует выпускать из внимания и такой параметр, как угол наклона гелиоколлектора. Величина угла зависит от отклонения положения Солнца от зенита, которое в свою очередь определяется географической широтой той местности, в которой будет эксплуатироваться оборудование. Если угол наклона будет выставлен неправильно, то существенно возрастут оптические потери энергии, поскольку значительная часть солнечного света будет отражаться от стекла коллектора и, следовательно, не достигнет абсорбера.
Как подобрать солнечный коллектор нужной мощности
Если вы хотите, чтобы отопительная система вашего дома справлялась с задачей поддержания в помещениях комфортной температуры, а из кранов текла горячая, а не еле теплая вода, и при этом планируете использовать в качестве генератора тепла солнечный коллектор, нужно заранее вычислить необходимую мощность оборудования. При этом потребуется учесть довольно большое количество параметров, в том числе назначение коллектора (ГВС, отопление или их комбинация), потребности объекта в тепле (суммарная площадь обогреваемых помещений или средний суточный расход горячей воды), климатические особенности региона, особенности установки коллектора.
В принципе, произвести подобные расчеты не так уж и сложно. Производительность каждой модели известна, а значит, вы без труда оцените количество коллекторов, необходимое для обеспечения дома теплом. Компании, занимающиеся выпуском солнечных коллекторов, обладают информацией (и могут предоставить ее потребителю) об изменении мощности оборудования в зависимости от географической широты местности, угла наклона «зеркал», отклонения их ориентации от южного направления и т. д., что позволяет внести необходимые поправки при расчете производительности коллектора.
При подборе необходимой мощности коллектора очень важно достичь баланса между нехваткой и избытком генерируемого тепла. Специалисты рекомендуют ориентироваться на максимально возможную мощность коллектора, т. е. использовать в расчетах показатель для самого продуктивного летнего сезона. Это идет в разрез с желанием среднестатистического пользователя взять оборудование с запасом (т. е. посчитать по мощности самого холодного месяца), чтобы тепла от коллектора хватала и в менее солнечные осенние и зимние дни.
Однако если вы пойдете по пути выбора солнечного коллектора повышенной мощности, то на пике его производительности, т. е. в теплую солнечную погоду, вы столкнетесь с серьезной проблемой: тепла будет производиться больше, чем потребляться, а это грозит перегревом контура и прочими малоприятными последствиями. Существует два варианта решения этой задачи: либо устанавливать маломощный солнечный коллектор и в зимний период параллельно подключать резервные источники тепла, либо приобрести модель с большим запасом по мощности и предусмотреть при этом пути сброса избыточного тепла в весенне-летний сезон.
Стагнация системы
Поговорим чуть подробнее о проблемах, связанных с переизбытком генерируемого тепла. Итак, предположим, что вы установили достаточно мощный гелиоколлектор, способный полностью обеспечить теплом отопительную систему вашего дома. Но наступило лето, и потребность в отоплении отпала. Если у электрического котла можно отключить электропитание, у газового – перекрыть подачу топлива, то над солнцем мы не властны – «выключить» его, когда стало слишком жарко, нам не под силу.
Стагнация системы – одна из главных потенциальных проблем солнечных коллекторов. Если из контура коллектора забирается недостаточно тепла, происходит перегрев теплоносителя. В определенный момент последний может закипеть, что приведет к прекращению его циркуляции по контуру. Когда теплоноситель остынет и конденсируется, работа системы возобновится. Однако далеко не все виды теплоносителей спокойно переносят переход из жидкого состояния в газообразное и обратно. Некоторые в результате перегрева приобретают желеобразную консистенцию, что делает невозможной дальнейшую эксплуатацию контура.
Избежать стагнации поможет лишь стабильный отвод производимого коллектором тепла. Если расчет мощности оборудования сделан правильно, вероятность возникновения проблем практически нулевая.
Однако даже в этом случае не исключено возникновение форс-мажорных обстоятельств, поэтому следует заранее предусмотреть способы защиты от перегрева:
1. Установка резервной емкости для накопления горячей воды. Если вода в основном баке системы горячего водоснабжения достигла установленного максимума, а гелиоколлектор продолжает поставлять тепло, автоматически произойдет переключение, и вода начнет греться уже в резервной емкости. Созданный запас теплой воды можно будет использовать для бытовых нужд позже, в пасмурную погоду.
