17.10.2021

Инфракрасный ультрафиолетовый – 8.Особенности излучения электромагнитных волн в ультрафиолетовом (уф), видимом и инфракрасном (ик) диапазонах.

Содержание

Чем инфракрасные лучи отличаются от ультрафиолетовых

Теоретически вопрос «Чем инфракрасные лучи отличаются от ультрафиолетовых? » мог бы заинтересовать любого человека. Ведь и те, и другие лучи входят в состав солнечного спектра – а воздействию Солнца мы подвергаемся ежедневно. На практике же его чаще всего задают себе те, кто собирается приобрести устройства, известные как инфракрасные обогреватели, и хотел бы убедиться в том, что подобные приборы абсолютно безопасны для здоровья человека.

Потолочные обогреватели встраиваемые и подвесные для потолков всех типов

Подвесные потолочные обогреватели (П профиль)

Встраиваемые потолочные нагреватели для подвесных потолков Армстронг

Чем инфракрасные лучи отличаются от ультрафиолетовых с точки зрения физики

Как известно, кроме семи видимых цветов спектра за его пределами имеются и невидимые глазу излучения. Помимо инфракрасных и ультрафиолетовых, к ним относятся рентгеновские лучи, гамма-лучи и микроволны.


Инфракрасные и УФ-лучи сходны в одном: и те, и другие относятся к той части спектра, который не видим невооруженному глазу человека. Но этим и ограничивается их сходство.

Инфракрасное излучение

Инфракрасные лучи были обнаружены за пределами красной границы, между длинноволновым и коротковолновым участками этой части спектра. Стоит отметить, что почти половина солнечной радиации – это именно инфракрасное излучение. Основная характеристика этих не видимых глазу лучей – сильная тепловая энергия: ее непрерывно излучают все нагретые тела.
Излучение этого вида подразделяется на три области по такому параметру, как длина волны:

  • от 0,75 до 1,5 мкм – ближняя область;
  • от 1,5 до 5,6 мкм – средняя;
  • от 5,6 до 100 мкм – дальняя.

Нужно понимать, что инфракрасное излучение является не продуктом всевозможных современных технических устройств, к примеру, ИК-обогревателей. Это фактор природной окружающей среды, который постоянно действует на человека. Наше тело непрерывно поглощает и отдает инфракрасные лучи.

Ультрафиолетовое излучение


Существование лучей за фиолетовой границей спектра было доказано в 1801 году. Диапазон ультрафиолетовых лучей, испускаемых Солнцем, составляет от 400 до 20 нм, однако до земной поверхности доходят только незначительная часть коротковолнового спектра – до 290 нм.

Ученые считают, что ультрафиолету принадлежит значительная роль в образовании первых на Земле органических соединений. Однако воздействие этого излучения носит и отрицательный характер, приводя к распаду органических веществ.
При ответе на вопрос, чем инфракрасное излучение отличается от ультрафиолетового, необходимо обязательно рассмотреть воздействие на организм человека. И здесь основное отличие заключается в том, что эффект инфракрасных лучей ограничивается преимущественно тепловым действием, в то время как ультрафиолетовые лучи способны оказывать еще и фотохимическое воздействие.
УФ-излучение активно поглощается нуклеиновыми кислотами, следствием чего являются изменения важнейших показателей жизнедеятельности клеток – способности к росту и делению. Именно повреждение ДНК является главным компонентом механизма воздействия на организмы ультрафиолетовых лучей.
Основной орган нашего тела, на который действует ультрафиолетовое излучение – это кожа. Известно, что благодаря УФ-лучам запускается процесс образования витамина Д, который необходим для нормального усвоения кальция, а также синтезируются серотонин и мелатонин – важные гормоны, оказывающие влияние на суточные ритмы и настроение человека.

Воздействие ИК и УФ-излучения на кожу

Когда человек подвергается воздействию солнечных лучей, на поверхность его тела оказывают влияние и инфракрасные, ультрафиолетовые лучи. Но результат этого воздействия будет различным:

  • ИК-лучи вызывают прилив крови к поверхностным слоям кожи, повышение ее температуры и покраснение (калорическая эритема). Этот эффект исчезает сразу же, как только действие облучения прекращается.
  • Воздействие УФ-излучения имеет скрытый период и может проявляться через несколько часов после облучения. Длительность ультрафиолетовой эритемы составляет от 10 часов до 3-4 дней. Кожа краснеет, может шелушиться, затем окраска ее становится более темной (загар).


Доказано, что избыточное воздействие ультрафиолета может привести к возникновению злокачественных заболеваний кожи. В то же время в определенных дозах УФ-излучение полезно для организма, что позволяет применять его для профилактики и лечения, а также для уничтожения бактерий в воздухе помещений.

Безопасно ли инфракрасное излучение?

Опасения людей по отношению к такому виду устройств, как инфракрасные обогреватели, вполне понятно. В современном обществе уже сформировалась устойчивая тенденция с изрядной долей опасения относиться ко многим видам излучения: радиация, рентгеновские лучи и др.
Рядовым потребителям, которые собираются приобрести устройства, основанные на использовании инфракрасного излучения, важнее всего знать следующее: инфракрасные лучи совершенно безопасны для здоровья человека. Именно это стоит подчеркнуть, рассматривая вопрос, чем инфракрасные лучи отличаются от ультрафиолетовых

.
Исследованиями доказано: длинноволновое ИК-излучение не только полезно для нашего тела – оно ему совершенно необходимо. При недостатке ИК-лучей страдает иммунитет организма, а также проявляется эффект его ускоренного старения.

Положительное воздействие инфракрасного излучения уже не вызывает сомнений и проявляется в различных аспектах:

  • уничтожаются некоторые виды вирусов;
  • подавляется рост злокачественных образований;
  • у больных диабетом повышается выработка инсулина;
  • нейтрализуется результат воздействия вредных излучений, в частности, радиации и электромагнитных волн;
  • улучшается состояние при кожных и других болезнях.

В настоящее время на основе использования ИК-лучей созданы не только эффективные обогреватели, но и специальные устройства, испускающие длинноволновое излучение: инфракрасные лампы, ИК-сауны и др.

Уменьшение содержания влаги до 8% за 3 дня с сушилкой для пиломатериалов ФлексиХИТ

Ик маты для прогрева бетона и грунта, бетонных конструкций, каменной кладки

Инфракрасное и ультрафиолетовое излучения. Шкала электромагнитных волн

Инфракрасное и ультрафиолетовое излучения. Шкала электромагнитных волн

«Физика — 11 класс»

Инфракрасное излучение

Электромагнитное излучение с частотами в диапазоне от 3 • 1011 до 3,75 • 1014 Гц называется инфракрасным излучением.
Его испускает любое нагретое тело даже в том случае, когда оно не светится.
Например, батареи отопления в квартире испускают инфракрасные волны, вызывающие заметное нагревание окружающих тел.
Поэтому инфракрасные волны часто называют тепловыми.

Не воспринимаемые глазом инфракрасные волны имеют длины волн, превышающие длину волны красного света (длина волны λ = 780 нм — 1 мм).
Максимум энергии излучения электрической дуги и лампы накаливания приходится на инфракрасные лучи.

Инфракрасное излучение применяют для сушки лакокрасочных покрытий, овощей, фруктов и т. д.
Созданы приборы, в которых не видимое глазом инфракрасное изображение объекта преобразуется в видимое.
Изготовляются бинокли и оптические прицелы, позволяющие видеть в темноте.

Ультрафиолетовое излучение

Электромагнитное излучение с частотами в диапазоне от 8 • 1014 до 3 • 1016 Гц называется ультрафиолетовым излучением (длина волны λ = 10—380 нм).

