26.04.2024

Формула теплоотдачи – Что такое коэффициент теплоотдачи, его размерность, как его определить для выполнения расчетов?

Закон Ньютона — Рихмана — Википедия

Материал из Википедии — свободной энциклопедии

Закон Нью́тона — Ри́хмана — эмпирическая закономерность, выражающая тепловой поток между разными телами через температурный напор.

Теплоотдача — это процесс теплообмена между теплоносителем и твёрдым телом.

Теплопередача — это процесс передачи тепла от одной среды к другой через разделяющую их стенку. Закон утверждает, что

Плотность теплового потока (выражается в Вт/м²) на границе тел пропорциональна их разности температур (так называемый температурный напор):

q=αΔT.{\displaystyle q=\alpha \Delta T.}

Коэффициент пропорциональности α{\displaystyle \alpha } — коэффициент теплоотдачи (англ.) — плотность теплового потока при перепаде температур на 1 K, измеряется в Вт/(м²·К). В реальности он не всегда постоянен и может даже зависеть от разности температур, делая закон приблизительным. Если рассматривать тепловой поток как вектор, то он направлен перпендикулярно площадке поверхности, через которую протекает.

α{\displaystyle \alpha } — количество теплоты, отдаваемое с 1 м² поверхности за единицу времени при единичном температурном напоре. Он зависит:

  • от вида теплоносителя и его температуры;
  • от температуры напора, вида конвекции и режима течения;
  • от состояния поверхности и направления обтекания;
  • от геометрии тела.

Поэтому α{\displaystyle \alpha } — функция процесса теплоотдачи; величина расчётная, а не табличная; определяется экспериментально.

Эквивалентная запись:

ddt∂∂SQ=αΔT.{\displaystyle {\frac {d}{dt}}{\frac {\partial }{\partial S}}Q=\alpha \Delta T.}

Из вышеприведённой дифференциальной формулировки можно вывести интегральную:

Количество теплоты, отданное через площадку на границе раздела тел площадью S{\displaystyle S} за время t{\displaystyle t}, пропорционально разности температур этих тел (если считать, что она остаётся за это время постоянной):

Q=αtSΔT.{\displaystyle Q=\alpha tS\Delta T.}

Закон Ньютона служит одним из видов граничных условий (синоним — «условия третьего рода»), которые ставятся в задачах теплопроводности. В этом случае он записывается так (учтён также закон Фурье):

∂T∂n=k(Tout−Tin).{\displaystyle {\frac {\partial T}{\partial n}}=k(T_{\mathrm {out} }-T_{\mathrm {in} }).}

Заметим, что данный закон описывает ситуацию только на границе тела, внутри же температура определяется температуропроводностью тела. Тепловой поток внутри тела определяется по закону Фурье, что позволяет найти распределение, решив уравнение теплопроводности.

Если внутренняя теплопроводность намного больше, чем коэффициент теплоотдачи (иначе: маленькое число Био), то внутри устанавливается почти однородная температура (если на всей поверхности также она одинакова) и тогда можно записать уравнение охлаждения тела в виде:

∂T∂t=k(Tout−T).{\displaystyle {\frac {\partial T}{\partial t}}=k(T_{\mathrm {out} }-T).}

Здесь коэффициент k=αSC{\displaystyle k={\frac {\alpha S}{C}}}, где C{\displaystyle C} — теплоёмкость тела.

Из этого уравнения несложно получить, что температура тела в такой ситуации будет приближаться по экспоненте к температуре окружающей среды Tout{\displaystyle T_{\mathrm {out} }}:

T(t)=Tout+e−kt(T0−Tout).{\displaystyle T(t)=T_{\mathrm {out} }+e^{-kt}(T_{0}-T_{\mathrm {out} }).}

ru.wikipedia.org

Коэффициент теплоотдачи, формула и примеры

Определение и формула коэффициента теплоотдачи

Конвективный теплообмен — обмен теплотой между частями жидкости (газа), имеющими разную температуру или между жидкостью (газом) и твердым телом. Конвективный теплообмен между жидкостью и твердым телом называют теплоотдачей.