2. Подогрев воды в бассейне. У владельцев домов с бассейном (не важно, крытым или размещенным под открытым небом) имеется прекрасная возможность отводить излишки тепловой энергии. Объем бассейна несравнимо больше объема любого бытового накопителя, из чего следует, что вода в нем не нагреется так сильно, что уже не сможет поглощать тепло.
3. Слив горячей воды. При отсутствии возможности тратить избыток тепла с пользой можно попросту сливать небольшими порциями нагретую воду из накопительного резервуара для ГВС в канализацию. Поступающая при этом в емкость холодная вода будет понижать температуру всего объема, что позволит продолжать отводить тепло от контура.
4. Внешний теплообменник с вентилятором. Если гелиоколлектор обладает большой производительностью, избыток тепла может быть тоже очень велик. В этом случае система оборудуется дополнительным контуром, заполненным хладагентом. Этот дополнительный контур сопряжен с системой посредством теплообменника, оснащенного вентилятором и монтируемого за пределами здания. При возникновении риска перегрева избыточное тепло поступает в дополнительный контур и через теплообменник «выбрасывается» в воздух.
5. Сброс тепла в грунт. Если помимо солнечного коллектора в доме имеется грунтовый тепловой насос, избыток тепла можно направить в скважину. При этом вы решаете сразу две задачи: с одной стороны, защищаете контур коллектора от перегрева, с другой – восстанавливаете истощенный за зиму запас тепла в грунте.
6. Изоляция гелиоколлектора от прямых солнечных лучей. Этот способ с технической точки зрения один из самых простых. Конечно, забираться на крышу и занавешивать коллектор вручную не стоит – это тяжело и небезопасно. Гораздо рациональнее установить дистанционно управляемый заслон, наподобие рольставень. Можно даже подключить блок управления заслоном к контроллеру – при опасном повышении температуры в контуре коллектор будет закрываться автоматически.
7. Слив теплоносителя. Этот способ можно считать кардинальным, но в то же время он довольно прост. При возникновении риска перегрева теплоноситель посредством насоса сливается в специальную емкость, интегрированную в контур системы. Когда условия вновь станут благоприятными, насос вернет теплоноситель в контур, и работа коллектора будет восстановлена.
Другие компоненты системы
Недостаточно просто собрать излучаемое солнцем тепло. Нужно его еще транспортировать, накопить, передать потребителям, нужно контролировать все эти процессы и т. д. А это означает, что помимо расположенных на крыше коллеторов система содержит множество других компонентов, может быть менее заметных, но при этом не менее важных. Остановим ваше внимание лишь на некоторых из них.
Теплоноситель
Функцию теплоносителя в контуре коллектора может выполнять либо вода, либо незамерзающая жидкость.
Вода имеет ряд недостатков, накладывающих определенные ограничения на использование ее в качестве теплоносителя в гелиоколлекторах:
- Во-первых, при отрицательных температурах она застывает. Чтобы замерзший теплоноситель не разорвал трубы контура, с приближением холодов его придется сливать, а значит, зимой вы не получите от коллектора даже небольших количеств тепловой энергии.
- Во-вторых, не слишком высокая температура кипения воды может стать причиной частых стагнаций в летний период.
Незамерзающая жидкость в отличие от воды обладает значительно более низкой температурой замерзания и несравнимо более высокой температурой кипения, что повышает удобство использования ее в качестве теплоносителя. Однако при высоких температурах «незамерзайка» может претерпеть необратимые изменения, поэтому ее следует оберегать от чрезмерного перегрева.
Насос адаптированный для гелиосистем
Для обеспечения принудительной циркуляции теплоносителя по контуру коллектора необходим насос, адаптированный для гелиосистем.
Теплообменник для ГВС
Перенос тепла от контура гелиоколлектора к воде, используемой в ГВС, или к теплоносителю системы отопления осуществляется посредством теплообменника. Как правило, для накопления горячей воды используют резервуар большого объема с уже встроенным теплообменником. Рационально использовать баки с двумя и более теплообменниками: это позволит забирать тепло не только у солнечного коллектора, но и у других источников (газовый или электрический котел, тепловой насос и т. д.).
