10.10.2020

Коэффициент теплопроводности что такое – Что такое теплопроводность и коэффициент теплопроводности. |

Содержание

Что такое теплопроводность и коэффициент теплопроводности. |

Теплопроводность.

Так что же такое теплопроводность? С точки зрения физики теплопроводность – это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

Можно сказать проще, теплопроводность – это  способность материала проводить тепло. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Передача тепла происходит за счет передачи энергии при столкновении молекул вещества. Происходит это до тех пор, пока температура внутри тела не станет одинаковой. Такой процесс может происходить в твердых, жидких и газообразных веществах.

На практике, например в строительстве при теплоизоляции зданий, рассматривается другой аспект теплопроводности, связанный с передачей тепловой энергии. В качестве примера возьмем “абстрактный дом”. В “абстрактном доме” стоит нагреватель, который поддерживает внутри дома постоянную температуру, скажем, 25 °С. На улице температура тоже постоянная, например, 0 °С. Вполне понятно, что если выключить обогреватель, то через некоторое время в доме тоже будет 0 °С. Все тепло (тепловая энергия) через стены уйдет на улицу.

Чтобы поддерживать температуру в доме 25 °С, нагреватель должен  постоянно работать. Нагреватель постоянно создает тепло, которое постоянно уходит через стены на улицу.

 

Коэффициент теплопроводности.

Количество тепла, которое проходит через стены (а по научному – интенсивность теплопередачи за счет теплопроводности) зависит от разности температур (в доме и на улице), от площади стен и теплопроводности материала, из которого сделаны эти стены.

Для количественной оценки теплопроводности существует коэффициент теплопроводности материалов. Этот коэффициент отражает свойство вещества проводить тепловую энергию. Чем больше значение коэффициента теплопроводности материала, тем лучше он проводит тепло. Если мы собираемся утеплять дом, то надо выбирать материалы с небольшим значением этого коэффициента. Чем он меньше, тем лучше. Сейчас  в качестве материалов для утепления зданий  наибольшее распространение получили утеплители из минеральной ваты, и различных пенопластов. Набирает популярность новый материал с улучшенными теплоизоляционными качествами – Неопор.

Коэффициент теплопроводности материалов обозначается буквой ? (греческая строчная буква лямбда)  и выражается в Вт/(м2*К). Это означает, что если взять стену из кирпича, с коэффициентом теплопроводности 0,67 Вт/(м2*К), толщиной 1 метр и площадью 1 м2., то при разнице температур в 1 градус, через стену будет проходить 0,67 ватта тепловой энергии. Если разница температур будет 10 градусов, то будет проходить уже 6,7 ватта. А если при такой разнице температур  стену сделать 10 см, то потери тепла будут уже 67 ватт. Подробней о методике расчета теплопотерь зданий можно посмотреть здесь.

Следует отметить, что значения коэффициента теплопроводности материалов указываются для толщины материала в 1 метр. Чтобы определить теплопроводность материала для любой другой толщины, надо коэффициент теплопроводности разделить на нужную толщину, выраженную в метрах.

В строительных нормах и расчетах часто используется понятие “тепловое сопротивление материала”. Это величина обратная теплопроводности.  Если, на пример, теплопроводность пенопласта толщиной 10 см – 0,37 Вт/(м2*К), то его тепловое сопротивление будет равно 1 / 0,37 Вт/(м2*К) = 2,7 (м2*К)/Вт.

 

 

Коэффициент теплопроводности материалов.

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

Материал Коэфф. тепл. Вт/(м2*К)
Алебастровые плиты 0,470
Алюминий 230,0
Асбест (шифер) 0,350
Асбест волокнистый 0,150
Асбестоцемент 1,760
Асбоцементные плиты 0,350
Асфальт 0,720
Асфальт в полах 0,800
Бакелит 0,230
Бетон на каменном щебне 1,300
Бетон на песке 0,700
Бетон пористый 1,400
Бетон сплошной 1,750
Бетон термоизоляционный 0,180
Битум 0,470
Бумага 0,140
Вата минеральная легкая 0,045
Вата минеральная тяжелая 0,055
Вата хлопковая 0,055
Вермикулитовые листы 0,100
Войлок шерстяной 0,045
Гипс строительный 0,350
Глинозем 2,330
Гравий (наполнитель) 0,930
Гранит, базальт 3,500
Грунт 10% воды 1,750
Грунт 20% воды 2,100
Грунт песчаный 1,160
Грунт сухой 0,400
Грунт утрамбованный 1,050
Гудрон 0,300
Древесина – доски 0,150
Древесина – фанера 0,150
Древесина твердых пород 0,200
Древесно-стружечная плита ДСП 0,200
Дюралюминий 160,0
Железобетон 1,700
Зола древесная 0,150
Известняк 1,700
Известь-песок раствор 0,870
Ипорка (вспененная смола) 0,038
Камень 1,400
Картон строительный многослойный 0,130
Каучук вспененный 0,030
Каучук натуральный 0,042
Каучук фторированный 0,055
Керамзитобетон 0,200
Кирпич кремнеземный 0,150
Кирпич пустотелый 0,440
Кирпич силикатный 0,810
Кирпич сплошной 0,670
Кирпич шлаковый 0,580
Кремнезистые плиты 0,070
Латунь 110,0
Лед 0°С 2,210
Лед -20°С 2,440
Липа, береза, клен, дуб (15% влажности) 0,150
Медь 380,0
Мипора 0,085
Опилки – засыпка 0,095
Опилки древесные сухие 0,065
ПВХ 0,190
Пенобетон 0,300
Пенопласт ПС-1 0,037
Пенопласт ПС-4 0,040
Пенопласт ПХВ-1 0,050
Пенопласт резопен ФРП 0,045
Пенополистирол ПС-Б 0,040
Пенополистирол ПС-БС 0,040
Пенополиуретановые листы 0,035
Пенополиуретановые панели 0,025
Пеностекло легкое 0,060
Пеностекло тяжелое 0,080
Пергамин 0,170
Перлит 0,050
Перлито-цементные плиты 0,080
Песок 0% влажности 0,330
Песок 10% влажности 0,970
Песок 20% влажности 1,330
Песчаник обожженный 1,500
Плитка облицовочная 1,050
Плитка термоизоляционная ПМТБ-2 0,036
Полистирол 0,082
Поролон 0,040
Портландцемент раствор 0,470
Пробковая плита 0,043
Пробковые листы легкие 0,035
Пробковые листы тяжелые 0,050
Резина 0,150
Рубероид 0,170
Сланец 2,100
Снег 1,500
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности) 0,150
Сосна смолистая (600…750 кг/куб.м, 15% влажности) 0,230
Сталь 52,0
Стекло 1,150
Стекловата 0,050
Стекловолокно 0,036
Стеклотекстолит 0,300
Стружки – набивка 0,120
Тефлон 0,250
Толь бумажный 0,230
Цементные плиты 1,920
Цемент-песок раствор 1,200
Чугун 56,0
Шлак гранулированный 0,150
Шлак котельный 0,290
Шлакобетон 0,600
Штукатурка сухая 0,210
Штукатурка цементная 0,900
Эбонит 0,160

www.econel.ru

Теплопроводность строительных материалов — основные понятия, табличные значения, расчеты

Ведущие тенденции современного строительства – это возведение домов с максимальной энергоэффективностью. То есть с возможностью создания и поддержания комфортных условий проживания при минимальных затратах энергоносителей. Понятно, что многим нашим строителям, ведущим возведение своих жилых владений самостоятельно, до таких показателей пока далековато, но стремиться к этому – необходимо всегда.

Теплопроводность строительных материалов

Прежде всего, это касается минимизации тепловых потерь через строительные конструкции. Достигается такое снижение эффективной термоизоляцией, выполненной на основании теплотехнических расчетов. Проектирование в идеале должны проводить специалисты, но часто обстоятельства понуждают владельцев жилья и такие вопросы брать в свои руки. Значит, необходимо иметь общие представления о базовых понятиях строительной теплотехники. Прежде всего – что такое теплопроводность строительных материалов, в чем она измеряется, как просчитывается.