Этот коэффициент часто используют в гидроаэродинамике, когда исследуют конвективный теплообмен. Часто ее обозначают буквой . Коэффициент равен:

   

где — плотность теплового потока, — температурный напор. Величина q — это количество теплоты, которое передается через единичную площадь поверхности тела в единицу времени. находят как модуль разности температур жидкости и поверхности тела. Иногда температурный напор находят, например, в случае обтекания тела потоком сжимаемой жидкостью, считают равным модулю разности температуры жидкости далеко от тела и температурой поверхности тела, которая была бы в отсутствии теплообмена.

Коэффициент теплоотдачи зависит от скорости потока носителя тепла, вида течения, какова геометрия поверхности твердого тела и т.д. Это сложная величина и ее невозможно определить общей формулой. Обычно коэффициент теплоотдачи находят экспериментально.

Так, для условий свободной конвекции воздуха: (Вт/м2К), воды: (Вт/м2К). При вынужденной конвекции величины коэффициента теплоотдачи колеблются в пределах: для воздуха: (Вт/м2К), для воды: (Вт/м2К).

Формула Ньютона-Рихмана

Коэффициент теплоотдачи входит в выражение для потока тепла в веществе жидкой или газообразной среды с интенсивным изменением температуры при увеличении расстояния от охлаждаемого или нагреваемого объекта:

   

где — количество теплоты, которая отводится от поверхности, имеющую площадь S, — температура вещества (жидкости, газа), — температура поверхности тела. Выражение (2) называется формулой Ньютона — Рихмана.

Так как интенсивность теплообмена может изменяться при передвижении вдоль площади соприкосновения жидкого носителя с поверхностью твердого тела, вводят местный коэффициент теплоотдачи, который равен:

   

На практике чаще применяют средний коэффициент теплоотдачи , вычисляя его по формуле:

   

где температуры берут средние для поверхности и для вещества.

Дифференциальное уравнение теплоотдачи

Дифференциальное уравнение теплоотдачи показывает связь между коэффициентом теплоотдачи и полем температур среды (жидкости или газа):

   

где , — градиент температуры, индекс n=0 значит то, что градиент берут на стенке.

Критерий Нуссельта

Критерий Нуссельта () является характеристикой теплообмена на границе между жидкостью и стеной:

   

где — характерный линейный размер, — коэффициент теплопроводности жидкости. Для стационарного процесса критерий Нуссельта находят, используя критериальное уравнение конвективного теплообмена:

   

где постоянные. — критерий Рейнольдса, — критерий Прандтля, — критерий Грасгофа.

Коэффициент теплоотдачи и его связь с коэффициентом теплопередачи

Коэффициентом теплопередачи через плоскую стенку связан с коэффициентами теплоотдачи выражением:

   

где — коэффициент теплоотдачи от первой среды к стенке, — коэффициент теплоотдачи от стенки ко второй среде, — толщина стенки, — коэффициент теплопроводности стенки.

Единицы измерения

Основной единицей измерения коэффициента теплоотдачи в системе СИ является:

=Вт/м2К

Примеры решения задач

ru.solverbook.com

Теплопередача. Основные формулы передачи теплоты и законы.

Стр 1 из 8Следующая ⇒

Теплопередача. Основные формулы передачи теплоты и законы.

Теплопередача (теория теплообмена) — называется наука изучающая процессы передачи теплоты между телами, распространение теплоты в пространстве и распределение температуры в твердых, жидких и газообразных телах.

Три основные формы передачи теплоты: теплопроводность, конвективный теплообмен и лучистый теплообмен.

Теплопроводность представляет собой форму распространения теплоты путем непосредственного соприкосновения отдельных частиц тела, имеющих различную температуру. При этом процесс теплообмена происходит за счет передачи энергии микродвижения одних частиц другим

Конвективным теплообменном называется форма переноса теплоты, в пространстве, осуществляемая перемещающимися частицами жидкости (капельная жидкость или газ). При перемещении в пространстве различно нагретых частиц жидкости происходит непосредственное их соприкосновение, поэтому здесь имеет место теплопроводность. Следовательно конвективный теплообмен представляет собой совокупное действие двух процессов – конвекции и теплопроводности.