Обнаружить ультрафиолетовое излучение можно с помощью экрана, покрытого люминесцирующим веществом.
Экран начинает светиться в той части, на которую падают лучи, лежащие за фиолетовой областью спектра.

Ультрафиолетовое излучение отличается высокой химической активностью.
Повышенную чувствительность к ультрафиолетовому излучению имеет фотоэмульсия.
В этом можно убедиться, спроецировав спектр в затемненном помещении на фотобумагу.
После проявления бумага почернеет за фиолетовым концом спектра сильнее, чем в области видимого спектра.

Ультрафиолетовые лучи не вызывают зрительных образов: они невидимы.
Но действие их на сетчатку глаза и кожу велико и разрушительно.
Ультрафиолетовое излучение Солнца недостаточно поглощается верхними слоями атмосферы.
Поэтому высоко в горах нельзя оставаться длительное время без одежды и без темных очков.

Стеклянные очки, прозрачные для видимого спектра, защищают глаза от ультрафиолетового излучения, так как стекло сильно поглощает ультрафиолетовые лучи.

Впрочем, в малых дозах ультрафиолетовые лучи оказывают целебное действие.
Умеренное пребывание на солнце полезно, особенно в юном возрасте: ультрафиолетовые лучи способствуют росту и укреплению организма.
Кроме прямого действия на ткани кожи (образование защитного пигмента — загара, витамина D2), ультрафиолетовые лучи оказывают влияние на центральную нервную систему, стимулируя ряд важных жизненных функций в организме.

Ультрафиолетовые лучи оказывают также бактерицидное действие.

Они убивают болезнетворные бактерии и используются с этой целью в медицине.

Итак,
Нагретое тело испускает преимущественно инфракрасное излучение с длинами волн, превышающими длины волн видимого излучения.
Ультрафиолетовое излучение — более коротковолновое и обладает высокой химической активностью.

Шкала электромагнитных волн

Длина электромагнитных волн изменяется в широком диапазоне. Независимо от длины волны все электромагнитные волны обладают одинаковыми свойствами. Существенные различия наблюдаются при взаимодействии с веществом: коэффициенты поглощения и отражения зависят от длины волны.

Длина электромагнитных волн бывает самой различной: от 103 м (радиоволны) до 10-10 м (рентгеновские лучи).
Свет составляет ничтожную часть широкого спектра электромагнитных волн.
При изучении этой малой части спектра были открыты другие излучения с необычными свойствами.

На рисунке изображена шкала электромагнитных волн с указанием длин волн и частот различных излучений:

Принято выделять:
низкочастотное излучение,
радиоизлучение,
инфракрасные лучи,
видимый свет,
ультрафиолетовые лучи,
рентгеновские лучи,
γ-излучение
.

Принципиального различия между отдельными излучениями нет.
Все они представляют собой электромагнитные волны, порождаемые заряженными частицами.

Обнаруживаются электромагнитные волны в основном по их действию на заряженные частицы.
В вакууме электромагнитное излучение любой длины волны распространяется со скоростью 300 000 км/с.
Границы между отдельными областями шкалы излучений весьма условны.

Излучения различных длин волн отличаются друг от друга по способам их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.

Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей.
В первую очередь это относится к рентгеновскому и у-излучениям, сильно поглощаемым атмосферой.
По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.

Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом.
Коротковолновые излучения (рентгеновское и особенно γ-лучи) поглощаются слабо.
Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений.

Коэффициент отражения электромагнитных волн также зависит от длины волны.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин



Излучение и спектры. Физика, учебник для 11 класса — Класс!ная физика

Виды излучений. Источники света — Спектры и спектральные аппараты — Виды спектров. Спектральный анализ — Рентгеновские лучи — Инфракрасное и ультрафиолетовое излучения. Шкала электромагнитных волн — Краткие итоги главы

Инфракрасные и ультрафиолетовые излучения.

Инфракрасными лучами называют невидимые тепловые лучи, распространяющиеся в пространстве в виде электромагнитных волн с длиной волны от 0,75 мкм до 1мм. Источниками инфракрасного излучения является солнце, раскаленные или расплавленные металлы, пламя из открытых топок в системах отопления. Инфракрасное излучение может вызвать тепловые ожоги различной степени, перегревание всего организма и тепловой удар. Длительные воздействия инфракрасных лучей на голову человека может вызвать солнечный удар, потерю остроты зрения, а в некоторых случаях и полную слепоту.

Ультрафиолетовое излучение в небольших дозах благоприятно действует на организм человека. Эти лучи, обладая бактерицидными свойствами, способны убивать болезнетворные микроорганизмы. Кроме того, способствуют появлению загара, что является нормальной фотохимической реакцией организма на лучи. Однако длительное воздействие может вызвать заболевание кожного покрова, глаз, повышение температуры тела, головную боль. Длительное воздействие этих лучей расслабляет организм человека, снижает его работоспособность. Источниками ультрафиолетового излучения являются электрические дуговые печи и электросварочные аппараты. В качестве защиты применяют защитные шлемы и защитные очки. В помещениях, где производятся электросварочные работы, образуют вентиляцию.

Воздействие лазерных излучений на организм человека и средства защиты от них.

Лазерное излучение при воздействии на человека может вызвать органические изменения, возникающие в облучаемых тканях (первичные биологические эффекты) и неспецифические изменения в организме, возникающие как реакция на облучение (нарушение в нервной и сердечно сосудистой системах) (вторичные биологические эффекты).

Степень поражения зависит от интенсивности излучения, длительности воздействия, длины волны, особенностей облучаемых тканей и органов.

Защита от лазерных излучений:

1) Организационно-планировочные методы:

— рациональное размещение рабочих мест и лазерного оборудования;

— специальное обучение, инструктаж, медосмотр;

— размещение лазеров в специально оборудованных помещениях;

— стены, потолки и другие предметы, за исключением специальной аппаратуры, не должны иметь зеркальных поверхностей;

— все лазеры должны быть маркированы знаком лазерной опасности;

— размещение в помещении не боле одного лазера;

— обеспечение обильного естественного и искусственного освещения.

2) Инженерно-технические средства:

— уменьшение мощности источника, если позволяет технология;

— применение дистанционного управления.

Индивидуальные средства защиты: защитные очки со светофильтром, халаты, перчатки.

Ионизирующие излучения, их характеристика, воздействие на организм человека и средства защиты от них.

К ионизирующему излучению относят рентгеновское, γ-излучение, а также излучение а и β частиц, протонов, нейтронов.

Альфа-излучения характеризуются низкой проникающей способностью вследствие большой массы и заряда а-частиц.

Бета-излучения характеризуются более высокой проникающей способностью, чем а-частицы, вследствие значительно меньшей массы и большей скорости распространения Р-частиц.

Рентгеновское и у излучения представляют собой электромагнитные волны, которые способны глубоко проникать в вещество.

Источники ионизирующих излучений: выбросы АЭС, заводов по переработке ядерного топлива.

Воздействие ионизирующих излучений на человека характеризуется появлением в биологической ткани заряженных частиц, что приводит к нарушениям нормального течения биохимических процессов, а это, в свою очередь, может вызвать нарушения функций кроветворения, желез внутренней секреции.

Тяжесть поражения зависит от величины поглощенной дозы, вида излучения, индивидуальных особенностей организма.

Защита от ионизирующих излучений осуществляется рядом организационных и технических мер.

К организационным мерам относятся:

— выбор изотопов с малым периодом полураспада и имеющих меньший уровень активности;

— дозиметрический контроль;

— разработка на предприятиях подробных правил работы в условиях ионизирующего излучения применительно к конкретному оборудованию и материалам;

— нанесение знаков радиационной опасности;

— осуществление периодического медицинского контроля за состоянием здоровья персонала.