Автоматика
Такой сложной системе не обойтись без автоматики, осуществляющий контроль и управление процессом. Контроллер позволяет автоматизировать работу коллектора: он осуществляет анализ температуры в контуре и накопительном резервуаре, управляет насосом и клапанами, ответственными за движение теплоносителя по контуру. При перегреве теплоносителя в контуре и воды в баке контроллер отдаст команду на сброс тепла в альтернативный теплоприемник – дополнительный резервуар с водой или уличный воздушный теплообменник.
Если в конце светового дня температура воды в накопительной емкости превысит температуру теплоносителя в контуре коллектора, автоматика остановит циркуляцию теплоносителя по контуру, чтобы накопленное тепло не выбрасывалось в атмосферу через сам коллектор. Современные контроллеры дают возможность удаленно следить за работой системы и при необходимости вносить корректировки.
Сегодня не составит труда найти на рынке гелиоколлектор и любой из компонентов, необходимых для его работы. Вполне реально собрать систему из купленных по отдельности элементов. Однако производители предлагают уже готовые комплекты, которые включают в себя коллектор, насосы, накопительные резервуары, управляющую автоматику и т. д. Приобретение такого комплекта – это не только экономия вашего времени, но и гарантия работоспособности системы.
Если вы заметили ошибку, не рабочее видео или ссылку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
srbu.ru
Солнечный коллектор для отопления дома: тепловой, водяной теплообменник, вакуумный
Содержание:
Солнечные коллекторы относятся к особому виду климатической техники. Их основное назначение – нагревание воды для использования во всех сферах жизнедеятельности человека. Отличительной особенностью коллекторов является производство на основе возобновляемых бесплатных источников энергии. Функционирование таких устройств основано на принципе изменения плотности воды в процессе нагревания. Следовательно, вода с более высокой температурой выталкивает участки с холодной водой, что избавляет от необходимости включать в процесс насосное оборудование.
Принцип работы коллектора
Гелио системы работают с использованием обычной воды или антифриза. Более низкая, чем в коллекторе, температура воды в нижней части приводит к включению обогрева. За перемещение жидкости отвечает встроенный насос. Вода в накопителе нагревается посредством теплообменника, в этом случае температура коллектора поднимается до определенных значений.
Благодаря смесителю вода в системе может перемещаться в разных направлениях, в результате происходит смена теплой и остывшей воды. Нагревающаяся жидкость расширяется, что приводит к ее замене в системах с естественной циркуляцией. Теплая жидкость поднимается вверх, выталкивая охлажденную воду в бак для нагревания.
Для стабильной работы системы необходим теплоизоляционный слой толщиной 0,25-0,3 метра и резервуар прямоугольной формы. Это способствует равномерному распределению воды по всем участкам, делая работу всей системы более эффективной.
Использование солнечных коллекторов для отопления домов
Правильный монтаж солнечных тепловых коллекторов помогает снизить расходы, связанные с отоплением частного жилья, на 50-90%. Особенно активным можно назвать обогрев помещений в весенне-осенний период, хотя в целом система может работать круглый год.
Выбирая коллектор, следует принимать во внимание следующие параметры:
- Площадь системы.
- Необходимое количество тепла.
Для зимнего периода проводят соответствующие расчеты, так как в холодное время требуется большее количество тепла для создания комфортных условий, что приводит к увеличению расходов.
Солнечные теплообменники могут выступать в качестве дополнительного обогрева. При правильной теплоизоляции строения возможна автономная работа системы.
Главным принципом организации функционирования гелиосистемы можно назвать естественную циркуляцию воды за счет конвекционных потоков. В этом случае пассивная циркуляция воды делает работу системы менее эффективной по сравнению с другими. Бак одновременно должен примыкать к коллектору и находиться выше него.
Системы с принудительным движением рабочей среды подразумевают использование циркуляционного насоса. В этом случае эффективное использование воды делает более продуктивной работу всей системы. Обслуживание таких систем должно быть на высоком уровне, все зависит от электроэнергии, которая обеспечивает действие системы.
Принцип совмещения водяного коллектора и отопительной системы
Подключение к системе отопления зависит от того, по какому принципу циркулирует вода в определенной системе. Самым простым способом подключается система с естественной циркуляцией. В этом случае необходимо обеспечить нагревание воды в системе.
Накопительный бак располагают так, чтобы он находился выше уровня коллектора. При этом верхний вывод подключают на входе горячей воды в отопительную систему, а нижний – к обратной трубе. На входе в коллектор для обогрева помещений могут образоваться воздушные пробки. Стоимость такого варианта несколько дешевле систем с принудительной циркуляцией.
Системы, работа которых основана на использовании циркуляционных насосов, могут подключаться к солнечному коллектору для отопления дома, но с использованием автоматики. Объясняется это наличием некоторых особенностей таких систем:
- Управление насосом осуществляет контроллер с учетом показаний специальных датчиков.
- Обогрев прекращается при достижении заданных значений температуры согласно датчикам.
- Установка датчиков проводится в баке-накопителе, обратной трубе и выходе коллектора.
- Более эффективный обогрев получается комплексной работой такой системы и дополнительных источников тепла.
Степень нагревания воды в такой системе во многом зависит расположения коллектора относительно солнца и уровня его наклона. Наиболее эффективной считается установка коллекторов в местах, где прямые солнечные лучи попадают на их поверхность большую часть дня. Если система будет работать индивидуально, без подключения дополнительных источников тепла, то бак-накопитель должен иметь объем не меньше 40 куб.см. В этом случае можно добиться максимального эффекта от работы системы в пасмурную погоду.
Расчет параметров коллектора для определенной системы представляет собой довольно сложный процесс. При этом необходимо учитывать наклон крыши, место расположения, уровень солнечной радиации и объем накопителя. Правильные расчеты может выполнить только квалифицированный специалист.
Тепловые коллекторы производятся разными фирмами, поэтому выбирать какую-либо марку нужно с учетом производительности. Этот параметр может иметь различные значения, все зависит от торговой марки.
Использование поликарбоната в качестве материала для теплового коллектора
Главными элементами таких коллекторов являются листы поликарбоната. Крепление коллектора выполняется к торцевым частям листа. Сборка такой системы должна выполняться в специальном закрытом жестяном коробе, который накрывается дополнительным листом поликарбоната.
Крышка может быть стеклянной, в этом случае лист поликарбоната создает парниковый эффект, создавая впечатление двойного остекления. Использование только поликарбоната сделает работу системы стабильной.
Особенности структуры
Главный элемент в системе нагревания воды – это непосредственно солнечный коллектор для отопления. Он может быть нескольких видов:
- Плоского типа.
- Вакуумного типа.
- Водяного типа.
Плоские коллекторы выполняются на основе алюминиевой рамы, внутри которой расположены медные трубки с покрытием из специального поглощающего материала. Под ними находится теплоизоляционный слой. Сверху конструкция полностью закрыта закаленным стеклом, характеризующимся хорошей пропускной способностью света. Работа таких систем может осуществляться в определенный период или в течение всего года.
Вакуумный солнечный коллектор для отопления дома сделан на основе рамы с вакуумными трубками, для изготовления которых использовалось боросиликатное стекло. Внутри каждой трубки вмонтированы специальные колбы со специальным поглощающим покрытием. В этих колбах установлены медные трубки с теплоносителем низкого давления. Конец трубки помещен в теплообменник, куда доставляет тепловая энергия.
Одной из разновидностей вакуумного коллектора является солнечный водяной коллектор. Конструкция типа «морская труба» выполнена на основе рамы, на которой располагаются водяной бак и трубки. Внутри трубных элементов есть дополнительная трубка, причем пространство между ними обязательно вакуумное. Абсорбент покрывает трубки заполненные водой. Нагретая вода перемещается в бак наверху, а холодная опускается для нагревания к трубкам.
Обязательным элементом любой гелиосистемы является бак-аккумулятор. В нем хранится вода, которую можно использовать по назначению. Чтобы тепло могло удерживаться круглый год, снаружи бак утепляют на 3-5 см.
Особые моменты
Одной из характеристик гелиоустановок является номинальная мощность, измеряемая в киловаттах. Этот параметр показывает, какое количество энергии вырабатывает система при максимальном солнечном освещении. Следует учитывать, что в утренние и вечерние часы работа системы будет не такой эффективной. В ночное время горячая вода подается из бойлера, в котором происходит накопление воды в течение дня.
При выборе коллектора важно уточнить возможность работы в зимнее время. Кроме того обязательно следует рассчитать необходимую мощность системы, которая требуется для безупречной работы коллектора. Располагать оборудование рекомендуется на предварительно смонтированном каркасе или непосредственно на крыше.
teplospec.com
Солнечный коллектор зимой. Эффективность использования плоского и вакуумного коллектора зимой.