Если разобраться с этими «азами», то будет проще всерьез, со знанием дела , а не по наитию, заниматься вопросами утепления своего жилья.

Что такое теплопроводность, какими единицами измерения она описывается?

Если не рассматривать каких-то теоретических условий, то в реальности все физические тела, жидкости или газы обладают способностью к передаче тепла. Иными словами, чтобы было понятнее, если какой-то объект начинают нагревать с одной из сторон, он становится проводником тепла, нагреваясь сам и передавая тепловую энергию дальше. Точно так же – и при охлаждении, только с «обратным знаком».

Даже на простом бытовом уровне всем понятно, что эта способность выражена у разных материалов в очень отличающейся степени. Например, одно дело мешать готовящееся на плите кипящее блюдо деревянной лопаткой, и совсем другое – металлической ложкой, которая практически моментально разогреется до такой температуры, что ее невозможно будет держать в руках. Этот пример наглядно показывает, что теплопроводность металла во много раз выше, чем у дерева.

«Практическое применение» огромной разницы в теплопроводности материалов – пробка, подсунутая под скобу металлической крышки кастрюли. Снять такую крышку с кипящей на плите посуды можно голыми пальцами, не опасаясь ожога.

И таких примеров – масса, буквально на каждом шагу. Например, прикоснитесь рукой к обычной деревянной двери в комнате, и к металлической ручке, прикрученной на ней. По ощущениям – ручка холоднее. Но такого не может быть – все предметы в помещении имеют примерно равную температуру. Просто металл ручки быстрее отвел на себя тепло тела, что и вызвало ощущения более холодной поверхности.

Коэффициент теплопроводности материала

Существует специальная единица, которая характеризует любой материал, как проводник тепла. Называется она коэффициентом теплопроводности, обозначается обычно греческой буквой λ, и измеряется в Вт/(м×℃). (Во многих встречающихся формулах вместо градусов Цельсия ℃ указаны градусы Кельвина, К, но сути это не меняет).

Этот коэффициент показывает способность материала передавать определенное количество тепла на определённое расстояние за единицу времени. Причем, это показатель характеризует именно материал, то есть без привязки к каким бы то ни было размерам.

Такие коэффициенты рассчитаны для практически любых строительных и иных материалов. Ниже в данной публикации приведены таблицы для различных групп – растворов, бетонов, кирпичной и каменной кладки, утеплителей, древесины, металлов и т.д. Даже беглого взгляда на них достаточно, чтобы убедиться, насколько эти коэффициенты могут отличаться.

Очень часто производители стройматериалов того или иного предназначения в череде паспортных характеристик указывают и коэффициент теплопроводности.

Материалы, которые отличаются высокой проводимостью тепла, например, металлы, как раз и находят часто применение в роли теплоотводов или теплообменников. Классический пример – радиаторы отопления, в которых чем лучше их стенки будут передавать нагрев от теплоносителя, тем эффективнее их работа.

А вот для большинства строительных материалов – ситуация обратная. То есть чем меньше коэффициент теплопроводности материала, из которого возведена условная стенка, тем меньше тепла будет терять здание с приходом холодов. Или, тем меньше можно будет сделать толщину стены при одинаковых показателях теплопроводности.

И на титульной картинке к статье, и на иллюстрации ниже показаны весьма наглядные схемы, как будет различаться толщина стены из разных материалов при равных способностях удержать тепло в доме. Комментарии, наверное, не нужны.

Одинаковая термоизоляционная способность – и совершенно разные толщины. Хороший пример по разнице в теплопроводности.

В справочной литературе часто указывается не одно значение коэффициента теплопроводности для какого-то материала, а целых три. (А иногда – и больше, так как этот коэффициент может меняться с изменением температуры). И это – правильно, так как на теплопроводные качества влияют и условия эксплуатации. И в первую очередь – влажность.

Это свойственно большинству материалов – при насыщении  влагой коэффициент теплопроводности увеличивается. И если ставится цель выполнить расчеты максимально точно, с привязкой к реальным условиям эксплуатации, то рекомендуется не пренебрегать этой разницей.

Итак, коэффициент может даваться расчетный, то есть для совершенно сухого материала и лабораторных условий. Но для реальных расчетов берут его или для режима эксплуатации А, или для режима Б.

Эти режимы складываются консолидировано из климатических особенностей региона и из особенностей эксплуатации конкретного здания (помещения).

Тип своей климатической зоны по уровню влажности можно определить по предлагаемой карте-схеме:

Климатические зоны территории России по уровню влажности: 1 –влажная; 2 – нормальная; 3 – сухая.

Особенности влажностного режима помещений определяются по следующей таблице:

Таблица определения влажностного режима помещений

Влажностной режим помещенияОтносительная влажность внутреннего воздуха при температуре:
до 12°Сот 13 до 24°С 25°С и выше
Сухойдо 60%до 50%до 40%
Нормальныйот 61 до 75%от 51 до 60%от 41 до 50%
Влажный 76% и более от 61 до 75%от 51 до 60%
Мокрый76% и более61% и более

Кстати, о влажности!..

А хорошо ли вы представляете себе, что такое относительная влажность воздуха. И какой она должна быть в помещениях для поддержания комфортного микроклимата? Если с этим ясности нет – добро пожаловать к специальной публикации нашего портала, посвященной приборам измерения относительной влажности.

Итак, имея данные карты-схемы и таблицы, можно по второй таблице определиться с выбором режима А или Б, от которого будет зависеть реальная величина коэффициента теплопроводности.

Таблица для выбора режима эксплуатации ограждающих конструкций

Влажностной режим помещения (по таблице)Зоны влажности (в соотвествии с картой-схемой)
3 — сухая2 — нормальная1 — влажная
СухойААБ
НормальныйАББ
Влажный или мокрыйБББ

Вот по этому режиму и выбирается из табличных данных наиболее близкий к реальности коэффициент теплопроводности.

Таблицы будут приведены ниже, под теоретической частью.

Сопротивление теплопередаче

Итак, коэффициент теплопроводности характеризует сам материал. Но с практической точки зрения, наверное, важнее иметь какую-то величину, которая будет описывать теплопроводные способности конкретной конструкции. То есть уже с учетом особенностей ее строения и размеров.

Такая единица измерения есть, и называется она сопротивлением теплопередаче. Ее можно считать обратной величиной коэффициенту теплопроводности, с одновременным учетом толщины материала.

Обозначается сопротивление теплопередаче (или, как его часто именуют, термическое сопротивление) латинской буквой R. Если «плясать» от коэффициента теплопроводности, то определяется оно по следующей формуле.

R = h/λ

где:

R — сопротивление теплопередаче однослойной однородной ограждающей конструкции, м²×℃/Вт;

h — толщина этого слоя, выраженная в метрах;

λ — коэффициент теплопроводности материала, из которого изготовлена эта ограждающая конструкция, Вт/(м×℃).

Очень часто в строительстве используются многослойные конструкции. В том числе одним из слоев нередко выступает утеплительный материал с очень низким коэффициентом теплопроводности – специально, чтобы максимально повысить значение термического сопротивления. Дело в том, что общее значение суммируется из сопротивлений всех слоев, составляющих ограждающую конструкцию. И к ним добавляется сопротивление приграничных слоев воздуха на внешней и внутренней поверхностях конструкции.

Формула сопротивления перегородки с n-слоев будет такой:

Rsum = R₁ + R₂ + …+Rn + Rai + Rao

где:

Rsum— суммарное термическое сопротивление ограждающей конструкции;

 R₁ … Rn— сопротивления слоев, от 1 до n;

Rai— сопротивление пристенного слоя воздуха внутри;

Rao— сопротивление пристенного слоя воздуха снаружи.

Для каждого из слоев сопротивление рассчитывается отдельно, исходя из коэффициента теплопроводности материала и толщины.

Есть специальная методика расчета и коэффициентов воздушных прослоек вдоль стены снаружи и внутри. Но для упрощенных расчётов их вполне можно взять равными суммарно 0,16 м²×℃/Вт – большой погрешности не будет.

Кстати, если в конструкции перегородки предусмотрена воздушная полость, не сообщающаяся с внешним воздухом, то она тоже дает весомую добавку к общему сопротивлению теплопередаче. Значения сопротивления теплопередаче воздушных изолированных прослоек показаны в таблице ниже:

Таблица термических сопротивлений замкнутых воздушных прослоек

Толщина воздушной прослойки, в метрахВ и Г ▲Г▼
tв > 0 ℃tв > 0 ℃
0.010.130.150.140.15
0.020.140.150.150.19
0.030.140.160.160.21
0.050.140.170.170.22
0.10.150.180.180.23
0.150.150.180.190.24
0,2-0,30.150.190.190.24
Примечания:
В и Г ▲ — воздушная прослойка вертикальная, или горизонтальная, с рапространением тепла снизу вверх
Г▼ — воздушная прослойка горизонтальная при распространении тепла сверху вниз
tв > 0 ℃ — положительная температура воздуха в прослойке
Если любая из поверхностей воздушной прослойки, или обе одновременно, оклеены алюминиесвой фольгой, то значение сопротивления теплопередаче принимают вдвое большим.

Таблицы коэффициентов теплопроводности различных групп строительных материалов

Таблица коэффициентов теплопроводности кирпичных кладок и каменных облицовок стен
Наименование материалаρ
Средняя плотность материала
кг/м³
λ₀
Коэффициент теплопроводности в идеальных условиях и в сухом состоянии
Вт/(м×℃)
λА
Коэффициент теплопроводности для условий эксплуатации А
Вт/(м×℃)
λБ
Коэффициент теплопроводности для условий эксплуатации Б
Вт/(м×℃)
Кирпичная кладка из сплошного кирпича на различных растворах
Стандартный керамический (глиняный) – на цементно-песчаном кладочном растворе18000,560,700,81
Стандартный керамический на цементно-шлаковом растворе17000,520,640,76
Стандартный керамический на цементно-перлитовом растворе16000,470,580,70
Силикатный на цементно-песчаном кладочном растворе18000,700,760,87
Трепельный термооизоляционный, на цементно-песчаном кладочном растворе12000,350,470,52
— то же, но с плотностью10000,290,410,47
Шлаковый, на цементно-песчаном кладочном растворе15000,520,640,70
Кладка из пустотного кирпича
Кирпич керамический, с плотностью 1400 кг/м³, на цементно-песчаном кладочном растворе16000,470,580,64
— то же, но с плотностью кирпича 1300 кг/м³14000,410,520,58
— то же, но с плотностью кирпича 1000 кг/м³12000,350,470,52
Кирпич силикатный, одиннадцатипустотный, на цементно-песчаном кладочном растворе15000,640,700,81
— то же, четырнадцатипустотный14000,520,640,76
Кладка или облицовка поверхностей натуральным камнем
Гранит или базальт28003,493,493,49
Мрамор28002,912,912,91
Туф20000,760,931,05
— то же, но с плотностью18000,560,700,81
— то же, но с плотностью16000,410,520,64
— то же, но с плотностью14000,330,430,52
— то же, но с плотностью12000,270,350,41
— то же, но с плотностью10000,210,240,29
Известняк20000,931,161,28
— то же, но с плотностью18000,700,931,05
— то же, но с плотностью16000,580,730,81
— то же, но с плотностью14000,490,560,58
Таблица коэффициентов теплопроводности бетонов различного типа
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Бетоны на плотном заполнителе
Железобетон25001.691.922.04
Бетон на натуральном гравии или щебне24001.511.741.86
Бетоны на натуральных пористых заполнителях
Пемзобетон16000.520.60.68
— то же, но с плотностью14000.420.490.54
— то же, но с плотностью12000.340.40.43
— то же, но с плотностью10000.260.30.34
— то же, но с плотностью8000.190.220.26
Туфобетон18000.640.870.99
— то же, но с плотностью16000.520.70.81
— то же, но с плотностью14000.410.520.58
— то же, но с плотностью12000.290.410.47
Бетон на вулканическом шлаке16000.520.640.7
— то же, но с плотностью14000.410.520.58
— то же, но с плотностью12000.330.410.47
— то же, но с плотностью10000.240.290.35
— то же, но с плотностью800200.230.29
Бетоны на искусственных пористых наполнителях
Керамзитобетон на кварцевом песке с поризацией12000.410.520.58
— то же, но с плотностью10000.330.410.47
— то же, но с плотностью8000.230.290.35
Керамзитобетон на керамзитовом песке или керамзитопенобетон1800660.80.92
— то же, но с плотностью16000.580.670.79
— то же, но с плотностью14000.470.560.65
— то же, но с плотностью12000.360.440.52
— то же, но с плотностью10000.270.330.41
— то же, но с плотностью8000.210.240.31
— то же, но с плотностью6000.160.20.26
— то же, но с плотностью5000.140.170.23
Керамзитобетон на перлитовом песке10000.280.350.41
— то же, но с плотностью8000.220.290.35
Перлитобетон12000.290.440.5
— то же, но с плотностью10000.220.330.38
— то же, но с плотностью8000.160.270.33
— то же, но с плотностью6000.120.190.23
Шлакопемзобетон18000.520.630.76
— то же, но с плотностью16000.410.520.63
— то же, но с плотностью14000.350.440.52
— то же, но с плотностью12000.290.370.44
— то же, но с плотностью10000.230.310.37
Шлакопемзопено и шлакопемзогазобетон16000.470.630.7
— то же, но с плотностью14000.350.520.58
— то же, но с плотностью12000.290.410.47
— то же, но с плотностью10000.230.350.41
— то же, но с плотностью8000.170.290.35
Вермикулетобетон8000.210.230.26
— то же, но с плотностью6000.140.160.17
— то же, но с плотностью4000.090.110.13
— то же, но с плотностью3000.080.090.11
Ячеистые бетоны
Газобетон, пенобетон, газосиликат, пеносиликат10000.290.410.47
— то же, но с плотностью8000.210.330.37
— то же, но с плотностью6000.140.220.26
— то же, но с плотностью4000.110.140.15
— то же, но с плотностью3000.080.110.13
Газозолобетон, пенозолобетон12000.290.520.58
— то же, но с плотностью10000.230.440.59
— то же, но с плотностью8000.170.350.41
Таблица коэффициентов теплопроводности строительных растворов на цементной, известковой, гипсовой основе
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Обычный цементно-песчаный раствор18000.580.760.93
Сложный раствор из цемента, песка, извести17000.520.70.87
Цементно-шлаковый раствор14000.410.520.64
Цементно-перлитовый раствор10000.210.260.3
— то же, но с плотностью8000.160.210.26
Известково-песчаный раствор16000.470.70.81
— то же, но с плотностью12000.350.470.58
Гипсово-перлитовый раствор6000.140.190.23
Гипсово-перлитовый поризованный раствор5000.120.150.19
— то же, но с плотностью4000.090.130.15
Гипсовые плиты литые конструкционные12000.350.410.47
— то же, но с плотностью10000.230.290.35
Листы гипсокартона (сухая штукатурка)8000.150.190.21
Таблица коэффициентов теплопроводности дерева, изделий на основе древесины, а также других природных материалов
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Хвойная древесина (сосна иди ель) поперек волокон 5000,090,140,18
— они же — вдоль волокон5000,180,290,35
Древесина плотных лиственных пород (дуб, бук, ясень) поперек волокон 7000,10,180,23
— они же — вдоль волокон7000,230,350,41
Клееная фанера6000,120,150,18
Облицовочный картон10000,180,210,23
Картон строительный многослойный 6500,130,150,18
Плиты древесно-волокнистые (ДВП), древесно-стружечные (ДСП), ориентированно-стружечные (ОСП)10000,150,230,29
— то же, но для плотности8000,130,190,23
— то же, но для плотности6000,110,130,16
— то же, но для плотности4000,080,110,13
— то же, но для плотности2000,060,070,08
Плиты фибролитовые, арболит на основе портландцемента8000,160,240,3
— то же, но для плотности6000,120,180,23
— то же, но для плотности4000,080,130,16
— то же, но для плотности3000,070,110,14
Плиты камышитовые3000,070,090,14
— то же, но для плотности2000,060,070,09
Плиты торфяные термоизоляционные 3000,0640,070,08
— то же, но для плотности2000,0520,060,064
Пакля строительная1500,050,060,07
Таблица коэффициентов теплопроводности материалов, применяемых в термоизоляционных целях
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Минеральная вата, стекловата
Маты минеральной ваты прошивные или на синтетическом связующем 1250.0560.0640.07
— то же, но для плотности750.0520.060.064
— то же, но для плотности500.0480.0520.06
Плиты минеральной ваты на синтетическом и битумном связующих — мягкие, полужесткие и жесткие 3500.0910.090.11
— то же, но для плотности3000.0840.0870.09
— то же, но для плотности2000.070.0760.08
— то же, но для плотности1000.0560.060.07
— то же, но для плотности500.0480.0520.06
Плиты минеральной ваты на органофосфатном связующем — повышенной жесткости 2000.0640.070.076
Плиты из стеклянного штапельного волокна на синтетическом связующем 500.0560.060.064
Маты и полосы из стеклянного волокна прошивные 1500.0610.0640.07
Синтетические утеплители
Пенополистирол 1500.050.0520.06
— то же, но для плотности1000.0410.0410.052
— то же, но для плотности400.0380.0410.05
Пенопласт ПХВ-1 и ПВ-1 1250.0520.060.064
— то же, но для плотности100 и менее0.0410.050.052
Пенополиуретан плитный800.0410.050.05
— то же, но для плотности600.0350.0410.041
— то же, но для плотности400.0290.040.04
Пенополиуретан напылением350.0270.0330.035
Плиты из резольноформальдегидного пенопласта 1000.0470.0520.076
— то же, но для плотности750.0430.050.07
— то же, но для плотности500.0410.050.064
— то же, но для плотности400.0380.0410.06
Пенополиэтилен300.030.0320.035
Плиты из полиизоцианурата (PIR)350.0240.0280.031
Перлитопласт-бетон 2000.0410.0520.06
— то же, но для плотности1000.0350.0410.05
Перлитофосфогелевые изделия 3000.0760.080.12
— то же, но для плотности2000.0640.070.09
Каучук вспененный850.0350.040.045
Утеплители на натуральной основе
Эковата 600.0410.0540.062
— то же, но для плотности450.0380.050.055
— то же, но для плотности350.0350.0420.045
Пробка техническая500.0370.0430.048
Листы пробковые2200.0350.0410.045
Плиты льнокостричные термоизоляционные2500.0540.0620.071
Войлок строительный шерстяной3000.0570.0650.072
— то же, но для плотности1500.0450.0510.059
Древесные опилки4000.0921.051.12
— то же, но для плотности2000.0710.0780.085
Засыпки минеральные
Керамзит — гравий8000.180.210.23
— то же, но для плотности6000.140.170.2
— то же, но для плотности4000.120.130.14
— то же, но для плотности3000.1080.120.13
— то же, но для плотности2000.0990.110.12
Шунгизит — гравий8000.160.20.23
— то же, но для плотности6000.130.160.2
— то же, но для плотности4000.110.130.14
Щебень из доменного шлака, шлаковой пемзы и аглоперита 8000.180.210.26
— то же, но для плотности6000.150.180.21
— то же, но для плотности4001.1220.140.16
Щебень и песок из вспученного перлита 6000.110.1110.12
— то же, но для плотности4000.0760.0870.09
— то же, но для плотности2000.0640.0760.08
Вермикулит вспученный 2000.0760.090.11
— то же, но для плотности1000.0640.0760.08
Песок строительный сухой16000.350.470.58
Пеностекло или газостекло
Пеностекло или газо-стекло 4000.110.120.14
— то же, но для плотности3000.090.110.12
— то же, но для плотности2000.070.080.09
Таблица коэффициентов теплопроводности кровельных, гидроизоляционных, облицовочных, рулонных и наливных напольных покрытий
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Асбестоцементные
Листы асбестоцементные плоские («плоский шифер») 18000.350.470.52
— то же, но для плотности16000.230.350.41
На битумной основе
Битумы нефтяные строительные и кровельные 14000.270.270.27
— то же, но для плотности12000.220.220.22
— то же, но для плотности10000.170.170.17
Асфальтобетон 21001.051.051.05
Изделия из вспученного перлита на битумном связующем 4000.1110.120.13
— то же, но для плотности3000.0670.090.099
Рубероид, пергамин, толь, гибкая черепица6000.170.170.17
Линолеумы и наливные полимерные полы
Линолеум поливинилхлоридный многослойный 18000.380.380.38
— то же, но для плотности16000.330.330.33
Линолеум поливинилхлоридный на тканевой подоснове 18000.350.350.35
— то же, но для плотности16000.290.290.29
— то же, но для плотности14000.230.230.23
Пол наливной полиуретановый15000.320.320.32
Пол наливной эпоксидный14500.0290.0290.029
Таблица коэффициентов теплопроводности металлов и стекла
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Сталь, в том числе — арматурная стержневая7850585858
Чугун7200505050
Алюминий2600221221221
Медь 8500407407407
Бронза7500÷930025÷10525÷10525÷105
Латунь8100÷880070÷12070÷12070÷120
Стекло кварцевое оконное 25000.760.760.76

Для чего используются такие расчеты в практическом приложении?

Оценка эффективности имеющейся термоизоляции

А для чего бывает необходимо вычислять это сопротивление, какая от этого практическая польза?

Такими расчетами можно очень точно оценить степень термоизоляции своего жилья.

Дело в том, что для различных климатических регионов России специалистами рассчитаны так называемые нормативные показатели этого сопротивления теплопередаче, отдельно для стен, перекрытий и покрытий. То есть если сопротивление конструкции отвечает этой норме, то за утепление можно быть спокойным.

Значение этих нормированных сопротивлений для разных строительных конструкций можно найти, воспользовавшись предлагаемой картой схемой.

Карта-схема территории Рос

stroyday.ru

что это такое + таблица значений

Строительное дело предусматривает использование любых подходящих материалов. Главные критерии – безопасность для жизни и здоровья, тепловая проводимость, надёжность. Далее следуют, цена, свойства эстетичности, универсальность применения и т.д.

Рассмотрим одну из важнейших характеристик стройматериалов – коэффициент теплопроводности, так как именно от этого свойства во многом зависит, к примеру, уровень комфорта в доме.

Содержание статьи:

Что такое КТП строительного материала?

Теоретически, да и практически тоже, строительными материалами, как правило, создаются две поверхности – наружная и внутренняя. С точки зрения физики, теплая область всегда стремится к холодной области.

Применительно к стройматериалу, тепло будет стремиться от одной поверхности (более теплой) к другой поверхности (менее теплой). Вот, собственно, способность материала относительно такого перехода и называется – коэффициентом теплопроводности или в аббревиатуре – КТП.

Что такое коэффициент теплопроводностиЧто такое коэффициент теплопроводности

Схема, поясняющая эффект теплопроводности: 1 – тепловая энергия; 2 – коэффициент теплопроводности; 3 – температура первой поверхности; 4 – температура второй поверхности; 5 – толщина стройматериала

Характеристика КТП обычно строится на основе испытаний, когда берётся экспериментальный экземпляр размерами 100х100 см и к нему применяется тепловое воздействие с учётом разницы температур двух поверхностей в 1 градус. Время воздействия 1 час.

Соответственно, измеряется теплопроводность в Ваттах на метр на градус (Вт/м°C). Коэффициент обозначается греческим символом λ.

По умолчанию, теплопроводность различных материалов для строительства со значением меньше 0,175 Вт/м°C, приравнивает эти материалы к разряду изоляционных.

Современным производством освоены технологии изготовления стройматериалов, уровень КТП которых составляет меньше 0,05 Вт/м°C. Благодаря таким изделиям, удается достичь выраженного экономического эффекта в плане потребления энергетических ресурсов.

Влияние факторов на уровень теплопроводности

Каждый отдельно взятый стройматериал имеет определенное строение и обладает своеобразным физическим состоянием.

Основой этого являются:

  • размерность кристаллов структуры;
  • фазовое состояние вещества;
  • степень кристаллизации;
  • анизотропия теплопроводности кристаллов;
  • объем пористости и структуры;
  • направление теплового потока.

Все это – факторы влияния. Определенное влияние на уровень КТП также оказывает химический состав и примеси. Количество примесей, как показала практика, оказывает особенно выразительное влияние на уровень теплопроводности кристаллических компонентов.

Изоляционный стройматериалИзоляционный стройматериал

Изоляционные стройматериалы – класс продуктов под строительство, созданных с учётом свойств КТП, приближенных к оптимальным свойствам. Однако достичь идеальной теплопроводности при сохранении других качеств, крайне сложно

В свою очередь влияние на КТП оказывают условия эксплуатации стройматериала – температура, давление, уровень влажности и др.

Стройматериалы с минимальным КТП

Согласно исследованиям, минимальным значением теплопроводности (около 0,023 Вт/м°C) обладает сухой воздух.

С точки зрения применения сухого воздуха в структуре строительного материала, необходима конструкция, где сухой воздух пребывает внутри замкнутых многочисленных пространств небольшого объёма. Конструктивно такая конфигурация представлена в образе многочисленных пор внутри структуры.

Отсюда логичный вывод: малым уровнем КТП должен обладать стройматериал, внутренняя структура которого представляет собой пористое образование.

Причём, в зависимости от максимально допустимой пористости материала, значение теплопроводности приближается к значению КТП сухого воздуха.

Пористая структура стройматериалаПористая структура стройматериала

Созданию строительного материала с минимальной теплопроводностью способствует пористая структура. Чем больше содержится пор разного объема в структуре материала, тем лучший КТП допустимо получить

В современном производстве применяются несколько технологий для получения пористости строительного материала.

В частности, используются технологии:

  • пенообразования;
  • газообразования;
  • водозатворения;
  • вспучивания;
  • внедрения добавок;
  • создания волоконных каркасов.

Следует отметить: коэффициент теплопроводности напрямую связан с такими свойствами, как плотность, теплоемкость, температурная проводимость.

Значение теплопроводности может быть рассчитано по формуле:

λ = Q / S *(T1-T2)*t,

Где:

  • Q – количество тепла;
  • S – толщина материала;
  • T1, T2 – температура с двух сторон материала;
  • t – время.

Средняя величина плотности и теплопроводности обратно пропорциональна величине пористости. Поэтому, исходя из плотности структуры стройматериала, зависимость от нее теплопроводности можно рассчитать так:

λ = 1,16 √ 0,0196+0,22d2 – 0,16,

Где: d – значение плотности. Это формула В.П. Некрасова, демонстрирующая влияние плотности конкретного материала на значение его КТП.

Влияние влаги на теплопроводность стройматериала

Опять же судя по примерам использования стройматериалов на практике, выясняется негативное влияние влаги на КТП стройматериала. Замечено – чем большему увлажнению подвергается стройматериал, тем более высоким становится значение КТП.

Влажный стройматериалВлажный стройматериал

Различными способами стремятся защитить от воздействия влаги материал, используемый в строительстве. Эта мера вполне оправдана, учитывая повышение коэффициента для мокрого стройматериала

Обосновать такой момент несложно. Воздействие влаги на структуру строительного материала сопровождается увлажнением воздуха в порах и частичным замещением воздушной среды.

Учитывая, что параметр коэффициента теплопроводности для воды составляет 0,58 Вт/м°C, становится понятным существенное повышение КТП материала.

Следует также отметить более негативный эффект, когда вода, попадающая в пористую структуру, дополнительно замораживается – превращается в лёд.

Соответственно, несложно просчитать ещё большее увеличение теплопроводности, принимая во внимание параметры КТП льда, равного значению 2,3 Вт/м°C. Прирост примерно в четыре раза к параметру теплопроводности воды.

Зимнее строительствоЗимнее строительство

Одной из причин отказа от зимнего строительства в пользу стройки летом следует считать именно фактор возможного подмораживания некоторых видов стройматериалов и как следствие – повышения теплопроводности

Отсюда становятся очевидными строительные требования относительно защиты изоляционных стройматериалов от попадания влаги. Ведь уровень теплопроводности растёт в прямой пропорциональности от количественной влажности.

Не менее значимым видится и другой момент – обратный, когда структура строительного материала подвергается существенному нагреву. Чрезмерно высокая температура также провоцирует рост теплопроводности.

Происходит такое по причине повышения кинематической энергии молекул, составляющих структурную основу стройматериала.

Правда, существует класс материалов, структура которых, напротив, приобретает лучшие свойства теплопроводности в режиме сильного нагрева. Одним из таких материалов является металл.

Нагрев металла и теплопроводностьНагрев металла и теплопроводность

Если под сильным нагревом большая часть широко распространенных стройматериалов изменяет теплопроводность в сторону увеличения, сильный нагрев металла приводит к обратному эффекту – КТП металла понижается

Методы определения коэффициента

Используются разные методики в этом направлении, но по факту все технологии измерения объединены двумя группами методов:

  1. Режим стационарных измерений.
  2. Режим нестационарных измерений.

Стационарная методика подразумевает работу с параметрами, неизменными с течением времени или изменяющимися в незначительной степени. Эта технология, судя по практическим применениям, позволяет рассчитывать на более точные результаты КТП.

Действия, направленные на измерения теплопроводности, стационарный способ допускает проводить в широком температурном диапазоне – 20 – 700 °C. Но вместе с тем, стационарная технология считается трудоёмкой и сложной методикой, требующей большого количества времени на исполнение.

Измеритель теплопроводностиИзмеритель теплопроводности

Пример аппарата, предназначенного под выполнение измерений коэффициента теплопроводности. Это одна из современных цифровых конструкций, обеспечивающая получение быстрого и точного результата

Другая технология измерений – нестационарная, видится более упрощенной, требующей для исполнения работ от 10 до 30 минут. Однако в этом случае существенно ограничен диапазон температур. Тем не менее, методика нашла широкое применение в условиях производственного сектора.

Таблица теплопроводности стройматериалов

Подвергать измерениям многие существующие и широко используемые стройматериалы не имеет смысла.

Все эти продукты, как правило, испытаны неоднократно, на основании чего составлена таблица теплопроводности строительных материалов, куда входят практически все нужные на стройке материалы.

Один из вариантов такой таблицы представлен ниже, где КТП – коэффициент теплопроводности:

Материал (стройматериал)Плотность, м3КТП сухая, Вт/мºC% влажн._1% влажн._2КТП при влажн._1, Вт/мºCКТП при влажн._2, Вт/мºC
Битум кровельный14000,27000,270,27
Битум кровельный10000,17000,170,17
Шифер кровельный18000,35230,470,52
Шифер кровельный16000,23230,350,41
Битум кровельный12000,22000,220,22
Лист асбоцементный18000,35230,470,52
Лист асбестоцементный16000,23230,350,41
Асфальтобетон21001,05001,051,05
Толь строительная6000,17000,170,17
Бетон (на гравийной подушке)16000,46460,460,55
Бетон (на шлаковой подушке)18000,46460,560,67
Бетон (на щебенке)24001,51231,741,86
Бетон (на песчаной подушке)10000,289130,350,41
Бетон (пористая структура)10000,2910150,410,47
Бетон (сплошная структура)25001,89231,922,04
Пемзобетон16000,52460,620,68
Битум строительный14000,27000,270,27
Битум строительный12000,22000,220,22
Минеральная вата облегченная500,048250,0520,06
Минеральная вата тяжелая1250,056250,0640,07
Минеральная вата750,052250,060,064
Лист вермикулитовый2000,065130,080,095
Лист вермикулитовый1500,060130,0740,098
Газо-пено-золо бетон8000,1715220,350,41
Газо-пено-золо бетон10000,2315220,440,50
Газо-пено-золо бетон12000,2915220,520,58
Газо-пено-бетон (пенно-силикат)3000,088120,110,13
Газо-пено-бетон (пенно-силикат)4000,118120,140,15
Газо-пено-бетон (пенно-силикат)6000,148120,220,26
Газо-пено-бетон (пенно-силикат)8000,2110150,330,37
Газо-пено-бетон (пенно-силикат)10000,2910150,410,47
Строительный гипс плита12000,35460,410,46
Гравий керамзитовый6002,14230,210,23
Гравий керамзитовый8000,18230,210,23
Гранит (базальт)28003,49003,493,49
Гравий керамзитовый4000,12230,130,14
Гравий керамзитовый3000,108230,120,13
Гравий керамзитовый2000,099230,110,12
Гравий шунгизитовый8000,16240,200,23
Гравий шунгизитовый6000,13240,160,20
Гравий шунгизитовый4000,11240,130,14
Дерево сосна поперечные волокна5000,0915200,140,18
Фанера клееная6000,1210130,150,18
Дерево сосна вдоль волокон5000,1815200,290,35
Дерево дуба поперек волокон7000,2310150,180,23
Металл дюралюминий260022100221221
Железобетон25001,69231,922,04
Туфобетон16000,527100,70,81
Известняк20000,93231,161,28
Раствор извести с песком17000,52240,700,87
Песок под строительные работы16000,035120,470,58
Туфобетон18000,647100,870,99
Облицовочный картон10000,185100,210,23
Многослойный строительный картон6500,136120,150,18
Вспененный каучук60-950,0345150,040,054
Керамзитобетон14000,475100,560,65
Керамзитобетон16000,585100,670,78
Керамзитобетон18000,865100,800,92
Кирпич (пустотный)14000,41120,520,58
Кирпич (керамический)16000,47120,580,64
Пакля строительная1500,057120,060,07
Кирпич (силикатный)15000,64240,70,81
Кирпич (сплошной)18000,88120,70,81
Кирпич (шлаковый)17000,521,530,640,76
Кирпич (глиняный)16000,47240,580,7
Кирпич (трепельный)12000,35240,470,52
Металл медь850040700407407
Сухая штукатурка (лист)10500,15460,340,36
Плиты минеральной ваты3500,091250,090,11
Плиты минеральной ваты3000,070250,0870,09
Плиты минеральной ваты2000,070250,0760,08
Плиты минеральной ваты1000,056250,060,07
Линолеум ПВХ18000,38000,380,38
Пенобетон10000,298120,380,43
Пенобетон8000,218120,330,37
Пенобетон6000,148120,220,26
Пенобетон4000,116120,140,15
Пенобетон на известняке10000,3112180,480,55
Пенобетон на цементе12000,3715220,600,66
Пенополистирол (ПСБ-С25)15 – 250,029 – 0,0332100,035 – 0,0520,040 – 0,059
Пенополистирол (ПСБ-С35)25 – 350,036 – 0,0412200,0340,039
Лист пенополиуретановый800,041250,050,05
Панель пенополиуретановая600,035250,410,41
Облегченное пеностекло2000,07120,080,09
Утяжеленное пеностекло4000,11120,120,14
Пергамин6000,17000,170,17
Перлит4000,111120,120,13
Плита перлитоцементная2000,041230,0520,06
Мрамор28002,91002,912,91
Туф20000,76350,931,05
Бетон на зольном гравии14000,47580,520,58
Плита ДВП (ДСП)2000,0610120,070,08
Плита ДВП (ДСП)4000,0810120,110,13
Плита ДВП (ДСП)6000,1110120,130,16
Плита ДВП (ДСП)8000,1310120,190,23
Плита ДВП (ДСП)10000,1510120,230,29
Полистиролбетон на портландцементе6000,14480,170,20
Вермикулитобетон8000,218130,230,26
Вермикулитобетон6000,148130,160,17
Вермикулитобетон4000,098130,110,13
Вермикулитобетон3000,088130,090,11
Рубероид6000,17000,170,17
Плита фибролит8000,1610150,240,30
Металл сталь785058005858
Стекло25000,76000,760,76
Стекловата500,048250,0520,06
Стекловолокно500,056250,060,064
Плита фибролит6000,1210150,180,23
Плита фибролит4000,0810150,130,16
Плита фибролит3000,0710150,090,14
Клееная фанера6000,1210130,150,18
Плита камышитовая3000,0710150,090,14
Раствор цементо-песчаный18000,58240,760,93
Металл чугун720050005050
Раствор цементно-шлаковый14000,41240,520,64
Раствор сложного песка17000,52240,700,87
Сухая штукатурка8000,15460,190,21
Плита камышитовая2000,0610150,070,09
Цементная штукатурка10500,15460,340,36
Плита торфяная3000,06415200,070,08
Плита торфяная2000,05215200,060,064

Рекомендуем также прочесть и другие наши статьи, где мы рассказываем о том как правильно выбирать утеплитель:

Выводы и полезное видео по теме

Видеоролик тематически направленный, где достаточно подробно разъясняется – что такое КТП и «с чем его едят». Ознакомившись с материалом, представленным в ролике, появляются высокие шансы стать профессиональным строителем.

Очевидный момент – потенциальному строителю обязательно необходимо знать о теплопроводности и ее зависимости от различных факторов. Эти знания помогут строить не просто качественно, но с высокой степенью надежности и долговечности объекта. Использование коэффициента по существу – это реальная экономия денег, допустим, на оплате за те же коммунальные услуги.

Если у вас появились вопросы или есть ценная информация  по теме статьи, пожалуйста, оставляйте свои комментарии в расположенном ниже блоке.

sovet-ingenera.com

Теплопроводность — это… Что такое Теплопроводность?

Теплопрово́дность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела ( атомами, молекулами, электронами и т.п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

Численная характеристика теплопроводности материала равна количеству теплоты, проходящей через материал площадью 1 кв.м за единицу времени (секунду) при единичном температурном градиенте. Данная численная характеристика используется для расчета теплопроводности для калибрования и охлаждения профильных изделий.

Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением объектов занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании температуры.

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

где  — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси,  — коэффициент теплопроводности (иногда называемый просто теплопроводностью),  — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

где  — полная мощность тепловых потерь,  — площадь сечения параллелепипеда,  — перепад температур граней,  — длина параллелепипеда, то есть расстояние между гранями.

Коэффициент теплопроводности измеряется в Вт/(м·K).

Коэффициент теплопроводности вакуума

Коэффициент теплопроводности вакуума почти ноль (чем глубже вакуум, тем ближе к нулю). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, тепло в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Связь с электропроводностью

Связь коэффициента теплопроводности с удельной электрической проводимостью в металлах устанавливает закон Видемана — Франца:

где  — постоянная Больцмана,  — заряд электрона.

Коэффициент теплопроводности газов

Коэффициент теплопроводности газов определяется формулой[2]

Где: i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5, для одноатомного i=3), k — постоянная Больцмана, M — молярная масса, T — абсолютная температура, d — эффективный диаметр молекул, R — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из не радиоактивных газов — у ксенона).

Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье не применим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т.п. Инерционность в уравнения переноса первым ввел Максвелл[3], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[4]

Если время релаксации пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ

\tau
Материал Теплопроводность, Вт/(м·K)
Графен (4840±440) — (5300±480)
Алмаз 1001—2600
Графит 278,4—2435
Карбид кремния 490
Серебро 430
Медь 382—390
Оксид бериллия 370
Золото 320
Алюминий 202—236
Нитрид алюминия 200
Нитрид бора 180
Кремний 150
Латунь 97—111
Хром 93,7
Железо 92
Платина 70
Олово 67
Оксид цинка 54
Сталь 47
Кварц 8
Стекло 1-1,15
КПТ-8 0,7
Вода при нормальных условиях 0,6
Кирпич строительный 0,2—0,7
Силиконовое масло 0,16
Пенобетон 0,14—0,3
Древесина 0,15
Нефтяные масла 0,12
Свежий снег 0,10—0,15
Вата 0,055
Воздух (300 K, 100 кПа) 0,026
Вакуум (абсолютный) 0 (строго)

другие вещества

Материал Теплопроводность, Вт/(м·K)
Кальций 201
Бериллий 201
Вольфрам 173
Магний 156
Родий 150
Иридий 147
Молибден 138
Рутений 117
Хром 93,9
Осмий 87,6
Титан 21,9
Тефлон 0,25
Бумага 0,14
Полистирол 0,082
Шерсть 0,05
Минеральная вата 0,045
Пенополистирол 0,04
Стекловолокно 0,036
Пробковое дерево 0,035
Пеноизол 0,035
Каучук вспененный 0,03
Аргон 0,0177
Аэрогель 0,017
Ксенон 0,0057

На практике нужно также учитывать проводимость тепла за счет конвекции молекул и проникаемости излучений. Например, при полной нетеплопроводности вакуума, тепло может передаваться за счет излучения (пример — Солнце, установки инфракрасного излучения). А газ или жидкость могут обмениваться нагретыми или охлажденными слоями самостоятельно или искусственно (пример — фен, греющие вентиляторы). Так же в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепла, даже если зазоры представляют собой идеальный вакуум.

Примечания

См. также

Ссылки

dic.academic.ru

Коэффициент теплопроводности — это… Что такое Коэффициент теплопроводности?

Теплопрово́дность — это перенос теплоты структурными частицами вещества (молекулами, атомами, электронами) в процессе их теплового движения. Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании температуры.

В установившемся режиме поток энергии, передающейся посредством теплопроводности, пропорционален градиенту температуры:

\vec{q}=-\varkappa\,\mathrm{grad}(T),

где \vec{q} — вектор потока тепла — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, \varkappa — коэффициент теплопроводности (иногда называемый просто теплопроводностью), T — температура. Это выражение известно как закон теплопроводности Фурье.

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

P=-\varkappa\frac{S\Delta T}{h},

где P — полная мощность тепловых потерь, S — площадь сечения параллелепипеда, ΔT — перепад температур граней, h — длина параллелепипеда, то есть расстояние между гранями.

Коэффициент теплопроводности измеряется в Вт/(м·K).

Коэффициенты теплопроводности различных веществ

Материал Теплопроводность, Вт/(м·K)
Алмаз 1001—2600
Серебро 430
Медь 382—390
Золото 320
Алюминий 202—236
Латунь 97—111
Железо 92
Платина 70
Олово 67
Сталь 47
Кварц 8
Стекло 1
Вода 0,6
Кирпич строительный 0,2—0,7
Пенобетон 0,14—0,3
Газобетон 0,1—0,3
Дерево 0,15
Шерсть 0,05
Минеральная вата 0,045
Пенополистирол 0,04
Пеноизол 0,035
Воздух (300 K, 100 кПа) 0,026
Воздух (сухой неподвижный) 0,024—0,031
Аргон 0,0177
Ксенон 0,0057
Аэрогель 0,003
Вакуум (абсолютный) 0 (строго)

На практике нужно также учитывать проводимость тепла за счет конвекции молекул и проникаемости излучений. Например, при полной нетеплопроводности вакуума, тепло может передаваться за счет излучения (пример — Солнце, установки инфракрасного излучения). А газ или жидкость могут обмениваться нагретыми или охлажденными слоями самостоятельно или искусственно (пример — фен, греющие вентиляторы).

Коэффициент теплопроводности вакуума

Коэффициент теплопроводности вакуума стремится к нулю. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тепло в вакууме передаётся только излучением. Поэтому для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность хуже излучает и лучше отражает), а воздух между ними откачивают.

Связь с электропроводностью

Связь коэффициента теплопроводности K с удельной электрической проводимостью σ в металлах устанавливает закон Видемана — Франца:

\frac{K}{\sigma}=\frac{\pi^2}{3}\left(\frac{k}{e}\right)^2T,

где k — постоянная Больцмана, e — заряд электрона.

Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье не применим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. д. Инерционность в уравнения переноса первым ввел Максвелл[1], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[2]

\tau\frac{\partial\mathbf{q}}{\partial t}=-\left(\mathbf{q}+\varkappa\,\nabla T\right).

Если время релаксации τ пренебрежимо мало, то это уравнение переходит в закон Фурье.

Примечания

  1. J. C. Maxwell, Philos. Trans. Roy. Soc. London 157 (1867) 49.
  2. C. Cattaneo, Atti Seminario Univ. Modena 3 (1948) 33.

См. также

Другие способы теплопередачи

Wikimedia Foundation. 2010.

dic.academic.ru

Коэффициенты теплопроводности строительных материалов в таблицах

 

Любое строительство независимо от его размера всегда начинается с разработки проекта. Его цель – спроектировать не только внешний вид будущего строения, еще и просчитать основные теплотехнические характеристики. Ведь основной задачей строительства считается сооружение прочных, долговечных зданий, способных поддерживать здоровый и комфортный микроклимат, без лишних затрат на отопление. Несомненную помощь при выборе сырья, используемого для возведения постройки, окажет таблица теплопроводности строительных материалов: коэффициенты.

Тепло в доме напрямую зависит от коэффициента теплопроводности строительных материалов.

Блок: 1/6 | Кол-во символов: 628
Источник: http://remoo.ru/materialy/osnovnaya-tablitsa-teploprovodnosti-stroitelnyih-materialov

Разделы статьи

Теплопроводность: понятие и теория

Теплопроводность представляет собой процесс перемещения тепловой энергии от прогретых частей к холодным. Обменные процессы происходят до полного равновесия температурного значения.

Комфортный микроклимат в доме зависит от качественной теплоизоляции всех поверхностей

Комфортный микроклимат в доме зависит от качественной теплоизоляции всех поверхностей

Процесс теплопередачи характеризуется промежутком времени, в течение которого выравниваются температурные значения. Чем больше времени проходит, тем ниже теплопроводность строительных материалов, свойства которых отображает таблица. Для определения данного показателя применяется такое понятие как коэффициент теплопроводности. Он определяет, какое количество тепловой энергии проходит через единицу площади определенной поверхности. Чем данный показатель больше, тем с большей скоростью будет остывать здание. Таблица теплопроводности нужна при проектировании защиты постройки от теплопотерь. При этом можно снизить эксплуатационный бюджет.

Потери тепла на разных участках постройки будут отличаться

Потери тепла на разных участках постройки будут отличаться

Полезный совет! При постройке домов стоит использовать сырье с минимальной проводимостью тепла.

Блок: 2/6 | Кол-во символов: 1095
Источник: https://HomeMyHome.ru/teploprovodnost-stroitelnykh-materialov-tablica.html

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Блок: 2/5 | Кол-во символов: 1952
Источник: https://stroychik.ru/strojmaterialy-i-tehnologii/teploprovodnost-stroitelnyh-materialov

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала /Коэффициент теплопроводности Вт/(м·°C)

В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 — 150 кг/м3 0,043-0,06
Пеностекло, крошка, 151 — 200 кг/м3 0,06-0,063
Пеностекло, крошка, 201 — 250 кг/м3 0,066-0,073
Пеностекло, крошка, 251 — 400 кг/м3 0,085-0,1
Пеноблок 100 — 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м3 0,05-0,062
Пеноблок 171 — 220 кг/м3 0,057-0,063
Пеноблок 221 — 270 кг/м3 0,073
Эковата 0,037-0,042
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038
Вакуум 0
Воздух +27°C. 1 атм 0,026
Ксенон 0,0057
Аргон 0,0177
Аэрогель (Aspen aerogels) 0,014-0,021
Шлаковата 0,05
Вермикулит 0,064-0,074
Вспененный каучук 0,033
Пробка листы 220 кг/м3 0,035
Пробка листы 260 кг/м3 0,05
Базальтовые маты, холсты 0,03-0,04
Пакля 0,05
Перлит, 200 кг/м3 0,05
Перлит вспученный, 100 кг/м3 0,06
Плиты льняные изоляционные, 250 кг/м3 0,054
Полистиролбетон, 150-500 кг/м3 0,052-0,145
Пробка гранулированная, 45 кг/м3 0,038
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
Пробковое покрытие для пола, 540 кг/м3 0,078
Пробка техническая, 50 кг/м3 0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП , СП , СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в станд

kachestvolife.club

Теплопроводность — Википедия. Что такое Теплопроводность

Теплопрово́дность — способность материальных тел проводить энергию (теплоту) от более нагретых частей тела к менее нагретым частям тела, осуществляемому хаотически движущимися частицами тела (атомами, молекулами, электронами и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости.

Количественно способность вещества проводить тепло характеризуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В Международной системе единиц (СИ) единицей измерения коэффициента теплопроводности является Вт/(м·K).

Исторически считалось, что передача тепловой энергии связана с перетеканием гипотетического теплорода от одного тела к другому. Однако с развитием молекулярно-кинетической теории явление теплопроводности получило своё объяснение на основе взаимодействия частиц вещества. Молекулы в более нагретых частях тела движутся быстрее и передают энергию посредством столкновений медленным частицам в более холодных частях тела.

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

q→=−ϰgrad(T),{\displaystyle {\vec {q}}=-\varkappa \,\mathrm {grad} (T),}

где q→{\displaystyle {\vec {q}}} — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, ϰ{\displaystyle \varkappa } — коэффициент теплопроводности (удельная теплопроводность), T{\displaystyle T} — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad(T){\displaystyle \mathrm {grad} (T)} (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

P=−ϰSΔTl,{\displaystyle P=-\varkappa {\frac {S\Delta T}{l}},} [Вт/(м·К) · (м2·К)/м = Вт/(м·К) · (м·К) = Вт]

где P{\displaystyle P} — полная мощность тепловых потерь, S{\displaystyle S} — площадь сечения параллелепипеда, ΔT{\displaystyle \Delta T} — перепад температур граней, l{\displaystyle l} — длина параллелепипеда, то есть расстояние между гранями.

Связь с электропроводностью

Связь коэффициента теплопроводности ϰ{\displaystyle \varkappa } с удельной электрической проводимостью σ{\displaystyle \sigma } в металлах устанавливает закон Видемана — Франца:

ϰσ=π23(ke)2T,{\displaystyle {\frac {\varkappa }{\sigma }}={\frac {\pi ^{2}}{3}}\left({\frac {k}{e}}\right)^{2}T,}
где k{\displaystyle k} — постоянная Больцмана;
e{\displaystyle e} — заряд электрона;
T{\displaystyle T} — абсолютная температура.

Коэффициент теплопроводности газов

В газах коэффициент теплопроводности может быть найден по приближённой формуле[2]

ϰ∼13ρcvλv¯,{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}\lambda {\bar {v}},}

где ρ{\displaystyle \rho } — плотность газа, cv{\displaystyle c_{v}} — удельная теплоёмкость при постоянном объёме, λ{\displaystyle \lambda } — средняя длина свободного пробега молекул газа, v¯{\displaystyle {\bar {v}}} — средняя тепловая скорость. Эта же формула может быть записана как[3]

ϰ=ik3π3/2d2RTμ,{\displaystyle \varkappa ={\frac {ik}{3\pi ^{3/2}d^{2}}}{\sqrt {\frac {RT}{\mu }}},}

где i{\displaystyle i} — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5{\displaystyle i=5}, для одноатомного i=3{\displaystyle i=3}), k{\displaystyle k} — постоянная Больцмана, μ{\displaystyle \mu } — молярная масса, T{\displaystyle T} — абсолютная температура, d{\displaystyle d} — эффективный (газокинетический) диаметр молекул, R{\displaystyle R} — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).

Теплопроводность в сильно разреженных газах

Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): ϰ∼13ρcvlv¯∝P{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}l{\bar {v}}\propto P}, где l{\displaystyle l} — размер сосуда, P{\displaystyle P} — давление.

Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье неприменим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. п. Инерционность в уравнения переноса первым ввел Максвелл[4], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[5]

τ∂q∂t=−(q+ϰ∇T).{\displaystyle \tau {\frac {\partial \mathbf {q} }{\partial t}}=-\left(\mathbf {q} +\varkappa \,\nabla T\right).}

Если время релаксации τ{\displaystyle \tau } пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ

\tau
Материал Теплопроводность, Вт/(м·K)
Графен 4840 ± 440 — 5300 ± 480
Алмаз 1001—2600
Графит 278,4—2435
Арсенид бора[en] 200—2000
Карбид кремния 490
Серебро 430
Медь 401
Оксид бериллия 370
Золото 320
Алюминий 202—236
Нитрид алюминия 200
Нитрид бора 180
Кремний 150
Латунь 97—111
Хром 107
Железо 92
Платина 70
Олово 67
Оксид цинка 54
Сталь нелегированная 47—58
Свинец 35,3
Сталь нержавеющая (аустенитная) [6] 15
Кварц 8
Термопасты высокого качества 5—6
Гранит 2,4
Бетон сплошной 1,75
Бетон на гравии или щебне из природного камня 1,51
Базальт 1,3
Стекло 1—1,15
Термопаста КПТ-8 0,7
Бетон на песке 0,7
Вода при нормальных условиях 0,6
Кирпич строительный 0,2—0,7
Силиконовое масло 0,16
Пенобетон 0,05—0,3
Газобетон 0,1—0,3
Древесина 0,15
Нефтяные масла 0,12
Свежий снег 0,10—0,15
Пенополистирол (горючесть Г1) 0,038—0,052
Экструдированный пенополистирол (горючесть Г3 и Г4) 0,029—0,032
Стекловата 0,032—0,041
Каменная вата 0,034—0,039
Воздух (300 K, 100 кПа) 0,022
Аэрогель 0,017
Аргон (273—320 K, 100 кПа) 0,017
Аргон (240—273 K, 100 кПа) 0,015
Вакуум (абсолютный) 0 (строго)

Также нужно учитывать передачу тепла из-за конвекции молекул и излучения. Например, при полной нетеплопроводности вакуума, тепловая энергия передаётся излучением (Солнце, инфракрасные теплогенераторы). В газах и жидкостях происходит перемешивание разнотемпературных слоёв естественным путём или искусственно (примеры принудительного перемешивания — фены, естественного — электрочайники). Также в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепловой энергии, даже если зазоры представляют собой идеальный вакуум.

Примечания

См. также

Ссылки

wiki.sc

Отправить ответ

avatar
  Подписаться  
Уведомление о