К техническим мерам относится экранирование, позволяющее ослабить уровень излучения. Для экранирования γ-излучения используют свинец, вольфрам, β-излучения -алюминий, а частицы имеют небольшую длину пробега, поэтому защитой может служить одежда, резиновые перчатки, комбинезоны, спецбельё.

Для защиты органов дыхания — респираторы, противогазы. пневмокостюмы.

Ультрафиолетовое излучение — Википедия

Портативная ультрафиолетовая лампа

Ультрафиоле́товое излуче́ние (ультрафиолетовые лучи, УФ-излучение) — электромагнитное излучение, занимающее спектральный диапазон между видимым и рентгеновским излучениями. Длины волн УФ-излучения лежат в интервале от 10 до 400 нм (7,5⋅1014—3⋅1016Гц). Термин происходит от лат. ultra — сверх, за пределами и фиолетовый (violet). В разговорной речи может использоваться также наименование «ультрафиолет»[1].

Иоганн Вильгельм Риттер, 1804 год

После того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и далее противоположного конца видимого спектра, с длинами волн короче, чем у излучения фиолетового цвета.

В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Хлорид серебра белого цвета в течение нескольких минут темнеет на свету. Разные участки спектра по-разному влияют на скорость потемнения. Быстрее всего это происходит перед фиолетовой областью спектра. Тогда многие учёные, включая Риттера, пришли к соглашению, что свет состоит из трёх отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента.

Идеи о единстве трёх различных частей спектра впервые появились лишь в 1842 году в трудах Александра Беккереля, Мачедонио Меллони и др.

Электромагнитный спектр ультрафиолетового излучения может быть по-разному поделён на подгруппы. Стандарт ISO по определению солнечного излучения (ISO-DIS-21348)[2] даёт следующие определения:

Наименование Длина волны, нм Частота, ПГц Количество энергии на фотон, эВ Аббревиатура
Ближний 400—300 0,75—1 3,10—4,13 NUV
Ультрафиолет А, длинноволновой диапазон 400—315 0,75—0,952 3,10—3,94 UVA
Средний 300—200 1—1,5 4,13—6,20 MUV
Ультрафиолет B, средневолновой 315—280 0,952—1,07 3,94—4,43 UVB
Дальний 200—122 1,5—2,46 6,20—10,2 FUV
Ультрафиолет С, коротковолновой 280—100 1,07—3 4,43—12,4 UVC
Экстремальный 121—10 2,48—30 10,2—124 EUV, XUV

Ближний ультрафиолетовый диапазон часто называют «чёрным светом», так как он не распознаётся человеческим глазом, но при отражении от некоторых материалов спектр переходит в область видимого излучения вследствие явления фотолюминесценции. Но при относительно высоких яркостях, например, от диодов, глаз замечает фиолетовый свет, если излучение захватывает границу видимого света 400 нм.

Для дальнего и экстремального диапазона часто используется термин «вакуумный» (VUV), в виду того, что волны этого диапазона сильно поглощаются атмосферой Земли.

Ультрафиолетовое излучение Солнца

Природные источники[править | править код]

Основной источник ультрафиолетового излучения на Земле — Солнце. Соотношение интенсивности излучения УФ-А и УФ-Б, общее количество ультрафиолетовых лучей, достигающих поверхности Земли, зависит от следующих факторов:

  • от концентрации атмосферного озона над земной поверхностью (см. озоновые дыры)
  • от высоты Солнца над горизонтом
  • от высоты над уровнем моря
  • от атмосферного рассеивания
  • от состояния облачного покрова
  • от степени отражения УФ-лучей от поверхности (воды, почвы)
Две ультрафиолетовые люминесцентные лампы, обе лампы излучают «длинные волны» (УФ-А), длина которых находится в диапазоне от 350 до 370 нм Лампа ДРЛ без колбы — мощный источник ультрафиолетового излучения. Во время работы представляет опасность для зрения и кожи

Искусственные источники[править | править код]

Благодаря созданию и совершенствованию искусственных источников УФ излучения (УФ ИИ), шедшими параллельно с развитием электрических источников видимого света, сегодня специалистам, работающим с УФ излучением в медицине, профилактических, санитарных и гигиенических учреждениях, сельском хозяйстве и т. д., предоставляются существенно большие возможности, чем при использовании естественного УФ излучения. Разработкой и производством УФ ламп для установок фотобиологического действия (УФБД) в настоящее время занимаются ряд крупнейших электроламповых фирм и др. Номенклатура УФ ламп для УФБД весьма широка и разнообразна: так, например, у ведущего в мире производителя фирмы Philips она насчитывает более 80 типов. В отличие от осветительных, УФ источники излучения, как правило, имеют селективный спектр, рассчитанный на достижение максимально возможного эффекта для определённого ФБ процесса. Классификация искусственных УФ ИИ по областям применения, детерминированным через спектры действия соответствующих ФБ процессов с определёнными УФ диапазонами спектра:

  • Эритемные лампы были разработаны в 1960-х годах для компенсации «УФ недостаточности» естественного излучения и, в частности, интенсификации процесса фотохимического синтеза витамина D3 в коже человека («антирахитное действие»).

В 1970—1980 годах эритемные люминесцентные лампы (ЛЛ), кроме медицинских учреждений, использовались в специальных «фотариях» (например, для шахтёров и горных рабочих), в отдельных ОУ общественных и производственных зданий северных регионов, а также для облучения молодняка сельскохозяйственных животных.

Спектр ЛЭ30 радикально отличается от солнечного; на область В приходится большая часть излучения в УФ области, излучение с длиной волны λ < 300нм, которое в естественных условиях вообще отсутствует, может достигать 20 % от общего УФ излучения. Обладая хорошим «антирахитным действием», излучение эритемных ламп с максимумом в диапазоне 305—315 нм оказывает одновременно сильное повреждающее воздействие на коньюктиву (слизистую оболочку глаза). Отметим, что в номенклатуре УФ ИИ фирмы Philips присутствуют ЛЛ типа TL12 с предельно близкими к ЛЭ30 спектральными характеристиками, которые наряду с более «жёсткой» УФ ЛЛ типа TL01 используются в медицине для лечения фотодерматозов. Диапазон существующих УФ ИИ, которые используются в фототерапевтических установках, достаточно велик; наряду с указанными выше УФ ЛЛ, это лампы типа ДРТ или специальные МГЛ зарубежного производства, но с обязательной фильтрацией УФС излучения и ограничением доли УФВ либо путём легирования кварца, либо с помощью специальных светофильтров, входящих в комплект облучателя.

  • В странах Центральной и Северной Европы, а также в России достаточно широкое распространение получили УФ ОУ типа «Искусственный солярий», в которых используются УФ ЛЛ, вызывающие достаточно быстрое образование загара. В спектре «загарных» УФ ЛЛ преобладает «мягкое» излучение в зоне УФА. Доля УФВ строго регламентируется, зависит от вида установок и типа кожи (в Европе различают 4 типа человеческой кожи от «кельтского» до «средиземноморского») и составляет 1-5 % от общего УФ-излучения. ЛЛ для загара выпускаются в стандартном и компактном исполнении мощностью от 15 до 230 Вт и длиной от 30 до 200 см.
  • В 1980 г. американский психиатр Альфред Леви описал эффект «зимней депрессии», которую сейчас квалифицируют как заболевание и называют «сезонозависимое расстройство» (Seasonal Affective Disorder, сокращённо SAD). Заболевание связано с недостаточной инсоляцией, то есть естественным освещением. По оценкам специалистов, синдрому SAD подвержено примерно 10-12 % населения земли и прежде всего жители стран Северного полушария. Известны данные по США: в Нью-Йорке — 17 %, на Аляске — 28 %, даже во Флориде — 4 %. По странам Северной Европы данные колеблются от 10 до 40 %.