В зависимости от причины вызывающей движение жидкости, различают конвективный теплообмен при свободном движении жидкости (свободная конвекция) и конвективный теплообмен при вынужденном движении жидкости (вынужденная конвекция).

Тепловым излучением называется процесс переноса теплоты в пространстве электромагнитными волнами.

Лучистым теплообменом, или тепловым излучением называется форма передачи теплоты излучением между телами, который включает последовательное превращение внутренней энергии тела в энергию излучения, распространение ее в пространстве и превращение энергии излучения во внутреннюю энергию другого тела.

Температурное поле

Совокупность значений температуры в данный момент времени для всех точек пространства, определяемых координатами называется температурным полем

Температурный градиент

Если соединить точки тела, имеющие одинаковую температуру, получим поверхность равных температур, называемую

изотермической. Изотермической поверхностью тела называется геометрическое место точек, имеющих одинаковую температуру.

Температурный градиент есть вектор направленный по нормали к изотермической поверхности в сторону возрастания температуры и численно равный пределу отношения изменения температуры к расстоянию между изотермами по нормали (К)

Тепловой поток

Количества теплоты Q , проходящее в единицу времени через изотермическую поверхность F , называется тепловым потоком. Тепловой поток, приходящийся на единицу поверхности, называется удельным тепловым потоком, плотностью теплового потока или тепловой нагрузкой поверхности q.

Если градиент температуры для различных точек поверхности различный, то количество теплоты через всю изотермическую поверхность в единицу времени равно

, где Q – тепловой поток, Вm; dF – элемент изотермической поверхности, м.

 

 

Теплопроводность. Закон Фурье. Коэффициент теплопроводности.

Необходимым условием распространения теплоты являетсянеравномерность распределения температуры в рассматриваемой среде. Таким образом, для передачи теплоты теплопроводностью необходимо неравенство нулю температурного градиента в различных точках тела.

Закон Фурье:

Согласно закону Фурье количество теплоты проходящий через элемент изотермической поверхности за промежуток времени , пропорционально температурному градиенту

,

где – коэффициент пропорциональности есть физический параметр вещества и называется коэффициентом теплопроводности, Вт/(м·°C);

– элементарная площадь поверхности теплообмена, м2; – временной промежуток, сек.

Количество теплоты, проходящее в единицу времени через единицу площади изотермической поверхности , называется плотностью теплового потока.

Дифференциальные уравнения конвективного теплообмена. Основные понятия.

Дифференциальное уравнение теплообмена получается при рассмотрении передачи теплоты теплопроводностью через, практический, неподвижный слой жидкости (пограничный слой), который имеет место вблизи твердого тела, омываемого жидкостью (

) и передачи теплоты к пограничному слою за счет конвективного теплообмена ( ):

Дифференциальное уравнение энергии при условии однородности и несжимаемости жидкости, отсутствия внутренних источников теплоты и работы расширения, а также постоянства физических параметров жидкости в пределах элементарного объема формулируется следующим образом:

Дифференциальное уравнение неразрывности получается на основе закона сохранения массы и, для сжимаемой жидкости имеет следующий вид:

Уравнение движения (уравнение Навье-Стокса) получается на базе первого и второго законов Ньютона и в векторной форме записи можно представить в виде

Понятия о теории подобия.

Для подобия физических процессов необходимо говорить о подобии физических величин и явлений. Два или несколько явлений будут подобны, если подобны все физические величины, характеризующие эти явления, т.е. подобные между собою явления имеют одинаковые безразмерные комплексы — критерии подобия. Этот вывод свидетельствует о том, что в опытах нужно измерять те величины, которые входят в критерии подобия, характеризующие данный процесс.

Важной теоремой теории подобия является утверждение о том, что решение дифференциального уравнения, описывающего данный процесс, может быть представлено в виде функциональной зависимости между критериями подобия, характеризующими этот процесс и полученными из исходного уравнения. Это утверждение говорит о том, опытные данные надо обработать в виде зависимости между критериями подобия.

Наряду с приведенными выше двумя теоремами подобия, важным является и утверждение о том, что подобны между собой те явления, которые принадлежат к одному классу, к одному роду и имеют равные определяющие критерии подобия. Этот вывод позволяет полученные в опыте расчетные зависимости распространить на группу явлений, подобных исследованному.