В этой статье: Работает ли зимой солнечный коллектор? Сравнение эффективности работы зимой вакуумного и плоского солнечного коллектора. Плюсы и минусы гелиосистемы. Отзыв владельца. Видео по теме.
Солнечный коллектор зимой.
Эффективность использования плоского и вакуумного коллектора зимой.
В последнее время альтернативные источники энергии вызывают все более живой интерес со стороны наших соотечественников. Наиболее простыми из них в устройстве являются солнечные коллекторы, благодаря чему их доля в нетрадиционной энергетике, особенно бытовой, чрезвычайно велика. Данная статья поможет найти ответ на вопрос: насколько эффективным является солнечный коллектор зимой?
Работает ли зимой солнечный коллектор?
Как свидетельствует статистика (данные приведены в Википедии), на 1 тыс. россиян приходится примерно 0,2 кв. м применяемых у нас солнечных коллекторов, тогда как в Германии этот показатель составляет 140 кв. м, а в Австрии – целых 450 кв. м. на 1 тыс. жителей.
Столь значительную разницу нельзя объяснить одними только климатическими условиями. Ведь на большей части России за день поверхности земли достигает такое же количество солнечной энергии, как и на юге Германии – в теплое время эта величина составляет от 4 до 5 кВт*ч/кв. м.
Чем же вызвано наше отставание? Отчасти оно обусловлено сравнительно низкими доходами россиян (гелиоустановки являются пока довольно дорогим удовольствием), отчасти – наличием собственных крупных газовых месторождений и, как следствие, доступностью голубого топлива.
Но немалую роль сыграло и предвзятое отношение со стороны многих потенциальных пользователей, считающих установку солнечного коллектора нецелесообразной. Дескать, летом и так тепло, а зимой от подобной системы мало проку.
Вот какие аргументы выдвигают скептики касательно эксплуатации гелиоустановок зимой:
Установку постоянно засыпает снегом, так что солнечное излучение достигает её не так уж часто. Если, конечно, владелец не дежурит постоянно на крыше с веником или щеткой.
Холодный морозный воздух отбирает почти все тепло, накапливаемое коллектором.
Часто упоминают и всесезонный поражающий фактор – град, который может разнести гелиоустановку вдребезги.
Чтобы понять, насколько справедливы эти доводы, рассмотрим устройство различных видов солнечных коллекторов.
Устройство и область применения в быту.
На сегодняшний день наибольшее распространение нашли плоские и вакуумные солнечные коллекторы.
Плоские солнечные коллекторы
Плоский коллектор состоит из элемента, поглощающего солнечное излучение (абсорбер), прозрачного покрытия и термоизолирующего слоя.
Абсорбер связан с теплопроводящей системой. Он покрывается чёрной краской либо специальным селективным покрытием (обычно чёрный никель или напыление оксида титана) для повышения эффективности. Прозрачный элемент обычно выполняется из закалённого стекла с пониженным содержанием металлов, либо особого рифлёного поликарбоната. Задняя часть панели покрыта теплоизоляционным материалом (например, полиизоцианурат). Трубки, по которым распространяется теплоноситель, изготавливаются из сшитого полиэтилена либо меди. Сама панель является воздухонепроницаемой, для чего отверстия в ней заделываются силиконовым герметикой.
При отсутствии забора тепла (застое) плоские коллекторы способны нагреть теплоноситель до 190—210°C. Чем больше падающей энергии передаётся теплоносителю, протекающему в коллекторе, тем выше его эффективность. Повысить её можно, применяя специальные оптические покрытия, не излучающие тепло в инфракрасном спектре, эффективность которого может составлять около 95%. Стандартным решением повышения эффективности коллектора стало применение абсорбера из листовой меди из-за её высокой теплопроводности, поскольку применение меди против алюминия даёт выигрыш 4 % (хотя теплопроводность алюминия вдвое меньше, что означает значительное превышение «запаса мощности» по теплопередаче), что незначительно в сравнении с ценой). Также высокая эффективность достигается увеличением площади контакта трубки и медного листа: у формованного листа и паянного соединение она максимальна, у соединения ультразвуковой сваркой — меньше. Используется также алюминиевый экран.
Вакуумные солнечные коллекторы.
Возможно повышение температур теплоносителя вплоть до 250—300 °C в режиме ограничения отбора тепла. Добиться этого можно за счёт уменьшения тепловых потерь в результате использования многослойного стеклянного покрытия, герметизации или создания в коллекторах вакуума.
Фактически солнечная вакуумная труба имеет устройство, схожее с бытовыми термосами. Только внешняя часть трубы прозрачна, а на внутренней трубке нанесено высокоселективное покрытие, улавливающее солнечную энергию. Между внешней и внутренней стеклянной трубкой находится вакуум. Именно вакуумная прослойка даёт возможность сохранить около 95 % улавливаемой тепловой энергии.
Кроме того, в вакуумных солнечных коллекторах нашли применение медные тепловые трубки, выполняющие роль проводника тепла. При воздействии на коллектор солнечным светом жидкость, находящаяся в нижней части трубки, нагреваясь, превращается в пар. Пары поднимаются в верхнюю часть трубки (конденсатор), где конденсируясь передают тепло коллектору.
Использование данной схемы позволяет достичь большего КПД (по сравнению с плоскими коллекторами) при работе в условиях низких температур и слабой освещенности.
Современные бытовые солнечные коллекторы способны нагревать воду вплоть до температуры кипения даже при отрицательной окружающей температуре.
Видео сравнение работы плоского и вакуумного коллектора зимой
teplospec.com
Солнечный коллектор зимой. Эффективность использования плоского и вакуумного коллектора зимой.
В этой статье: Работает ли зимой солнечный коллектор? Сравнение эффективности работы зимой вакуумного и плоского солнечного коллектора. Плюсы и минусы гелиосистемы. Отзыв владельца. Видео по теме.
Солнечный коллектор зимой.
Эффективность использования плоского и вакуумного коллектора зимой.
В последнее время альтернативные источники энергии вызывают все более живой интерес со стороны наших соотечественников. Наиболее простыми из них в устройстве являются солнечные коллекторы, благодаря чему их доля в нетрадиционной энергетике, особенно бытовой, чрезвычайно велика. Данная статья поможет найти ответ на вопрос: насколько эффективным является солнечный коллектор зимой?
Работает ли зимой солнечный коллектор?
Как свидетельствует статистика (данные приведены в Википедии), на 1 тыс. россиян приходится примерно 0,2 кв. м применяемых у нас солнечных коллекторов, тогда как в Германии этот показатель составляет 140 кв. м, а в Австрии – целых 450 кв. м. на 1 тыс. жителей.
Столь значительную разницу нельзя объяснить одними только климатическими условиями. Ведь на большей части России за день поверхности земли достигает такое же количество солнечной энергии, как и на юге Германии – в теплое время эта величина составляет от 4 до 5 кВт*ч/кв. м.
Чем же вызвано наше отставание? Отчасти оно обусловлено сравнительно низкими доходами россиян (гелиоустановки являются пока довольно дорогим удовольствием), отчасти – наличием собственных крупных газовых месторождений и, как следствие, доступностью голубого топлива.
Но немалую роль сыграло и предвзятое отношение со стороны многих потенциальных пользователей, считающих установку солнечного коллектора нецелесообразной. Дескать, летом и так тепло, а зимой от подобной системы мало проку.
Вот какие аргументы выдвигают скептики касательно эксплуатации гелиоустановок зимой:
Установку постоянно засыпает снегом, так что солнечное излучение достигает её не так уж часто. Если, конечно, владелец не дежурит постоянно на крыше с веником или щеткой.
Холодный морозный воздух отбирает почти все тепло, накапливаемое коллектором.
Часто упоминают и всесезонный поражающий фактор – град, который может разнести гелиоустановку вдребезги.
Чтобы понять, насколько справедливы эти доводы, рассмотрим устройство различных видов солнечных коллекторов.
Устройство и область применения в быту.
На сегодняшний день наибольшее распространение нашли плоские и вакуумные солнечные коллекторы.
Плоские солнечные коллекторы
Плоский коллектор состоит из элемента, поглощающего солнечное излучение (абсорбер), прозрачного покрытия и термоизолирующего слоя.
Абсорбер связан с теплопроводящей системой. Он покрывается чёрной краской либо специальным селективным покрытием (обычно чёрный никель или напыление оксида титана) для повышения эффективности. Прозрачный элемент обычно выполняется из закалённого стекла с пониженным содержанием металлов, либо особого рифлёного поликарбоната. Задняя часть панели покрыта теплоизоляционным материалом (например, полиизоцианурат). Трубки, по которым распространяется теплоноситель, изготавливаются из сшитого полиэтилена либо меди. Сама панель является воздухонепроницаемой, для чего отверстия в ней заделываются силиконовым герметикой.
При отсутствии забора тепла (застое) плоские коллекторы способны нагреть теплоноситель до 190—210°C. Чем больше падающей энергии передаётся теплоносителю, протекающему в коллекторе, тем выше его эффективность. Повысить её можно, применяя специальные оптические покрытия, не излучающие тепло в инфракрасном спектре, эффективность которого может составлять около 95%. Стандартным решением повышения эффективности коллектора стало применение абсорбера из листовой меди из-за её высокой теплопроводности, поскольку применение меди против алюминия даёт выигрыш 4 % (хотя теплопроводность алюминия вдвое меньше, что означает значительное превышение «запаса мощности» по теплопередаче), что незначительно в сравнении с ценой). Также высокая эффективность достигается увеличением площади контакта трубки и медного листа: у формованного листа и паянного соединение она максимальна, у соединения ультразвуковой сваркой — меньше. Используется также алюминиевый экран.
Вакуумные солнечные коллекторы.
Возможно повышение температур теплоносителя вплоть до 250—300 °C в режиме ограничения отбора тепла. Добиться этого можно за счёт уменьшения тепловых потерь в результате использования многослойного стеклянного покрытия, герметизации или создания в коллекторах вакуума.
Фактически солнечная вакуумная труба имеет устройство, схожее с бытовыми термосами. Только внешняя часть трубы прозрачна, а на внутренней трубке нанесено высокоселективное покрытие, улавливающее солнечную энергию. Между внешней и внутренней стеклянной трубкой находится вакуум. Именно вакуумная прослойка даёт возможность сохранить около 95 % улавливаемой тепловой энергии.
Кроме того, в вакуумных солнечных коллекторах нашли применение медные тепловые трубки, выполняющие роль проводника тепла. При воздействии на коллектор солнечным светом жидкость, находящаяся в нижней части трубки, нагреваясь, превращается в пар. Пары поднимаются в верхнюю часть трубки (конденсатор), где конденсируясь передают тепло коллектору.
Использование данной схемы позволяет достичь большего КПД (по сравнению с плоскими коллекторами) при работе в условиях низких температур и слабой освещенности.
Современные бытовые солнечные коллекторы способны нагревать воду вплоть до температуры кипения даже при отрицательной окружающей температуре.
Видео сравнение работы плоского и вакуумного коллектора зимой
В быту гелиоустановки применяются для приготовления горячей воды, в том числе для бань, подогрева бассейна либо в качестве дополнительного источника тепла для системы отопления.
В промышленности сфера применения таких систем является более широкой: на их основе сооружают опреснители воды, парогенераторы (пар приводит в движение различные машины) и даже электростанции.
Эффективность зимой
Эффективно ли отопление дома солнечными коллекторами зимой? Ну что же, теперь посмотрим, как различные виды солнечных коллекторов работают в условиях зимы. Напомним, что противники внедрения таких установок выдвигают следующие аргументы:
Засыпание панели снегом: данная проблема актуальна только для плоско-пластинчатых коллекторов. На трубках вакуумных установок, как показала практика, снег задерживается только в тех редких случаях, когда в силу особых погодных условий на их поверхности образуется изморозь. Если же во время снегопада дует хотя бы слабый ветер (от 3 м/с), панель точно останется чистой.
Из-за того, что коллектор окружен холодным воздухом, все тепло с коллектора улетучивается: этот аргумент опять же справедлив только в отношении плоско-пластинчатых коллекторов. Действительно, зимой производительность такой установки в сравнении с летней уменьшается пятикратно. В более совершенных вакуумных моделях прослойка вакуума позволяет сберечь до 95% усвоенного тепла. Самые современные модели даже в сильный мороз способны довести воду до кипения.
Коллектор легко может быть поврежден градом: в заводских условиях коллекторы изготавливаются из высокопрочных материалов. Посмотрите видеоролик, снятый во время испытаний вакуумной трубки на ударную прочность.
Видео. Испытание солнечного коллектора на прочность.
Трубка выполнена из чрезвычайно крепкого боросиликатного стекла которое выдерживает удары града который падает со скоростью 18 м/с и имеет 35 мм диаметре.
Как видно, солнечные коллекторы зимой вполне работоспособны. Хотя, конечно, производительность их в сравнении с летним периодом ощутимо снижается.
Плюсы и минусы гелиосистемы
Им присущ более высокий КПД по сравнению с фотоэлектрическими элементами и ветрогенераторами.
Усваиваемая с их помощью энергия является абсолютно бесплатной.
Работа солнечного коллектора полностью безвредна для экологии: используемый ресурс – солнечное тепло — является неисчерпаемым и усваивается напрямую, без сжигания чего-либо и загрязнения окружающей среды.
Теперь укажем слабые места гелиоустановок:
Коллекторы стоят пока сравнительно дорого
Из-за переменчивости погодных условий производительность коллектора не стабильна.
Систему приходится оснащать довольно вместительным баком-накопителем с хорошей теплоизоляцией.
Отзыв владельца о работе солнечного коллектора зимой.
Видео о работе солнечной сплит-системы SH-200-24 торговой марки «АНДИ Групп»
Предлагаем Вашему вниманию всесезонные солнечные коллекторы торговой марки АНДИ Групп
Солнечная сплит-система ЭЛИТ
Система на основе вакумного солнечного коллектора: (объём бака от 200 до 1000л)
Солнечная сплит-система СТАНДАРТ
Система на основе вакумного солнечного коллектора: (объём бака от 100 до 500л)
Солнечный вакуумный коллектор ПАНЕЛЬ
Количество трубок в коллекторе: 12,15,18,20,24,30 (в зависимости о модели)
Солнечный коллектор УНИВЕРСАЛ
Количество трубок в коллекторе: 15,20,24,30 (в зависимости о модели)
Остались вопросы? Напишите нам!
optonimpex.com
Комбинированные солнечные коллекторы с тепловыми трубками.
Солнечную энергию используют для получения горячей воды (теплого воздуха) и выработки электрической энергии. Также электрическую энергию вырабатывают с помощью фотоэлектрических панелей. Полученная электрическая энергия используется для промышленных целей и индивидуального электроснабжения.Солнечные коллекторы и подогреватели воды представляют собой теплообменные аппараты, выполненные в виде обычных трубчатых радиаторов. Число трубок радиатора составляет 4, 6, 8 штук, которые вварены в две трубы. Вода поступает в трубки радиатора через одну из труб, а через другую вытекает в сборник или систему. Трубчатый радиатор помещают в теплоизолированный короб, который с одной стороны закрыт стеклом. За счет поглощения солнечной тепловой энергии вода, которая циркулирует в трубках, нагревается. Для увеличения площади поглощения тепла, трубки снабжают алюминиевыми плавниками. Поглощающую способность увеличивают, покрывая плавники черной краской.
Применяют солнечные подогреватели воды активного или пассивного типа. В активной системе используется электрический насос для циркуляции жидкости через коллектор. Пассивная система не имеет насоса и использует только естественную циркуляцию. Система активного подогрева более эффективна, но более дорогая в эксплуатации. Активная система циркуляции применяется для получения горячей воды в абсорбционных (адсорбционных) холодильных машинах (тепловых насосах), на виллах, коттеджах или в офисных помещениях предприятий. Пассивную систему наиболее широко используют для нагрева воды в бытовых нуждах многоквартирных зданий не высокой постройки. Система достаточно простая, надежная и не дорогая.
Солнечная энергия используется и для нагрева воздуха, который прокачивают через воздушные каналы. Часто, воздушные каналы для нагрева воздуха встроены в строительные конструкции зданий.
Эффективность и надежность солнечных коллекторов для нагрева воды была значительно улучшена с применением тепловых труб. Как показали исследования, их тепловые характеристики в пассивных системах нагрева сравнимы с эквивалентными показателями активных систем. Тепловые трубки (ТТ) или замкнутые двухфазные термосифоны (ДТС) также обеспечивают достаточно эффективную защиту от замерзания при температурах ниже 0°С.
Солнечные коллекторы с тепловыми трубками или двухфазными термосифонами имеют конструктивное похожее исполнение. Тепловоспринимающая панель выполнена из участков зоны испарения тепловых трубок. Участки зоны конденсации тепловых трубок во всех конструкциях размещены в баке-аккумуляторе. Различия имеются в конструкции ребе
alternativenergy.ru