В связи с тем, что SAD является, бесспорно, одним из проявлений «солнечной недостаточности», неизбежен возврат интереса к так называемым лампам «полного спектра», достаточно точно воспроизводящим спектр естественного света не только в видимой, но и в УФ области. Ряд зарубежных фирм включило ЛЛ полного спектра в свою номенклатуру, например, фирмы Osram и Radium выпускают подобные УФ ИИ мощностью 18, 36 и 58 Вт под названиями, соответственно, «Biolux» и «Biosun», спектральные характеристики которых практически совпадают. Эти лампы, естественно, не обладают «антирахитным эффектом», но помогают устранять у людей ряд неблагоприятных синдромов, связанных с ухудшением здоровья в осенне-зимний период и могут также использоваться в профилактических целях в ОУ школ, детских садов, предприятий и учреждений для компенсации «светового голодания». При этом необходимо напомнить, что ЛЛ «полного спектра» по сравнению c ЛЛ цветности ЛБ имеют световую отдачу примерно на 30 % меньше, что неизбежно приведёт к увеличению энергетических и капитальных затрат в осветительно-облучательной установке. Проектирование и эксплуатация подобных установок должны осуществляться с учётом требований стандарта CTES 009/E:2002 «Фотобиологическая безопасность ламп и ламповых систем».

  • Весьма рациональное применение найдено УФ ЛЛ, спектр излучения которых совпадает со спектром действия фототаксиса некоторых видов летающих насекомых-вредителей (мух, комаров, моли и т. д.), которые могут являться переносчиками заболеваний и инфекций, приводить к порче продуктов и изделий.

Эти УФ ЛЛ используются в качестве ламп-аттрактантов в специальных устройствах-светоловушках, устанавливаемых в кафе, ресторанах, на предприятиях пищевой промышленности, в животноводческих и птицеводческих хозяйствах, складах одежды и пр.

Лазерные источники[править | править код]

Существует ряд лазеров, работающих в ультрафиолетовой области. Лазер позволяет получать когерентное излучение высокой интенсивности. Однако область ультрафиолета сложна для лазерной генерации, поэтому здесь не существует столь же мощных источников, как в видимом и инфракрасном диапазонах. Ультрафиолетовые лазеры находят своё применение в масс-спектрометрии, лазерной микродиссекции, биотехнологиях и других научных исследованиях, в микрохирургии глаза (LASIK), для лазерной абляции.

В качестве активной среды в ультрафиолетовых лазерах могут использоваться либо газы (например, аргоновый лазер[3], азотный лазер[4], эксимерный лазер и др.), конденсированные инертные газы[5], специальные кристаллы, органические сцинтилляторы[6], либо свободные электроны, распространяющиеся в ондуляторе[7].

Также существуют ультрафиолетовые лазеры, использующие эффекты нелинейной оптики для генерации второй или третьей гармоники в ультрафиолетовом диапазоне.

В 2010 году был впервые продемонстрирован лазер на свободных электронах, генерирующий когерентные фотоны с энергией 10 эВ (соответствующая длина волны — 124 нм), то есть в диапазоне вакуумного ультрафиолета[8].

Деградация полимеров и красителей[править | править код]

Многие полимеры, используемые в товарах широкого потребления, деградируют под действием УФ-света. Проблема проявляется в исчезновении цвета, потускнении поверхности, растрескивании, а иногда и полном разрушении самого изделия. Скорость разрушения возрастает с ростом времени воздействия и интенсивности солнечного света. Описанный эффект известен как УФ-старение и является одной из разновидностей старения полимеров. К чувствительным полимерам относятся термопластики, такие как, полипропилен, полиэтилен, полиметилметакрилат (органическое стекло), а также специальные волокна, например, арамидные (в том числе кевлар). Поглощение УФ приводит к разрушению полимерной цепи и потере прочности в ряде точек структуры.

Для предотвращения деградации в такие полимеры добавляются специальные вещества, способные поглощать УФ, что особенно важно в тех случаях, когда продукт подвергается непосредственному воздействию солнечного света.

Воздействие УФ на полимеры используется в нанотехнологиях, трансплантологии, рентгенолитографии и др. областях для модификации свойств (шероховатость, гидрофобность) поверхности полимеров. Например, известно сглаживающее действие вакуумного ультрафиолета (ВУФ) на поверхность полиметилметакрилата.

На здоровье человека[править | править код]

Биологические эффекты ультрафиолетового излучения в трёх спектральных участках существенно различны, поэтому биологи иногда выделяют, как наиболее важные в их работе, следующие диапазоны:

  • Ближний ультрафиолет, УФ-A лучи (UVA, 315—400 нм)
  • УФ-B лучи (UVB, 280—315 нм)
  • Дальний ультрафиолет, УФ-C лучи (UVC, 100—280 нм)

Практически весь УФ-C и приблизительно 90 % УФ-B поглощаются при прохождении солнечного излучения через земную атмосферу. Излучение из диапазона УФ-A поглощается атмосферой слабо, поэтому радиация, достигающая поверхности Земли, в значительной степени содержит ближний ультрафиолет УФ-A и в небольшой доле — УФ-B.

Несколько позже в работах О. Г. Газенко, Ю. Е. Нефёдова, Е. А. Шепелева, С. Н. Залогуева, Н. Е. Панфёрова, И. В. Анисимова указанное специфическое действие излучения было подтверждено в космической медицине. Профилактическое УФ-облучение было введено в практику космических полётов наряду с Методическими указаниями (МУ) 1989 г. «Профилактическое ультрафиолетовое облучение людей (с применением искусственных источников УФ-излучения)». Оба документа являются надёжной базой дальнейшего совершенствования УФ-профилактики.

Действие на кожу[править | править код]
Блокировка ультрафиолетового излучения защитными кремами. Правое фото сделано в УФ лучах, крем нанесён в виде рисунка

Воздействие ультрафиолетового излучения на кожу, превышающее естественную защитную способность кожи к загару, приводит к ожогам разной степени.

Ультрафиолетовое излучение приводит к образованию мутаций (ультрафиолетовый мутагенез). Образование мутаций, в свою очередь, может вызывать рак кожи, меланому кожи и её преждевременное старение. 86 % случаев развития меланомы кожи вызвано чрезмерным воздействием солнечных ультрафиолетовых лучей[9].

Защита кожи

Эффективным средством защиты от ультрафиолетового излучения служит одежда и специальные кремы от загара c числом «SPF» больше 10. Это число означает коэффициент ослабления экспозиции. То есть число 30 означает, что можно пробыть под солнцем в совокупности 30 часов и получить такое же воздействие, как за один час, но без защиты. Для любителей загара это на практике означает, что использование кремов с большим числом «SPF» — это отсутствие загара вообще и пустое времяпрепровождение на пляже. Рациональным является понижение числа «SPF» по мере появления загара, ограничение времени пребывания под солнцем и паузы в принятии солнечных ванн, чем использование кремов с числом «SPF» больше 6.

Типы защитных кремов

Синтетические кремы содержат минералы, отражающие ультрафиолет, такие как окись цинка, или сложные органические составы, полимеризующиеся на свету. Их коэффициент защиты достигает «SPF» 50. Натуральные средства защиты известны ещё с Древнего Египта, это различные растительные масла. Их коэффициент защиты невелик: «SPF» не больше 6,5. Долгосрочный прогноз, какова вероятность рака кожи от самих синтетических защитных кремов по сравнению от воздействия солнечного света, пока отсутствует.

Действие на глаза[править | править код]

Ультрафиолетовое излучение средневолнового диапазона (280—315 нм) практически неощутимо для глаз человека и в основном поглощается эпителием роговицы, что при интенсивном облучении вызывает радиационное поражение — ожог роговицы (электроофтальмия). Это проявляется усиленным слезотечением, светобоязнью, отёком эпителия роговицы, блефароспазмом. В результате выраженной реакции тканей глаза на ультрафиолет глубокие слои (строма роговицы) не поражаются, так как человеческий организм рефлекторно устраняет воздействие ультрафиолета на органы зрения, поражённым оказывается только эпителий. После регенерации эпителия зрение, в большинстве случаев, восстанавливается полностью. Мягкий ультрафиолет длинноволнового диапазона (315—400 нм) воспринимается сетчаткой как слабый фиолетовый или серовато-синий свет, но почти полностью задерживается хрусталиком, особенно у людей среднего и пожилого возраста[10]. Пациенты, которым имплантировали искусственный хрусталик ранних моделей, начинали видеть ультрафиолет; современные образцы искусственных хрусталиков ультрафиолет не пропускают (так делается для того, чтобы солнечный ультрафиолет не повреждал сетчатку). Ультрафиолет коротковолнового диапазона (100—280 нм) может проникать до сетчатки глаза. Так как ультрафиолетовое коротковолновое излучение обычно сопровождается ультрафиолетовым излучением других диапазонов, то при интенсивном воздействии на глаза гораздо ранее возникнет ожог роговицы (электроофтальмия), что исключит воздействие ультрафиолета на сетчатку по вышеуказанным причинам. В клинической офтальмологической практике основным видом поражения глаз ультрафиолетом является ожог роговицы (электроофтальмия).

Защита глаз
  • Для защиты глаз от вредного воздействия ультрафиолетового излучения используются специальные защитные очки, задерживающие до 100 % ультрафиолетового излучения и прозрачные в видимом спектре. Как правило, линзы таких очков изготавливаются из специальных пластмасс или поликарбоната.
  • Многие виды контактных линз также обеспечивают 100 % защиту от УФ-лучей (обратите внимание на маркировку упаковки).
  • Фильтры для ультрафиолетовых лучей бывают твёрдыми, жидкими и газообразными. Например, обычное стекло непрозрачно при λ < 320 нм[11]; в более коротковолновой области прозрачны лишь специальные сорта стёкол (до 300—230 нм), кварц прозрачен до 110 нм, флюорит — до 120 нм. Для ещё более коротких волн нет подходящего по прозрачности материала для линз объектива, и приходится применять отражательную оптику — вогнутые зеркала. Однако для столь короткого ультрафиолета непрозрачен уже и воздух, который заметно поглощает ультрафиолет, начиная с 180 нм.

Чёрный свет[править | править код]

На кредитных картах VISA при освещении УФ лучами появляется скрытое изображение

Лампа чёрного света — лампа, которая излучает преимущественно в длинноволновой части ультрафиолетовой области спектра (диапазон UVA), то есть за коротковолновой границей спектральной области, занимаемой видимым светом.

Для защиты документов от подделки их часто снабжают люминесцентными метками, которые видны только в условиях ультрафиолетового освещения. Большинство паспортов, а также банкноты различных стран содержат защитные элементы в виде краски или нитей, светящихся в ультрафиолете.

Ультрафиолетовое излучение, даваемое лампами «чёрного» света, является достаточно мягким и оказывает наименее серьёзное негативное влияние на здоровье человека. Однако при использовании данных ламп в тёмном помещении существует некоторая опасность для глаз, связанная именно с незначительным излучением в видимом спектре: в темноте зрачок расширяется и больше излучения беспрепятственно попадает на сетчатку.

Обеззараживание ультрафиолетовым излучением[править | править код]

Ультрафиолетовые лампы используются для обеспложивания (обеззараживания) воды, воздуха и различных поверхностей во всех сферах жизнедеятельности человека. Полной стерилизации от микроорганизмов при помощи УФ-излучения добиться невозможно — оно не действует на некоторые бактерии, многие виды грибов и прионы[12].

В наиболее распространённых лампах низкого давления почти весь спектр излучения приходится на длину волны 253,7 нм, что хорошо согласуется с пиком кривой бактерицидной эффективности (то есть эффективности поглощения ультрафиолета молекулами ДНК). Этот пик находится в районе длины волны излучения равной 265 нм[13], которое оказывает наибольшее влияние на ДНК, однако природные вещества (например, вода) задерживают проникновение УФ.

Относительная спектральная бактерицидная эффективность ультрафиолетового излучения — относительная зависимость действия бактерицидного ультрафиолетового излучения от длины волны в спектральном диапазоне 205—315 нм. При длине волны 265 нм максимальное значение спектральной бактерицидной эффективности равно единице.

Бактерицидное УФ-излучение на этих длинах волн вызывает димеризацию тимина в молекулах ДНК. Накопление таких изменений в ДНК микроорганизмов приводит к замедлению темпов их размножения и вымиранию. Ультрафиолетовые лампы с бактерицидным эффектом в основном используются в таких устройствах, как бактерицидные облучатели и бактерицидные рециркуляторы.

Обеззараживание воздуха и поверхностей[править | править код]
Кварцевая лампа, используемая для стерилизации в лаборатории

Ультрафиолетовая обработка воды, воздуха и поверхности не обладает пролонгированным эффектом. Достоинство данной особенности заключается в том, что исключается вредное воздействие на человека и животных. В случае обработки сточных вод УФ флора водоёмов не страдает от сбросов, как, например, при сбросе вод, обработанных хлором, продолжающим уничтожать жизнь ещё долго после использования на очистных сооружениях.

Ультрафиолетовые лампы с бактерицидным эффектом в обиходе часто называют просто бактерицидными лампами. Кварцевые лампы также имеют бактерицидный эффект, но их название обусловлено не эффектом действия, как у бактерицидных ламп, а связано с материалом колбы лампы — кварцевым стеклом.

Дезинфекция питьевой воды[править | править код]

Дезинфекция воды осуществляется способом хлорирования в сочетании, как правило, с озонированием или обеззараживанием ультрафиолетовым (УФ) излучением. Обеззараживание ультрафиолетовым (УФ) излучением — безопасный, экономичный и эффективный способ дезинфекции. Ни озонирование, ни ультрафиолетовое излучение не обладают бактерицидным последействием, поэтому их не допускается использовать в качестве самостоятельных средств обеззараживания воды при подготовке воды для хозяйственно-питьевого водоснабжения, для бассейнов. Озонирование и ультрафиолетовое обеззараживаниe применяются как дополнительные методы дезинфекции, вместе с хлорированием, повышают эффективность хлорирования и снижают количество добавляемых хлорсодержащих реагентов[14].

Принцип действия УФ-излучения. УФ-дезинфекция выполняется при облучении находящихся в воде микроорганизмов УФ-излучением определённой интенсивности (достаточная длина волны для полного уничтожения микроорганизмов равна 260,5 нм) в течение определённого периода времени. В результате такого облучения микроорганизмы «микробиологически» погибают, так как они теряют способность воспроизводства. УФ-излучение в диапазоне длин волн около 254 нм хорошо проникает сквозь воду и стенку клетки переносимого водой микроорганизма и поглощается ДНК микроорганизмов, вызывая нарушение её структуры. В результате прекращается процесс воспроизводства микроорганизмов. Следует отметить, что данный механизм распространяется на живые клетки любого организма в целом, именно этим обусловлена опасность жёсткого ультрафиолета.

Хотя по эффективности обеззараживания воды УФ обработка в несколько раз уступает озонированию, на сегодня использование УФ-излучения — один из самых эффективных и безопасных способов обеззараживания воды в случаях, когда объём обрабатываемой воды невелик.

В настоящее время в развивающихся странах, в регионах испытывающих недостаток чистой питьевой воды внедряется метод дезинфекции воды солнечным светом (SODIS), в котором основную роль в очистке воды от микроорганизмов играет ультрафиолетовая компонента солнечного излучения[15][16].