Таким образом, теория подобия, при наличии дифференциальных уравнений, описывающих рассматриваемый процесс, позволяет, не решая сами уравнения, получить выражения чисел (критериев) подобия и на их основе получить расчетные зависимости – уравнения подобия.

Теплообмен при кипении.

Опыт показывает, что температура кипящей жидкости всегда несколько выше температуры кипения ts. Она остается почти постоянной в направлении от свободного уровня к поверхности теплообмена (рис. 14) и лишь в слое толщиной 2 5 мм у самой стенки резко возрастает. Следовательно, в прилегающем к стенке слое жидкость перегрета на Δt=t – ts; эта величина называется температурным напором.

Рис. 14. Кривая распределения температуры в жидкости при пузырьковом кипении   Рис. 15. Зависимость плотности теплового потока q и коэффициента теплоотдачи α от температурного напора при кипении воды при атмосферном давлении

В начале кипения -область А (Рис. 15) при Δt = 0 — 5 ºС, q= 100 5600 Вт/м2 значение коэффициента теплоотдачи невелико и определяется условиями свободной конвекции однофазной жидкости.

При дальнейшем кипении и повышении Δt значения коэффициентов теплоотдачи и q резко увеличиваются и при Δt =25 ºС достигают своего максимального значения: αкр=5,85·104 Вт/(м2·К), qкр=1,45·106Вт/м2. Эту область, обозначенной на рис. 15 буквой В, называют областью пузырькового кипения.

Последующее повышение Δt приводит к еще более интенсивному

процессу образования пузырьков на твердой поверхности. Сливаясь затем между собой, они образуют общую паровую пленку. Образование паровой пленки приводит к резкому снижению интенсивности теплообмена между поверхностью и жидкостью, вследствие большого термического сопротивления пленки. Эта область, обозначена на рис. 15 буквой С и называется переходной областью. Следует отметить, что паровая пленка в этой области неустойчива.

При дальнейшем увеличении перепада температур образовавшаяся на поверхности пленка становится устойчивой, интенсивность теплообмена продолжает падать. При некотором значении перепада температур процесс теплообмена стабилизируется, а коэффициент теплоотдачи имея при том минимальное значение, не зависит от перепада температур. Эта область обозначена на рис. 15 буквой D и называется областью пленочного кипения.

В практических расчетах пузырькового кипения воды удобно пользоваться следующими уравнениями:

(141)

(142)

Зависимости (141) и (142)действительны в диапазоне давлений от 0,1 до 5 МПа.

При пузырьковом кипении фреона 12 в диапазоне температур от – 40 до 10 ºС для определения α рекомендуется формула

(143 )

При кипении фреона 11 может быть использована зависимость

(144)

В этих уравнениях q – в Вт/м2, р – в МПа, коэффициент теплоотдачи – Вт/(м2·К). При вынужденном турбулентном движении кипящей жидкости в трубах теплоотдача осуществляется по-разному. Если обозначить коэффициент теплоотдачи, полученный по формуле (141), αq, а коэффициент теплоотдачи, рассчитанный по уравнению подобия для однофазной жидкости (130 ), αw, то, как показывают опыты, при αqw<0,5 коэффициент теплоотдачи при пузырьковом кипении движущейся воды в трубе α=αw а при αqw>2; α=αq. В области 0,5 ≤ αqw ≤2 коэффициент теплоотдачи определяют по формуле

(145)

При пленочном кипении средний коэффициент теплоотдачи определяется следующим образом:

на вертикальной поверхности

, (146)

где λп – коэффициент теплопроводности пара при температуре насыщения;

μп – динамический коэффициент вязкости пара при температуре насыщения; h – высота стенки,

на горизонтальном цилиндре

, (147)

где d – наружный диаметр цилиндра; ρ – плотность жидкости при температуре насыщения.

Теплопередача. Основные формулы передачи теплоты и законы.

Теплопередача (теория теплообмена) — называется наука изучающая процессы передачи теплоты между телами, распространение теплоты в пространстве и распределение температуры в твердых, жидких и газообразных телах.

Три основные формы передачи теплоты: теплопроводность, конвективный теплообмен и лучистый теплообмен.

Теплопроводность представляет собой форму распространения теплоты путем непосредственного соприкосновения отдельных частиц тела, имеющих различную температуру. При этом процесс теплообмена происходит за счет передачи энергии микродвижения одних частиц другим

Конвективным теплообменном называется форма переноса теплоты, в пространстве, осуществляемая перемещающимися частицами жидкости (капельная жидкость или газ). При перемещении в пространстве различно нагретых частиц жидкости происходит непосредственное их соприкосновение, поэтому здесь имеет место теплопроводность. Следовательно конвективный теплообмен представляет собой совокупное действие двух процессов – конвекции и теплопроводности.

В зависимости от причины вызывающей движение жидкости, различают конвективный теплообмен при свободном движении жидкости (свободная конвекция) и конвективный теплообмен при вынужденном движении жидкости (вынужденная конвекция).

Тепловым излучением называется процесс переноса теплоты в пространстве электромагнитными волнами.

Лучистым теплообменом, или тепловым излучением называется форма передачи теплоты излучением между телами, который включает последовательное превращение внутренней энергии тела в энергию излучения, распространение ее в пространстве и превращение энергии излучения во внутреннюю энергию другого тела.

Температурное поле

Совокупность значений температуры в данный момент времени для всех точек пространства, определяемых координатами называется температурным полем

Температурный градиент

Если соединить точки тела, имеющие одинаковую температуру, получим поверхность равных температур, называемую изотермической. Изотермической поверхностью тела называется геометрическое место точек, имеющих одинаковую температуру.

Температурный градиент есть вектор направленный по нормали к изотермической поверхности в сторону возрастания температуры и численно равный пределу отношения изменения температуры к расстоянию между изотермами по нормали (К)

Тепловой поток

Количества теплоты Q , проходящее в единицу времени через изотермическую поверхность F , называется тепловым потоком. Тепловой поток, приходящийся на единицу поверхности, называется удельным тепловым потоком, плотностью теплового потока или тепловой нагрузкой поверхности q.

Если градиент температуры для различных точек поверхности различный, то количество теплоты через всю изотермическую поверхность в единицу времени равно

, где Q – тепловой поток, Вm; dF – элемент изотермической поверхности, м.

 

 




infopedia.su

Коэффициент теплопередачи, формула и примеры

Определение и формула коэффициента теплопередачи

Процесс теплопередачи можно разделить на теплоотдачу энергии горячим веществом стенке, процесс теплопроводности внутри стенки и теплоотдачу стенки энергии холодному веществу.

Поток тепла при стационарной теплопередаче величина постоянная, то есть не зависит от времени и координат.

Теплопередача через плоскую стенку

Рассмотрим плоскую стенку, через которую происходит теплопередача. Поток тепла через нее равен:

   

где — температура холодного вещества (), — температура горячего вещества, S — площадь стенки, — коэффициент теплопередачи.

Коэффициентом теплопередачи через плоскую стенку является физическая величина () равная:

   

где — коэффициент теплоотдачи от первой среды к стенке, — коэффициент теплоотдачи от стенки ко второй среде, — толщина стенки, — коэффициент теплопроводности стенки.

Теплопередача через цилиндрическую стенку

Поток тепла свозь стенку в виде цилиндра вычисляют при помощи формулы:

   

где — линейный коэффициент теплопередачи, — высота цилиндра.

Линейным коэффициентом теплопередачи через стенку в виде цилиндра является физическая величина () равная:

   

где — внутренний диаметр цилиндра, — внешний диаметр цилиндра. Для цилиндрических стенок, у которых для расчета теплопередачи применяют формулы (1) и (2) для плоской стенки. Если цилиндр (труба) выполнен из материала с высокой теплопроводностью, то величина термического сопротивления () стенки стремится к нулю ( ), тогда коэффициент теплопроводности рассчитывают по формуле:

   

Теплопередача через шаровую стенку

Поток тепла через шаровую стенку с внутренним диаметром и наружным — , которая разделяет две среды с постоянными температурами и равен:

   

Линейным коэффициентом теплопередачи через стенку в виде шара является физическая величина () равная:

   

Единицы измерения коэффициента теплопередачи

Основной единицей измерения коэффициента теплопередачи в системе СИ является:

=Вт/м2К

=Вт/мК

=Вт/К

Примеры решения задач

ru.solverbook.com

Теория теплообмена в наших теплообменниках


Тема: Теория производства теплообменников


Из школьного курса физики известно, что теплообмен является необратимым переносом тепловой энергии в виде тепла между зонами внутри тела с всевозможными температурами или телами. Теория теплообмена основана на втором законе термодинамики, по которому тепло перемещается в строну меньшего показателя температуры. В широком понимании перенос тепла может стимулироваться разнородностью полей прочих физических величин, к примеру, градиентом концентраций.

Наш завод производит различные теплообменные аппараты и поэтому мы используем данную теорию на практике.

Тепловой обмен оказывает влияние на химические и массообменные процессы и присутствует при кипении, охлаждении, нагревании, выпаривании, конденсации, кристаллизации, сушке. Движущиеся среды, принимающие участие в тепловом обмене и интенсифицирующие теплообмен называют теплоносителями. Ими могут быть пар, жидкость, газ, сыпучие материалы.

Различают два главных способов осуществления тепловых процессов: теплоотдача и теплопередача. В первом случае тепловой обмен происходит между оболочкой раздела фаз и тепловым носителем. При теплопередаче теплом обмениваются два носителя тепла или иные среды через межфазную жидкость или разделяющую стенку.

Различают несколько механизмов распространения теплоты:

  • Конвективный перенос;
  • Теплопроводность;
  • Лучистый перенос.

Формула теплообмена

Во многих случаях конвективного переноса теплоты, когда важно лишь передвижка внутренней энергии, а передвижкой других видов энергий можно пренебречь, густота теплового потока конвекцией равна:

qt=wrCT,

где w- вектор быстроты текучей среды;

C – теплоемкость среды;

r – плотность среды;

Т – температура среды.

Во многих случаях значения теплоемкость, температуры, плотности и вектора скорости таковы, что конвективный перенос в направлении движении преобладает над теплопроводностью, но при малых скоростях движения, к примеру, в расплавах металла, может отмечаться обратное соотношение. Быстрота вязких жидкостей стремится к нулевой по мере их подхода к твердой поверхности. Конвективный перенос отсутствует при ламинарном порядке течения в противоположном поперечному движению направлении.

При турбулентном порядке перенос теплоты осуществляется специфически. Он физически отвечает конвективному, но по форме записи – теплопроводности. Турбулентность широко используется в трубках пвт в отличии от оребренной трубы где используется формула передачи тепла от газа к жидкости.

В случае теплопроводности энергия переносится в результате взаимодействия микрочастиц и их теплового движения. В чистом виде её можно встретить в твердых телах без внутренних пор, в неподвижных слоях жидкости, парах и газах. Для теплопроводности формула теплообмена такова:

qt=-lgradT,

где l-константа тепловой проводимости вещества, охарактеризовывающая его дар проводить тепло, Вт/(м•К).

Скорость теплообмена


Скорость теплообмена зависит от разности температур и плотности контактирующих веществ. В зaвисимости от того, каким именно способом передаётся тепло, этот показатель будет разным.

Механизмы теплообмена

  1. Теплопроводность.

Экспериментальным методом было установлено, что переданное посредством теплопроводности первому телу от второго тела количество теплоты можно найти так:

Q=λ/H*(tS)(T2-T1),

Здесь формуле:

t — время теплопередачи, S — площадь контактируемой поверхности, Н — толщина слоя материала, через который проходит тепло, Т1 и Т2 — температуры тел, которые обмениваются температурами.

На этом лекция закончена, а вы можете посмотреть теплообменники нашего производства.

Кроме теплообменников на нашем заводе вы сможете заказать мотор редуктор вертикальный и водомасляный охладитель.

Материал по теме

  1. Терморегуляция теплообмена.

Летнего вам настроения и заказывайте теплообменники на Уральском заводе МеталлЭкспортПром!

www.ural-mep.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *