Исследование теплопроводности минераловатных утеплителей в условиях эксплуатации конструкций А и Б
В предыдущей части наших исследований была отмечена необходимость определения теплопроводности минераловатных утеплителей при различных эксплуатационных условиях в целях выполнения различных теплофизических расчетов проекта жилого дома или здания [1]. А также были проанализированы методы увлажнения образцов минераловатных утеплителей.
Так как метод увлажнения образцов приведенный в ГОСТ Р 54855-2011 [2] не оправдал себя, для проведения исследований образцы увлажняли с помощью орошения из распылителя. Затем, упакованные в паронепроницаемые пакеты, образцы выдерживали 4 часа в термошкафу при температуре 500С в горизонтальном положении (рис.1). Для равномерного распределения влаги образцы переворачивали каждый час. Охлаждали образцы в вертикальном положении не менее 12 часов. Таким образом, получали увлаженные образцы, которые испытывали на приборе для определения теплопроводности.
Рис. 1. а) Подготовка образцов к испытаниям;
б) Выдержка увлажненного образца в термошкафу.
Для уменьшения потери влаги в процессе измерения теплопроводности образец упаковывали в полиэтиленовый пакет. Измерения считают удовлетворительными, если снижение влажности образца за время измерений не превысило 10%.
Определение коэффициента теплопроводности проводили при средней температуре образца 250С на приборе λ-Meter EP500e (рис. 2).
Рис. 2. Прибор для измерения теплопроводности λ-Meter EP500e.
Для проведения исследований изготовили 14 образцов размером (250×250) мм толщиной (25±2) мм из минераловатной плиты с плотностью 90 кг/м3 (±10%) и 8 образцов размером (250×250) мм и толщиной (30±2мм) из минераловатной плиты с плотностью 37кг/м3 (±10%), производства ЗАО «Минеральная Вата» ROCKWOOL Russia.
Таблица 1. Результаты испытаний образцов с плотностью 90 кг/м3
№ п/п |
Коэффициент теплопроводности сухого образца, λ25 Вт/(м●К) |
Снижение влажности образца за время испытания, % | Коэффициент теплопроводности | |
при влажности образца 1%, λА, Вт/(м●К) |
при влажности образца 2%, λБ, Вт/(м●К) | |||
1 |
0,03602 |
2,78 |
|
0,03624 |
2 |
0,03607 |
1,22 |
0,03695 |
0,03784 |
3 |
0,03565 |
0,91 |
|
0,03596 |
4 |
0,03514 |
0,25 |
0,03531 |
0,03549 |
5 |
0,03545 |
3,12 |
0,03561 |
0,03576 |
6 |
0,03527 |
0,25 |
0,03553 |
0,03578 |
7 |
0,03522 | 0,13 |
0,03532 |
0,03542 |
8 |
0,03565 |
0,19 |
0,03598 |
0,03630 |
9 |
|
0,16 |
0,03625 |
0,03637 |
10 |
0,03603 |
0,15 |
0,03633 |
0,03663 |
11 |
|
2,55 |
0,03610 |
0,03654 |
12 |
0,03588 |
2,39 |
0,03604 |
0,03619 |
13 |
|
2,14 |
0,03584 |
0,03593 |
14 |
0,03686 |
0,04 |
0,03691 |
0,03696 |
среднее |
0,03577 |
— |
0,03601 |
0,03624 |
Таблица 2. Результаты испытаний образцов с плотностью 37 кг/м3
№ п/п |
Коэффициент теплопроводности сухого образца, λ25 Вт/(м●К) |
Снижение влажности образца за время испытания, % |
Коэффициент теплопроводности | |
при влажности образца 1%, λА, Вт/(м●К) |
при влажности образца 1%, λА, Вт/(м●К) | |||
1 |
0,03744 |
0,93 |
0,03748 |
0,03753 |
2 |
0,03664 |
0,24 |
0,03671 |
0,03678 |
3 |
0,03735 |
0,56 |
0,03741 |
0,03748 |
4 |
0,03440 |
1,17 |
0,03482 |
0,03524 |
5 |
0,03750 |
2,62 |
0,03752 |
0,03754 |
6 |
0,03802 |
0,52 |
0,03809 |
0,03815 |
7 |
0,03813 |
0,76 |
0,03830 |
0,3848 |
8 |
0,03802 |
0,64 |
0,03806 |
0,03811 |
среднее |
0,03719 |
— |
0,03730 |
0,03741 |
При выполнении различных теплофизических расчетов проекта жилого дома используют расчетные значения теплопроводности минераловатных плит (табл. 3) приведенные в СП 50.13330.2012 [3] или в Техническом свидетельстве на конкретную марку изделия [4].
Таблица 3. Расчетные значения теплопроводности минераловатных утеплителей.
Источник данных |
Плотность, кг/м3 |
Теплопроводность сухого материала, λ0, Вт/(м●К) |
Теплопроводность материала | |
при условии эксплуатации А, λА, Вт/(м●К) |
при условии эксплуатации Б, λБ, Вт/(м●К) | |||
СП 50.13330.2012 |
80-125 |
0,036 |
0,042 |
0,045 |
25-50 |
0,036 |
0,042 |
0,045 | |
Техническое свидетельство |
90 (±10%) |
0,035 |
0,038 |
0,040 |
37 (±10%) |
0,036 |
0,039 |
0,040 | |
Экспериментальные данные |
90 (±10%) |
0,03577 |
0,03601 |
0,03624 |
37 (±10%) |
0,03719 |
0,03730 |
0,03741 |
Ниже представлены результаты анализа данных испытаний, выполненных расчетов и нормативных требований:
1) При исследовании теплопроводности образцы плотностью 90 кг/м3 (±10%) с влажностью 1%, соответствующей условиям эксплуатации А, показали значение теплопроводности в среднем на 0,67% больше, чем у сухого образца. Значение входит в допустимую погрешность прибора λ-Meter EP500e. В Техническом свидетельстве [4] на эту марку материала производитель дает теплопроводность для условий эксплуатации А на 2,7% больше, чем у сухого материала.
2) Образцы плотностью 37 кг/м3 (±10%) с влажностью 1%, соответствующей условиям эксплуатации А, показали значение теплопроводности на 0,30% больше, чем у сухого образца. Значение входит в допустимую погрешность прибора λ-Meter EP500e. В Техническом свидетельстве [4] на эту марку материала производитель дает теплопроводность для условий эксплуатации А на 8,3% больше, чем у сухого материала.
3) При исследовании теплопроводности образцы плотностью 90 кг/м3 (±10%) с влажностью 2%, соответствующей условиям эксплуатации Б, показали значение теплопроводности на 1,31% больше, чем у сухого образца. В Техническом свидетельстве [4] на эту марку производитель дает теплопроводность для условий эксплуатации Б на 14,3% больше, чем у сухого материала.
4) Образцы плотностью 37 кг/м3 (±10%) с влажностью 2%, соответствующей условиям эксплуатации Б, показали значение теплопроводности на 0,59% больше, чем у сухого образца. Значение входит в допустимую погрешность прибора λ-Meter EP500e. В Техническом свидетельстве [4] на эту марку производитель дает теплопроводность для условий эксплуатации Б на 11,1% больше, чем у сухого материала.
Выводы
· Таким образом, исходя из проведенных лабораторных исследований двух типов минераловатных плит производства ЗАО «Минеральная Вата» ROCKWOOL Russia с плотностью 90 кг/м3 и 37 кг/м3, можно предположить, что увлажнение материала на 1% и 2% незначительно влияет на теплоизоляционные свойства минераловатных утеплителей. При этом значения теплопроводности, заявленные производителем в Техническом свидетельстве значительно больше величин, полученных в результате исследований.
· Теплофизические расчеты, произведенные на основе значений приведенных в СП 50.13330.2012 будут иметь значительный запас по теплопроводности.
· Исследования проведены на образцах только одного производителя минераловатных плит. Для комплексной оценки влияния эксплуатационной влажности на теплопроводность минераловатного утеплителя необходимо исследование образцов разной плотности всех производителей.
Список литературы
1. https://ceiis.mos.ru/presscenter/news/detail/6041715.html. Исследование методов определения теплопроводности минераловатных утеплителей в условиях эксплуатации конструкций А и Б.
2. СП 50.13330.2012 «Тепловая защита зданий».
3. ГОСТ Р 54855-2011 «Материалы и изделия строительные. Определение расчетных значений теплофизических характеристик».
4. ТС №4588-15 «Техническое свидетельство о пригодности для применения в строительстве новой продукции и технологий, требования к которым не регламентированы нормативными документами полностью или частично и от которых зависят безопасность зданий и сооружений».
Статью подготовили:
Ведущий инженер Лаборатории испытаний
строительных материалов и конструкций Е.Л. Жеглова
Ведущий инженер Лаборатории испытаний
строительных материалов и конструкций О.А. Крупинина
инструкция по выбору своими руками, особенности базальтовых материалов, коэффициенты других теплоизоляций, цена, видео, фото
При проведении строительных работ нередко приходится сравнивать свойства разных материалов. Это нужно для того, чтобы подобрать наиболее подходящий из них.
Ведь там, где хорош один из них, совсем не подойдет другой. Поэтому, осуществляя теплоизоляцию, нужно не просто утеплить объект. Важно выбрать утеплитель, подходящий именно для данного случая.
Такая диаграмма нагляднее таблицы
А для этого нужно знать характеристики и особенности разных видов теплоизоляции. Вот об этом мы и поговорим.
Что такое теплопроводность
Для обеспечения хорошей теплоизоляции важнейшим критерием является теплопроводность утеплителей. Так называется передача тепла внутри одного предмета.
То есть, если у одного предмета одна его часть теплее другой, то тепло будет переходить от теплой части к холодной. Тот же самый процесс происходит и в здании.
Таким образом, стены, крыша и даже пол могут отдавать тепло в окружающий мир. Для сохранения тепла в доме этот процесс нужно свести к минимуму. С этой целью используют изделия, имеющие небольшое значение данного параметра.
Таблица теплопроводности
Обработанную информацию об этом свойстве разных материалов можно представить в виде таблицы. К примеру, вот так:
Сводная таблица
Здесь присутствуют всего два параметра. Первый – это коэффициент теплопроводности утеплителей. Второй – толщина стены, которая потребуется для обеспечения оптимальной температуры внутри здания.
Взглянув на эту таблицу, становится очевидным следующий факт. Построить комфортное здание из однородных изделий, например, из полнотелых кирпичей, невозможно. Ведь для этого потребуется толщина стены не менее 2,38м.
Поэтому для обеспечения нужного уровня тепла в помещениях требуется теплоизоляция. И первым и важнейшим критерием ее отбора является вышеуказанный первый параметр. У современных изделий он не должен быть более 0.04 Вт/м°С.
Совет!
При покупке обратите свое внимание на следующую особенность.
Изготовители, указывая на своих изделиях теплопроводность утеплителя, часто используют не одну, а целых три величины: первая – для случаев, когда материал эксплуатируется в сухом помещении с температурой в 10ºС;второе значение – для случаев эксплуатации опять же, в сухом помещении, но с температурой в 25 ºС; третья величина – для эксплуатации изделия в разных условиях влажности.
Это может быть помещение с влажностью категории А или В.
Для ориентировочного расчета следует использовать первое значение.
Все остальные нужны для проведения точных расчетов. О том, как они осуществляются, можно узнать из СНиП II-3-79 «Строительная теплотехника».
Иные критерии выбора
При выборе подходящего изделия должна учитываться не только теплопроводность и цена товара.
Нужно обратить внимание и на иные критерии:
- объемный вес утеплителя;
- формостабильность данного материала;
- паропроницаемость;
- горючесть теплоизоляции;
- звукоизоляционные свойства изделия.
Рассмотрим эти характеристики подробнее. Начнем по порядку.
Объемный вес утеплителя
Объемным весом называется масса 1 м² изделия. Причем в зависимости от плотности материала эта величина может быть различной – от 11 кг до 350 кг.
Такая теплоизоляция будет иметь значительный объемный вес
Вес теплоизоляции непременно нужно учитывать, особенно проводя утепление лоджии. Ведь конструкция, на которую крепится утеплитель, должна быть рассчитана на данный вес. В зависимости от массы будет отличаться и способ монтажа теплоизолирующих изделий.
К примеру, при утеплении крыши, легкие утеплители устанавливают в каркас из стропил и обрешетки. Тяжелые экземпляры монтируются поверх стропил, как того требует инструкция по установке.
Формостабильность
Этот параметр означает не что иное, как сминаемость используемого изделия. Иными словами, оно не должно изменять своих размеров в течение всего срока службы.
Любая деформация приведет к потере тепла
В противном случае, может произойти деформация утеплителя. А это уже приведет к ухудшению его теплоизоляционных свойств. Исследованиями доказано, что потери тепла при этом могут составлять до 40%.
Паропроницаемость
По данному критерию все утеплители можно условно подразделить на два вида:
- «ваты» – теплоизоляционные материалы, состоящие из органических или минеральных волокон. Они являются паропроницаемыми, поскольку легко пропускают через себя влагу.
- «пены» – теплоизоляционные изделия, изготовленные путем затвердевания особой пенообразной массы. Влагу они не пропускают.
В зависимости от конструктивных особенностей помещения, в нем могут быть использованы материалы первого или второго вида. Кроме того, паропроницаемые изделия нередко устанавливают своими руками вместе со специальной пароизоляционной пленкой.
Горючесть
Весьма и весьма желательно, чтобы используемая теплоизоляция была негорючей. Допускается вариант, когда она будет самозатухающей.
Но, к сожалению, в условиях реального пожара даже это не поможет. В эпицентре огня будет гореть даже то, что не загорается в обычных условиях.
Звукоизоляционные свойства
Мы уже упоминали про два вида изоляционных материалов: «ваты» и «пены». Первый из них является отличным звукоизолятором.
Второй же, напротив, не имеет таких свойств. Но это вполне можно исправить. Для этого при утеплении «пены» нужно установить вместе с «ватами».
Вывод
Таблица теплопроводности наглядно иллюстрирует теплоизоляционные свойства тех или иных материалов. Более наглядной может быть лишь диаграмма.
На фото – наглядная таблица
То же самое, но в виде диаграммы
Как видите, теплопроводность базальтового утеплителя и пенополистирола является наименьшей. Следовательно, они обладают наилучшими теплоизоляционными свойствами по сравнению с остальными материалами для утепления.
Определившись с данным критерием, нужно учесть и иные параметры. Это объемный вес, формостабильность, паропроницаемость, горючесть и звукоизоляционные свойства.
В представленном видео в этой статье вы найдете дополнительную информацию по данной теме.
Теплопроводность современных утеплителей. Таблица | Dacha.news
В интернете второй десяток лет гуляют цифры теплопроводности различных утеплителей, где для каждого вида материала указаны достаточно широкие диапазоны значений, различающиеся порой в полтора-два раза. В теории эти цифры верны, но каковы реалии сегодняшнего дня, когда большинство утеплителей производятся на самом современном оборудовании и из качественных материалов?
Мы собрали в таблицу данные по теплопроводности наиболее популярных типов и марок утеплителей, в том числе и экологически чистых, которые поставляются в форме плит толщиной 50 или 100 мм. Большинство из них являются новинками последних двух-трех лет. Основной акцент был сделан на материалы, пригодные для вертикальных вентилируемых фасадов.
Важный момент! Производители оперируют несколькими коэффициентами теплопроводности. Они обозначаются как λ10, λ25, λА и λБ. Первые два определяют теплопроводность сухого материала при температурах 10 и 25 °С соответственно. Но в реальности такие условия эксплуатации практически недостижимы, потому инженеры в расчетах используют λА и λБ, которые соответствуют теплопроводности при 25 °С и влажности материала 2% и 5%. В таблице мы указали только λ10 и λА. Отличие λА от λБ обычно составляет 0,002 Вт/(м·°К) в большую сторону.
Утеплитель | тип | Коэф. теплопроводности λ10, Вт/(м·°К) | Коэф. теплопроводности λА, Вт/(м·°К) |
воздух* | 0,022 | 0,022 | |
Пеноплекс Фасад | экструдированный пенополистирол | 0,030 | 0,031 |
Пенопласт Knauf Therm Wall | пенополистирол | 0,040 | 0,032 |
Шелтерэкострой Стандарт* | синтетическое негорючее волокно | 0,033 | 0,033 |
Технониколь Carbon Eco | экструдированный пенополистирол | 0,029 | 0,034 |
Isover Каркас-П32 | стекловата | 0,032 | 0,035 |
Ursa Geo П-30 | каменная вата | 0,032 | 0,036 |
Ursa Пенопласт ПСБ-С 35 | пенополистирол | 0,032 | 0,036 |
Ursa Terra 34 | каменная вата | 0,034 | 0,037 |
Isoroc Изолайт | каменная вата | 0,034 | 0,038 |
Isoroc Изолайт-Люкс | каменная вата | 0,033 | 0,038 |
Isover Венти | каменная вата | 0,035 | 0,038 |
Paroc eXtra plus | каменная вата | 0,034 | 0,038 |
Steico Flex 50 мм* | ДВП | 0,038 | 0,038 |
Интерметал НПЭ 3050* | вспененный полиэтилен | 0,038 | 0,038 |
Пенолон ППЭ 3050-Р* | сшитый вспененный полиэтилен | 0,038 | 0,038 |
Эковер Стандарт 50 | каменная вата | 0,035 | 0,038 |
Isover Каркас-П37 | стекловата | 0,036 | 0,039 |
Rockwool Лайт Баттс Скандик | каменная вата | 0,036 | 0,039 |
Изольна |
Теплопроводность утеплителей: что это такое
Выполнение строительно-отделочных работ предполагает проведение различных мероприятий: заливка фундамента, возведение стен и кровли, а также работы по утеплению строения. И для того чтобы подобрать наиболее подходящие материалы для выполнения тех или иных работ нередко необходимо сравнение их свойств и характеристик, для того чтобы понять насколько они подойдут в вашем конкретном случае. Особенно это актуально при выборе утеплителей.
Для того чтобы качественно утеплить постройку, важно не просто использовать утеплитель, а подобрать наиболее подходящий, а для этого необходимо учитывать такой показатель как теплопроводность утеплителей.
Что такое теплопроводность утепляющих материалов?
- Сравнение теплотехнических характеристик
- Зависимость от толщины материала
- Коэффициент теплопроводности
Теплопроводность – это способность проводить тепло каким-либо объектом. Таким образом, если не утеплить стены, пол или потолок, то они будут выпускать тепло наружу, а при проведении утеплительных работ при помощи материала с хорошими показателями теплосбережения, то есть такого который будет препятствовать потере тепла, помещение будет значительно более теплым, за счет того, что в этом случае стены, пол и потолок будут отдавать тепло обратно.
Различные виды утеплителей имеют разный коэффициент теплопроводности. Производить расчет теплопроводности самостоятельно совершенно не нужно, для того чтобы узнать о свойствах самых востребованных материалов достаточно просто ознакомиться с готовыми данными, которые содержит таблица теплопроводности:
Таблица теплопроводности
Эта таблица дает сведения о двух важных параметрах: о том какой коэффициент теплопроводности имеют утепляющие материалы и о том какой толщины при использовании этого материала должны быть стены, для того чтобы обеспечить высокие показатели теплосбережения в помещении.
Коэффициент теплопроводности утеплителей не может быть менее указанных в таблице значений.
Как правило, маркировка утеплителей имеет три разных значения, они зависят от условий эксплуатации материала. Ориентироваться необходимо на первые данные.
Важно понимать, что чем ниже коэффициент теплопроводности, тем выше свойства теплосбережения.
Другие критерии выбора утеплителей
- Способность удерживать форму
- Обеспечение паропроницаемости
- Пожаробезопасность материалов
Теплопроводность материала для утепления – это не единственный критерий, по которому необходимо выбирать этот материал. Есть и другие не менее важные показатели, на которые стоит обратить внимание.
- удельная масса материала;
- способность держать форму;
- паропроницаемость;
- класс пожаробезопасности;
- показатели звукоизоляции.
Рассчёт массы материала
Удельная масса – очень важный показатель, особенно при отделке балконов и лоджий, конструкции которых нельзя утяжелять.
Способность сохранять форму будет помогать сохранять высокие показатели теплопроводности на протяжении всей эксплуатации утеплителя. Например, применение каменной ваты, позволяет быть уверенным, что она на протяжении всей службы будет иметь нужную форму и не сомнется.
Показатель паропроницаемости делит все утеплители на две большие категории:
Ваты состоят из волокон, органических или минеральных и поэтому хорошо пропускают сквозь себя влагу, а, значит, являются паропроницаемыми.
Пены – не пропускают влагу сквозь себя, благодаря своей особенной структуре.
Как правило, для качественного монтажа и длительной эксплуатации паропроницаемых материалов при их установке прокладывают специальный защитный слой – пароизоляционную пленку.
Пожаробезопасность – очень важный показатель, особенно если речь идет об утеплении деревянных конструкций.
Представленная ниже сравнительная таблица дает представления о свойствах и сферах применения самых популярных утеплительных материалов.
Таблица теплопроводности 2
Сравнение различных утеплителей: каменной ваты, пенополистиролов и других, даст возможность подобрать именно тот утепляющий материал, который подойдет наиболее хорошо в каждом конкретном случае.
При выборе необходимо учитывать и свойства теплопроводности и другие технические характеристики, пен, каменной или минеральной ваты, пенополистиролов. Только сравнение всех свойств поможет выбрать качественный и долговечный материал с хорошими показателями теплопроводности.
Нравится?
Посмотрите похожие статьи:Теплопроводность минваты: что такое коэффициент теплопроводности?
Все большее количество потребителей выбирают в качестве утеплителя минвату, ориентируясь на долговечность и пожаробезопасность материала, однако теплопроводность более важный показатель.
Теплопроводность минваты находится в прямой зависимости от состава и объемного веса материала, разобраться с техническими характеристиками необходимо до закупки утеплителя.
Что такое минеральная вата?
Общим названием «минеральная вата» обозначают группу теплоизоляторов, произведенных из волокон минерального происхождения – стекла, кварцевого песка, камня группы базальтов и шлака. Производство у каждой фирмы имеет некоторое отличие, однако общим является получение волокна из расплава исходного сырья и добавление связующего для формования конечного продукта.
Теплоизоляционные материалы из минеральной ваты выпускают в виде рулонов, матов, плит и цилиндров. Минимальное количество связующего в рулонах, максимальное – в плитах, его тем больше, чем больше объемный вес, жесткость и механическая прочность утеплителя. Основные качества минераловатных утеплителей:
- Малая теплопроводность.
- Высокая механическая стойкость.
- Паропроницаемость.
- Химическая стойкость.
- Экологичность.
- Устойчивость к высоким и низким температурам.
- Шумопоглощение.
- Огнестойкость.
- Долговечность.
Немаловажным свойством минераловатных теплоизоляторов является то обстоятельство, что грызуны не используют эти материалы для гнездования, в отличие от пенополистирола.
Теплопроводность – главный показатель эффективности утеплителя
Коэффициент теплопроводности измеряется в Ваттах, деленных на метр умноженный на градус Кельвина и показывает количество перенесенного через материал тепла. Чем этот коэффициент ниже, тем более эффективным будет утепление, тем более тонкий слой теплоизолятора нужен для сохранения тепла в помещении.
Популярность теплоизоляционных материалов из минеральной ваты обусловлена отличным показателем теплопроводности. В зависимости от вида материала, состава и объемного веса теплопроводность минераловатных плит варьируется от 0, 030 до 0,052 Вт/м*К. в таблице представлены данные по утеплителям из стекловаты:
В жестких плитах из стекловаты количество связующего доходит до 10%, что снижает уровень огнестойкости: показатель Г1 говорит о том, что материал не поддерживает горения, то есть обладает свойством самозатухания.
Коэффициент теплопроводности необходим для расчета требуемой толщины теплоизоляции.
Основные производители
Наиболее качественный товар на рынок утеплителей поставляют компании:
- ISOVER – на основе стекловаты и каменной ваты.
- KNAUF – на основе каменной ваты.
- URSA – на основе стекловаты.
- PAROC – на основе базальта.
- NOBASIL- на основе базальта.
- Технониколь – на основе базальта.
Качество материалов этих фирм подтверждено соответствующими сертификатами. Эти фирмы производят весь возможный ассортимент теплоизолирующих изделий – рулоны, маты, плиты и цилиндры.
Производством утеплителей из шлака крупные компании не занимаются, так как в сырье возможны вредные примеси, а качество продукции оставляет желать лучшего – технология не модернизировалась со времен СССР.
Наибольшие нарекания на качество минераловатных утеплителей вызывал состав связующего, в частности наличие в составе формальдегида, вредного для здоровья человека и микроскопическая пыль, образующаяся при резке плит.
Однако технологии не стоят на месте, процесс производства усовершенствовался, и сейчас в качестве связующего применяют безопасный акрил (URSA) или натуральные компоненты по технологии ECOSE (KNAUF), что полностью исключает вредные воздействия. Волокно, служащее основой для утеплителя, в настоящее время обладает упругостью и практически не образует пыли при обработке.
Материалы данных компаний рекомендованы для применения в детских учреждениях.
Применение утеплителей
Каждый из видов теплоизоляторов должен использоваться в соответствии с рекомендацией производителя:
- Рулон – в конструкциях, где они не несут нагрузку.
- Мат – для утепления каркасных конструкций.
- Мат – для утепления стен в системе «вентилируемый фасад».
- Плит – для звукоизоляции.
- Плита – для звукоизоляции пола.
- Плита – для скатных кровель.
- Плита – для нижнего слоя в утеплении плоских кровель.
- Жесткая плита – для верхнего слоя в утеплении плоских кровель.
- Жесткая плита – для утепления стен в штукатурной системе.
- Цилиндр, мат – для изоляции труб и конструкций сложной формы.
Соответственно каждый производитель разрабатывает свои инструкции по монтажу утеплителей в зависимости от назначения и конструкции.
Заключение
Коэффициент теплопроводности утеплителя – важнейший показатель эффективности. Сравнивая минераловатные утеплители с другими строительными материалами, легко подобрать материал, удовлетворяющий сразу трем показателям, важным для индивидуального застройщика – эффективность – цена – качество.
Теплопроводность базальтовой ваты, коэффициент теплопроводности
Базальтовая вата имеет довольно разноплановые характеристики, среди которых следует выделить отличные противопожарные свойства, высокие тепло- и шумоизоляционные характеристики.
Содержание статьи о теплопроводности базальтовой ваты
Свойства базальтового утеплителя
1. Негорючесть.
Базальтовая вата подвергалась проверкам во многих странах по различным методикам, в результате чего ее признали абсолютно негорючей, что позволяет использовать ее для теплоизоляции дымоходов. Это очень важный параметр в строительстве. На сегодняшний день множество материалов характеризируются как негорючие, но на самом деле многие оказываются не такими. Естественно, чтобы базальтовая вата была противопожарной, нужно приобретать ее у проверенных производителей.
2. Высокие водоотталкивающие свойства.
Кроме этого следует отметить отличные гидрофобные свойства материала. Базальтовая вата имеет в своем составе волокна, которые уже сами по себе водоотталкивающие. Кроме этого хорошие производители при производстве применяют особые добавки, увеличивающие свойства отталкивать влагу. В сравнении с другими разновидностями утеплителей базальтовая вата хорошо пропускает пар, а главное, что при этом она остается сухой. Это свойство незаменимое в строительстве.
3. Высокая устойчивость к нагрузкам.
Что касается устойчивости к нагрузкам, базальтовая вата хорошо справляется со всеми нагрузками, которыми она подвергается. Ее устойчивость напрямую зависит от того, где именно она применяется. Вата выдерживает нагрузки на сжатие 5-80 кПа при 10% деформации. Это свойство является особо важным физико-механическим показателем строительных материалов, подвергаемым нагрузкам. Изделия из каменной ваты могут быть разными. В основном это зависит от положения волокон, плотности, размеров и количества связывающего вещества в определенном элементе.
4. Небольшая плотность.
Базальтовая вата – это материал, состоящий из очень тонких волокон (3-5 мкм), которые переплетены между собой в хаотическом порядке, образовывая ячейки. Именно ячейки обеспечивают отличительные теплоизоляционные свойства материала, так как в них содержится воздух. Утеплитель имеет небольшую плотность, особенно в сравнении с другими материалами, применяемыми в строительстве. Это значит, что в нем содержится много воздуха. Когда базальтовый утеплитель находится в сухом состоянии, его теплопроводность превышает теплопроводность воздуха, находящегося в неподвижном состоянии. Рассмотрим данную характеристику более подробно.
Коэффициент теплопроводности базальтовой ваты
Сегодня теплоизоляция базальтовой ватой широко распространена. И это не удивительно, ведь за невысокую цену вы покупаете негорючий материал с низкой теплопроводностью. В свое время минеральная вата появилась в качестве замены асбестового полотна, которое убрали из рынка из-за небезопасности для здоровья человека.
Одно из самых существенных преимуществ, которое отличает базальтовую вату от других материалов – это стоимость. Заменители на основе пенопласта, пенополистерола и полиуретана или стоят на порядок больше, или не обеспечивают такой же уровень безопасности, теплоизоляции и негорючести. Среди проверенных производителей базальтовой ваты, выпускающих качественные изделия, следует выделить такие компании, как Лайнрок, Роквул, Теплит и Технониколь.
Выбор продукции определенного производителя зависит от назначения или характеристик продукта. Свойства базальтового утеплителя зависят от того, для чего она предназначена. Например, для утепления кровли характеристики будут одними, а для стен – совершенно другими. Плиты производятся с разной плотностью и ориентировкой под разные нагрузки. Естественно, на строительном рынке вы можете найти более дешевую минеральную вату неизвестных производителей за низкую цену. Но здесь нужно быть предельно осторожным, так как непроверенные компании часто предоставляют некачественную продукцию с вредными добавками.
Что касается теплопроводности базальтовой ваты, то значение колеблется в пределах 0.032-0.048 Вт/мК. Такую же теплопроводность имеет пенопласт, пенополистерол, пробки и вспененный каучук. Минеральная вата обладает высокой паропроницаемостью. Это способствует хорошему влагообмену с окружающей средой, при этом вы навсегда избавитесь от проблемы возникновения конденсата, образования на стенах грибка и плесени.
Для обеспечения качественной пароизоляции можно использовать фольгированную вату. Часто это незаменимо для изоляции труб, трубопроводов, стен бань и саун. Фольга осуществляет высокую защиту от ветра, что очень важно для утепления мансард. В наше время базальтовая минеральная вата используется для строительства загородных домов, вентилируемых и «мокрых» фасадов, утепления для воздуховодов и оборудования. Сейчас практически не найти материала, способного составить конкуренцию вате, произведенной на основе минеральных горных пород. Это высококачественный материал, поэтому смело отдавайте предпочтение именно этому утеплителю.
Теплопроводность базальтовой ваты ведущих производителей
На рынке базальтовых утеплителей хорошо зарекомендовали себя такие производители, как Изовер, Роквул и Кнауф. Какие же характеристики имеют материалы этих производителей?
Теплопроводность базальтовой ваты ISOVER
Для теплоизоляции кровель используется базальтовая вата Изовер Руф, Руф Н и Руф Н Оптимал теплопроводностью 0.036- 0.042 Вт/(м*K). Теплопроводность 0.035-0.039 Вт/(м*K) имеют материалы ISOVER Стандарт и Венти соответственно для утепления скатных кровель, мансард, каркасных стен и изоляции вентилируемых фасадов.
Материал | Использование | Коэффициент теплопроводности, Вт/(м*K) ?10, ?А, ?Б |
---|---|---|
ISOVER Фасад | утепление штукатурных фасадов | 0.037, 0.041, 0.042 |
ISOVER Стандарт | утепление скатных кровель, мансард, каркасных стен | 0.035, 0.038, 0.039 |
ISOVER Лайт | теплоизоляция внешних каркасных стен | 0.036, 0.039, 0.040 |
ISOVER Венти | теплоизоляция вентилируемых фасадов | 0.035, 0.038, 0.039 |
ISOVER Акустик | тепло- и звукоизоляция стен | 0.035, 0.039, 0.041 |
ISOVER Флор | теплоизоляция пола, звукоизоляция от ударного шума | 0.04, – , – |
ISOVER Оптимал | изоляция всех видов поверхностей | 0.04, – , – |
ISOVER Руф | теплоизоляция кровель, однослойная изоляция | 0.037, 0.041, 0.042 |
ISOVER Руф Н Оптимал | теплоизоляция кровель | 0.036, 0.040, 0.041 |
ISOVER Руф Н | теплоизоляция кровель | 0.036, 0.040, 0.042 |
Теплопроводность базальтовой ваты ROCKWOOL
Самый низкий коэффициент теплопроводности (0.035 и 0.037 Вт/(м*K) для ?10°C, ?25°C имеют материалы КАВИТИ БАТТС, ВЕНТИ БАТТС, ВЕНТИ БАТТС Д для теплоизоляции внешних стен. Более высокий коэффициент имеют плиты РУФ БАТТС (0.040) для утепления кровли.
Материал | Использование | Коэффициент теплопроводности, Вт/(м*K) ?10°C, ?25°C |
---|---|---|
ЛАЙТ БАТТС | теплоизоляция легких покрытий, мансардных помещений, междуэтажных перекрытий, перегородок | 0.036, 0.038 |
КАВИТИ БАТТС | средний слоя в трехслойных наружных стенах | 0.035, 0.037 |
ВЕНТИ БАТТС, ВЕНТИ БАТТС Д | теплоизоляция фасадных систем с вентилируемым воздушным зазором | 0.035, 0.037 |
РУФ БАТТС | теплоизоляция кровель | 0.038, 0.040 |
ФАСАД БАТТС | теплоизоляция фасадов | 0.037, 0.039 |
ФАСАД БАТТС Д | теплоизоляция фасадов | 0.036, 0.038 |
ФЛОР БАТТС | тепловая изоляция полов по грунту, устройство акустических плавающих полов | 0.037, 0.038 |
Теплопроводность базальтовой ваты Knauf
Как известно, чем низшую теплопроводность имеет утеплитель, тем высший уровень теплоизоляции он обеспечивает. Самый низкий коэффициент теплопроводности (0.035 Вт/м*K) имеет материал Knauf Insulation WM 640 GG/WM 660 GG, предназначенный для теплоизоляции оборудования и трубопроводов.
Материал | Использование | Коэффициент теплопроводности, Вт/(м*K) ?10 |
---|---|---|
Knauf Insulation FKD-S | утепление стен снаружи | 0.036 |
Knauf Insulation FKD | утепление стен снаружи | 0.039 |
Knauf Insulation LMF AluR | теплоизоляция наружных поверхностей, трубопроводов, воздуховодов,оборудования | 0.04 |
Knauf Insulation WM 640 GG/WM 660 GG | теплоизоляция оборудования и трубопроводов | 0.035 |
Knauf Insulation HTB | теплоизоляция оборудования и трубопроводов | 0,035-0,039 |
Knauf Insulation DDP-K | теплоизоляция плоской кровли и перекрытий | 0.037 |
Видео: Минвата в плитах – базальтовая вата
Каталоги продукции и инструкции по монтажу ведущих производителей
Изовер
Каталог ISOVER ВентФасад
Каталог ISOVER Классик Плюс
Каталог ISOVER Классик
Каталог продукции ISOVER для Сауны
Каталог продукции ISOVER СкатнаяКровля
Каталог продукции ISOVER ШтукатурныйФасад
Инструкция по монтажу фасадной теплоизоляции
Каталог продукции ISOVER на основе каменного волокна
Каталог продукции ISOVER на основе стекловолокна
Утепление скатных кровель и мансард
Кнауф
Инструкция по монтажу теплоизоляции «Вентилируемый фасад»
Инструкция по монтажу системы теплоизоляции «Скатная кровля»
Каталог профессиональных решений по тепловой, пожарной и звуковой защите зданий
Натуральный утеплитель для частного домостроения, каталог продукции
Новое поколение натуральных безопасных утеплителей от Кнауф
Ursa
URSA теплоизоляция из минерального волокна
Каталог утеплителей Урса – Скатные крыши
Каталог утеплителей Урса – Плоские крыши
Каталог утеплителей Урса – Навесные вентилируемые фасады
Каталог утеплителей Урса – Полы и перекрытия
Каталог утеплителей Урса – Перегородки
Каталог утеплителей Урса – Штукатурные фасады
Каталог утеплителей Урса – Трехслойные наружные стены из камней, блоков и жел
Каталог утеплителей Урса – Каркасные стены и стены из сэндвич-панелей
Каталог утеплителей Урса – Стены подвалов и фундаменты