Ультрафиолетовое облучение[править | править код]

УФО — физиотерапевтическая процедура, облучение определённых участков человеческого тела (носоглотки, внутреннего уха, ран и т. д.) ультрафиолетовым излучением того или иного диапазона. Высокоэнергетическое коротковолновое УФ-излучение применяется для лечения острых воспалительных заболеваний кожи, гнойных воспалений и др. Длинноволновое излучение используется при лечении хронических заболеваний кожи[17].

Химический анализ[править | править код]

УФ-спектрометрия[править | править код]

УФ-спектрофотометрия основана на облучении вещества монохроматическим УФ-излучением, длина волны которого изменяется со временем. Вещество в разной степени поглощает УФ-излучение с разными длинами волн. График, по оси ординат которого отложено количество пропущенного или отражённого излучения, а по оси абсцисс — длина волны, образует спектр. Спектры уникальны для каждого вещества, на этом основывается идентификация отдельных веществ в смеси, а также их количественное измерение.

Анализ минералов[править | править код]

Многие минералы содержат вещества, которые при освещении ультрафиолетовым излучением начинают испускать видимый свет. Каждая примесь светится по-своему, что позволяет по характеру свечения определять состав данного минерала. А. А. Малахов в своей книге рассказывает об этом так:

Необычное свечение минералов вызывают и катодный, и ультрафиолетовый, и рентгеновский лучи. В мире мёртвого камня загораются и светят наиболее ярко те минералы, которые, попав в зону ультрафиолетового света, рассказывают о мельчайших примесях урана или марганца, включённых в состав породы. Странным «неземным» цветом вспыхивают и многие другие минералы, не содержащие никаких примесей.

Целый день я провёл в лаборатории, где наблюдал люминесцентное свечение минералов. Обычный бесцветный кальцит расцвечивался чудесным образом под влиянием различных источников света. Катодные лучи делали кристалл рубиново-красным, в ультрафиолете он загорался малиново-красными тонами. Два минерала — флюорит и циркон — не различались в рентгеновских лучах. Оба были зелёными. Но стоило подключить катодный свет, как флюорит становился фиолетовым, а циркон — лимонно-жёлтым.

«Занимательно о геологии» (М., «Молодая гвардия», 1969. 240 стр.), с. 11

Качественный хроматографический анализ[править | править код]

Хроматограммы, полученные методом ТСХ, нередко просматривают в ультрафиолетовом свете, что позволяет идентифицировать ряд органических веществ по цвету свечения и индексу удерживания.

Ловля насекомых[править | править код]

Ультрафиолетовое излучение нередко применяется при ловле насекомых на свет (нередко в сочетании с лампами, излучающими в видимой части спектра). Это связано с тем, что у большинства насекомых видимый диапазон смещён, по сравнению с человеческим зрением, в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет.

Искусственный загар[править | править код]

При определённых дозировках искусственный загар позволяет улучшить состояние и внешний вид кожи человека, способствует образованию витамина D. В настоящее время популярны фотарии, которые в быту часто называют соляриями. В них используются источники ближнего ультрафиолета: UV-A (400–315 нм) и UV-B (315–280 нм). Самый мягкий ультрафиолет UV-A стимулирует освобождение меланина, запасенного в меланоцитах — клеточных органеллах, где он вырабатывается. Более жесткий ультрафиолет UV-B запускает производство нового меланина, а также стимулирует выработку в коже витамина D. При этом излучение в диапазоне UV-A увеличивает вероятность самого опасного вида рака кожи — меланомы. Излучение UV-B практически полностью блокируется защитными кремами, в отличие от UV-A, которое проникает через такую защиту и даже частично через одежду. В целом считается, что маленькие дозы UV-B полезны для здоровья, а остальной ультрафиолет вреден[18].

В реставрации[править | править код]

Один из главных инструментов экспертов — ультрафиолетовое, рентгеновское и инфракрасное излучение. Ультрафиолетовые лучи позволяют определить старение лаковой плёнки — более свежий лак в ультрафиолете выглядит темнее. В свете большой лабораторной ультрафиолетовой лампы более тёмными пятнами проступают отреставрированные участки и кустарно переписанные подписи.

В полиграфии[править | править код]

Денежная купюра в ультрафиолетовом излучении

Ультрафиолетовое излучение применяется для:

  • Сушки красок и лаков.
  • Затвердевания зубных пломб.
  • Защиты денежных купюр от подделки.

В биотехнологии[править | править код]

В качестве неионизирующего облучения для получения генетических мутаций. В связи с невысокой проникающей способностью воздействуют преимущественно на пыльцу. Вызывает особенно большое количество мутаций при облучении излучением с длиной волны, близкой к 265 нм, которое хорошо поглощается дезоксирибонуклеиновыми кислотами (ДНК).

  1. Рябцев А. Н. Ультрафиолетовое излучение // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1998. — Т. 5. — С. 221. — 760 с. — ISBN 5-85270-101-7.
  2. ↑ ISO 21348 Process for Determining Solar Irradiances (неопр.). Архивировано 23 июня 2012 года.
  3. В. К. Попов. Мощные эксимерные лазеры и новые источники когерентного излучения в вакуумном ультрафиолете // УФН. — 1985. — Т. 147. — С. 587—604.
  4. А. К. Шуаибов, В. С. Шевера. Ультрафиолетовый азотный лазер на 337,1 нм в режиме частых повторений // Украинский физический журнал. — 1977. — Т. 22, № 1. — С. 157—158.
  5. А. Г. Молчанов. Лазеры в вакуумной ультрафиолетовой и рентгеновской областях спектра // УФН. — 1972. — Т. 106. — С. 165—173.
  6. В. В. Фадеев. Ультрафиолетовые лазеры на органических сцинтилляторах // УФН. — 1970. — Т. 101. — С. 79—80.
  7. ↑ Ультрафиолетовый лазер // Научная сеть nature.web.ru
  8. ↑ Laser Twinkles in Rare Color (рус.), Science Daily (Dec. 21, 2010). Дата обращения 22 декабря 2010.
  9. ↑ Sun and UV facts and evidence (англ.), Cancer Research UK (24 March 2015). Дата обращения 21 апреля 2018.
  10. Бобух, Евгений О зрении животных (неопр.). Дата обращения 6 ноября 2012. Архивировано 7 ноября 2012 года.
  11. ↑ Советская энциклопедия
  12. Л. Б. Борисов Медицинская микробиология, вирусология и иммунология. — МИА, 2005. — С. 154—156
  13. ↑ Р 3.5.1904-04 Использование ультрафиолетового бактерицидного излучения для обеззараживания воздуха в помещениях, Р (Руководство) от 04 марта 2004 года №3.5.1904-04 (неопр.). docs.cntd.ru. Дата обращения 15 февраля 2018.
  14. ↑ ГОСТ Р 53491.1-2009 Бассейны. Подготовка воды. Часть 1. Общие требования (DIN 19643-1:1997)
  15. ↑ Clean water at no cost, the SODIS way (неопр.). // hindu.com. Дата обращения 17 июня 2012. Архивировано 23 июня 2012 года.
  16. ↑ New technology uses solar UV to disinfect drinking water (неопр.). // phys.org. Дата обращения 17 июня 2012. Архивировано 23 июня 2012 года.
  17. ↑ Ультраф

Инфракрасное и ультрафиолетовое излучения

Кругом нас, в нас самих, всюду и везде,

вечно сменяясь, совпадая и сталкиваясь,

идут излучения разной длины волны…

Лик Земли ими меняется, ими в значительной мере лепится.

В.И. Вернадский

В этой теме речь пойдет об инфракрасном и ультрафиолетовом излучении.

Ранее рассматривалась шкала электромагнитных волн. Условно все виды электромагнитных волн делятся на 7 основных диапазонов — это низкочастотные излучения, радиоизлучения, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и гамма-излучение.

Инфракрасное излучение — это электромагнитное излучение, занимающее спектральную область между красным концом видимого света и микроволновым радиоизлучением.

Оно было открыто в 1800 году английским астрономом Уильямом Гершелем.

Занимаясь изучением Солнца, он искал способы, чтобы уменьшить нагревание инструмента используемого для наблюдения. Для этого Гершель разложил солнечный свет в спектр. После этого, он помещал край термометр, у которого нижняя часть резервуара с ртутью была затемнена сажей, в различные участки спектра. Какого же было его удивление, когда он обнаружил, что максимум тепла находится за насыщенным красным цветом. Обнаружив это повышение температуры, Гершель пришел к выводу о том, что в этом месте нагревание термометра происходит под действием каких-то невидимых лучей.

Изначально эти лучи из-за их повышенной способности нагревать тела, были названы тепловыми, а затем (уже учитывая их расположение в спектре) — инфракрасными. Также было доказано, что излучение из этой области подчиняется законам оптики, а, следовательно, имеет туже природу, что и видимый свет.

В настоящее время весь диапазон инфракрасного излучения делится на три составляющих. Это:

коротковолновая область, с длиной волны от 0,74 до 2,5 мкм;

средневолновая область, с длиной волны от 2,5 до 50 мкм;

длинноволновая область, длина волны в которой лежит в пределах от 50 до 2000 мкм.

Ближнее инфракрасное излучение очень похоже на видимый свет. В среднем инфракрасном диапазоне светится вся наша планета и все предметы на ней, даже лед.  Длинноволновую окраину инфракрасного диапазона излучений иногда выделяют в отдельный диапазон электромагнитных волн — терагерцевое (или субмиллиметровое) излучение. Это излучение открыла советский физик Александра Андреевна Глаголева-Аркадьева спустя 123 года после открытия Гершелем инфракрасного излучения, тем самым показав, что инфракрасные лучи — это лишь разновидность обычных электромагнитных волн.

Известно, что инфракрасное излучение также называют тепловым излучением, так как данный вид излучения, испускаемый нагретыми телами, воспринимается кожей человека как ощущение тепла. При этом стоит обратить внимание на то, что чем выше температура источника инфракрасного излучения, тем короче длина волны и выше интенсивность излучения.

Самый известный источник инфракрасного излучения – это Солнце. Без его света на Земле не зародилась бы жизнь и без него же она не продолжалась бы сейчас.

Передача энергии Солнцем через огромное пространство космоса происходит практически без потерь на нагревание пространства. Поэтому происходит непосредственное нагревание земной поверхности, на которую и попадают лучи Солнца. А затем уже Земля и другие нагретые Солнцем предметы нагревают воздух. А вообще, любое тело, которое нагрето до определенной температуры, излучает тепловую энергию в инфракрасном диапазоне спектра электромагнитных волн и, следовательно, может передавать эту энергию посредством лучистого теплообмена другим телам.

Теперь же инфракрасные приборы окружают нас буквально повсюду в нашей повседневной жизни. Практически у каждого человека есть дома телевизор, и практически наверняка он оснащен пультом дистанционного управления, который работает в инфракрасном диапазоне. Инфракрасные диоды и фотодиоды повсеместно применяются в охранных системах и системах автоматики, так как они не отвлекают внимание человека в силу своей невидимости. Инфракрасные излучатели применяют для сушки ягод и овощей. Его используют для получения инфракрасных фотографий, в приборах ночного видения, в мобильных телефонах и в системах самонаведения снарядов на цель.

Самый известный на Руси искусственный источник длинноволнового инфракрасного излучения — это русская печь, и практически каждый человек обязательно испытывал на себе их благотворное влияние. Именно инфракрасное излучение, чувствуем от нагретой печи или от батарей центрального отопления.

Помимо прочего, инфракрасный диапазон — это один из самых интересных диапазонов для астрономов. Ведь в нем светится вся космическая пыль, которая важна для образования звезд и эволюций галактик. А из-за того, что инфракрасное излучение намного лучше видимого проходит через облака космической пыли, оно позволяет нам видеть объекты, не доступные наблюдению в других участках спектра. Наверное, самое значимое открытие в инфракрасной области, сделал телескоп Хаббл в 1995 году — это Hubble Deep Field (Глубокое поле Хаббла). В течении 10 суток телескоп накапливал свет, приходящий с небольшого темного участка неба в созвездии Большой Медведицы. Эта область являлась на столько маленькой, что лишь несколько звезд с переднего плана Млечного пути лежат в ее пределах на фотографии, а остальные, почти три тысячи объектов на изображении — это галактики.

После обнаружения инфракрасного излучения, немецкий физик Иоганн Вильгельм Риттер задался целью найти нечто похожее и на противоположном конце спектра, с длиной волны меньше чем у фиолетового света. И уже в 1801 году его попытки увенчались успехом. В то время было известно, что хлорид серебра чернеет под действием видимого света. Риттер решил проверить, будет ли чернеть пластинка, если ее поместить за фиолетовый край спектра. Проведя данный эксперимент, он обнаружил, что хлорид серебра действительно разлагается, причем даже намного активнее, чем под действием видимого света. Данный вид излучения был назван ультрафиолетовым.

В настоящее время выделяют 4 типа ультрафиолетового излучения: ближний, средний, дальний и экстремальный.

Ближний ультрафиолетовый диапазон еще называют «черным светом» потому, что он не распознается человеческим глазом. Однако его можно обнаружить при отражении от некоторых объектов, так как он вызывает явление фотолюминесценции.

А вот для дальнего и экстремального диапазона часто используется термин «вакуумный», так как волны этого диапазона сильно поглощаются атмосферой Земли.

Основным источником ультрафиолетового излучения на Земле, как и в случае с инфракрасным излучением, является Солнце. Также естественными источниками ультрафиолетового излучения являются звезды и другие космические объекты.

Из искусственных источников ультрафиолетового излучения, можно выделить ртутно-кварцевые лампы, люминесцентные лампы дневного света, эксилампы, светодиоды и лазерные источники.

Сфера применения ультрафиолетового излучения в современном мире достаточно обширна. Например, для защиты документов и банкнот различных стран, их снабжают специальными ультрафиолетовыми метками, которые видны только в ультрафиолетовом свете.

Ультрафиолетовые лампы используются для дезинфекции воды, воздуха, помещений больниц и метро, а также различных поверхностей во всех сферах жизнедеятельности человека.

Многие минералы содержат вещества, способные светится под действием ультрафиолетового излучения, что позволяет использовать его для определения состава минералов.

Нередко данный вид излучения применяется и для ловли насекомых. Это связано в первую очередь с тем, что у большинства насекомых видимый диапазон смещен в коротковолновую область спектра. Поэтому насекомые не видят то, что человек воспринимает как красный цвет, зато прекрасно видят мягкое ультрафиолетовое излучение.

Стоит также отметить, что ультрафиолетовое излучение, наряду с инфракрасным, является одним из главных инструментов экспертов и реставраторов произведений искусств. Так, например, более свежий лак на картине в ультрафиолетовом свете выглядит темнее. Темнее выглядят и отреставрированные участки, и кустарные подписи.

Основные выводы:

Инфракрасное излучение — это электромагнитное излучение, занимающее спектральную область между красным концом видимого света и микроволновым радиоизлучением.

– Весь диапазон инфракрасного излучения делится на три основных составляющих — это коротковолновая, средневолновая и длинноволновая области.

Ультрафиолетовое излучение — это электромагнитное излучение, занимающее спектральный диапазон между видимым и рентгеновским излучениями.

– Ультрафиолетовое излучение делят на подгруппы — это ближний, средний, дальний и экстремальный ультрафиолет.

– Инфракрасное и ультрафиолетовое, имеют обширные области применения в современном мире.

Инфракрасное и ультрафиолетовое излучение: сущность и особенности

 

Инфракрасное излучение 

  • Инфракрасное излучение – электромагнитное излучение, с частотой в диапазоне от 3*10^11 до 3,75*10^14 Гц.

Данный вид излучения присущ всем нагретым телам. Тело испускает инфракрасное излучение, даже если оно не светится. К примеру, в каждом доме или квартире есть батареи для отопления. Они испускают инфракрасное излучение, хотя мы его не видим. Вследствие чего в доме происходит нагревание окружающих тел.

Инфракрасные волны иногда еще называют тепловыми волнами. Инфракрасные волны не воспринимаются человеческим глазом, так как длина волны инфракрасных волн превышает длину волны красного света.

Область применения инфракрасного излучения очень широка. Часто инфракрасное излучение применяется для сушки овощей, фруктов, различных лакокрасочных покрытий и т.д. Существуют приборы, которые позволяют преобразовать невидимое инфракрасное излучение в видимое. Изготавливаются бинокли, которые видят инфракрасное излучение; с их помощью можно видеть в темноте.

Ультрафиолетовое излучение

  • Ультрафиолетовое излучение — электромагнитное излучение, с частотой в диапазоне от 8*10^14 до 3*10^16 Гц.

Длина волны колеблется от 10 до 380 мкм. Ультрафиолетовое излучение так же не видно невооруженным человеческим глазом. Чтобы обнаружить ультрафиолетовое излучение, необходимо иметь специальный экран, который будет покрыт люминесцирующим веществом. Если на такой экран попадут ультрафиолетовые лучи, то в месте контакта он начнет светиться.

У ультрафиолетовых лучей очень высока химическая активность. Если спроецировать в затемненном помещении спектр на фотобумагу, то после проявления бумага за фиолетовым концом спектра почернеет сильнее, чем в видимой области спектра.

Как уже упоминалось выше, ультрафиолетовые лучи невидимы. Но при этом они обладают разрушительным действием на кожу и сетчатку глаз. Например, высоко в горах нельзя долго находиться без одежды и темных очков, так как ультрафиолетовые лучи, направленные от Солнца, недостаточно поглощаются в атмосфере нашей планеты. Даже обычные очки могут защитить глаза от вредного ультрафиолетового излучения — стекло очень сильно поглощает ультрафиолетовые лучи.

Однако, в малых дозах ультрафиолетовые лучи даже полезны. Они оказывают влияние на центральную нервную систему, стимулируют ряд важных жизненных функций. Под их воздействием на коже появляется защитный пигмент — загар. Помимо всего прочего эти лучи убивают различные болезнетворные бактерии. С этой целью чаще всего они используются в медицине.

Нужна помощь в учебе?



Предыдущая тема: Поляризация света: поперечность световых волн и электромагнитная теория света
Следующая тема:&nbsp&nbsp&nbspРентгеновское излучение: открытие Х-лучей и их свойства

Все неприличные комментарии будут удаляться.

1.6. Инфракрасное, ультрафиолетовое, лазерное излучение

Значительную часть неионизирующих электромагнитных излучений составляют радиоволны и колебания оптического диапазона (инфракрасное, видимое, ультрафиолетовое излучение). В зависимости от места и условий воздействия электромагнитных излучений радиочастот различают четыре вида облучения: профессиональное, непрофессиональное, бытовое и в лечебных целях, а по характеру облучения – общее и местное.

Инфракрасное излучение – часть электромагнитного с длиной волны от 780 до 1000 мкм, энергия которого при поглощении веществом вызывает тепловой эффект. Наиболее активно коротковолновое излучение, так как оно обладает наибольшей энергией фотонов, способно глубоко проникать в ткани организма и интенсивно поглощаться водой, содержащейся в тканях. У человека наиболее поражаемые инфракрасным излучением органы – кожный покров и органы зрения.

Видимое излучение при высоких уровнях энергии также может представлять опасность для кожи и глаз.

Ультрафиолетовое излучение, как и инфракрасное, является частью электромагнитного с длиной волны от 200 до 400 нм. Естественные солнечные ультрафиолетовые излучения являются жизненно необходимыми, оказывают благотворное стимулирующее действие на организм.

Излучение искусственных источников может стать причиной острых и хронических профессиональных поражений. Наиболее уязвимым органом являются глаза. Острые поражения глаз называются электроофтальмией. Попадая на кожу, ультрафиолетовые излучения могут вызывать острые воспаления, отек кожи. Может подняться температура, появиться озноб, головная боль.

Лазерное излучение представляет собой особый вид электромагнитных излучений, генерируемых в диапазоне волн 0,1-1000 мкм. Отличается от других видов излучений монохроматичностью (строго одной длины волны), когерентностью (все источники излучения испускают электромагнитные волны в одной фазе) и острой направленностью луча. Действует на различные органы избирательно. Локальное повреждение связано с облучением глаз, повреждением кожи. Общее воздействие может приводить к различным функциональным нарушениям организма человека (нервной и сердечно-сосудистой систем, артериального давления и др.)

2.Коллективные средства защиты (виды, способы применения)

Защита населения и производительных сил страны от оружия массового поражения, а также при стихийных бедствиях, производственных авариях – важнейшая задача Управления по делам гражданской обороны и чрезвычайным ситуациям.

Средства коллективной защиты — средства защиты, конструктивно и функционально связанные с производственным процессом, производственным оборудованием, помещением, зданием, сооружением, производственной площадкой.

Коллективные средства защиты делятся на: оградительные, предохранительные, тормозные устройства, устройства автоматического контроля и сигнализации, дистанционного управления, знаки безопасности.

Оградительные устройства предназначены для предотвращения случайного попадания человека в опасную зону. Эти устройства применяются для изоляции движущихся частей машин, зон обработки станков, прессов, ударных элементов машин от рабочей зоны. Устройства подразделяются на стационарные, подвижные и переносные. Они могут быть выполнены в виде защитных кожухов, козырьков, барьеров, экранов; как сплошными, так и сетчатыми. Изготавливают их из металла, пластмасс, дерева.

Стационарные ограждения должны быть достаточно прочными и выдерживать любые нагрузки, возникающие от разрушающих действий предметов и срыва обрабатываемых деталей и т.д. Переносные ограждения в большинстве случаев используют как временные.

Предохранительные устройства используют для автоматического отключения машин и оборудования при отклонении от нормального режима работы или при попадании человека в опасную зону. Эти устройства могут быть блокирующими и ограничительными. Блокирующие устройства по принципу действия бывают: электромеханические, фотоэлектрические, электромагнитные, радиационные, механические. Ограничительные устройства являются составными частями машин и механизмов, которые разрушаются или выходят из строя при перегрузках.

Широко используются тормозные устройства, которые можно подразделить на колодочные, дисковые, конические и клиновые. В большинстве видов производственного оборудования используют колодочные и дисковые тормоза. Тормозные системы могут быть ручные, ножные, полуавтоматические и автоматические.

Для обеспечения безопасной и надежной работы оборудования информационные, предупреждающие, аварийные устройства автоматического контроля и сигнализации очень важны. Устройства контроля – это приборы для измерения давлений, температуры, статических и динамических нагрузок, характеризующих работу машин и оборудования. При объединении устройств контроля с системами сигнализации значительно повышается их эффективность. Системы сигнализации бывают: звуковыми, световыми, цветовыми, знаковыми, комбинированными.

Для защиты от поражения электрическим током применяются различные технические меры. Это – малые напряжения; электрическое разделение сети; контроль и профилактика повреждения изоляции; защита от случайного прикосновения к токоведущим частям; защитное заземление; защитное отключение; индивидуальные средства защиты.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *