14.04.2021

Электрогидравлический эффект: Электрогидравлический эффект — Сайт об открытии электрогидравлического эффекта и его авторе Л.А. Юткине – Книги и статьи Л.А.Юткина и Л.И.Гольцовой

Вода горит! А также ЭГЭ и волны-убийцы / Habr

Водяная спичка — устройство для поджигания воды и проведения интересных опытов с взрывами.
Это конечно не термоядерный взрыв, но что водородный, это точно! Опыт безопасен, так как водород сгорает мгновенно, без накопления опасных объемов.
Предполагаю, что подобная буря в стакане, в масштабах планеты является источником возникновения интересных явлений — волн-убийц и цунами неизвестного происхождения, которые появляются буквально из ниоткуда, обрушиваются на судно и так же бесследно исчезают. На данный момент отсутствует внятное объяснение причин возникновения таких волн.

Возможно, все происходит так…


Анимация “Водяной”

При попадании молнии на поверхность Мирового океана, происходит водородный взрыв, а при удачном сочетании глубины воды и рельефа дна, направления удара и величины напряжения, продолжительности импульса и длительности его фронта — формируется огромная одиночная волна в результате импульсного электролиза поверхностного слоя воды, рассматриваемого в этой статье. Не последнюю роль в явлении играет резонанс.
В районе Бермудского треугольника эти условия выполняются наиболее часто, поэтому он получил свою печальную известность.

Примерно одна миллионная из 250 миллионов молний, ежегодно бьющих по поверхности Мирового океана, рождает супер-волну.
Белая волна — насыщенная газами вода, в которую попадают экипажи низколетящих летательных аппаратов, не является вымыслом и она присутствует в опытах. Вписывается в эту теорию и возникающий при ударе молнии электромагнитный импульс (ЭМИ), выводящий из строя навигационное оборудование.
В отличие от других экзотических способов поджигания воды, рассматриваемый вариант прост и имеет 100% повторяемость. Опыт показывает огромную скорость и производительность электролиза воды при коротком импульсном воздействии, а также позволяет безопасно исследовать электрогидравлический эффект и молнию в лабораторных условиях. Прибор можно использовать для изучения условий формирования блуждающих волн. В дальнейшем станет реальностью создание автоматических устройств, которые сгенерируют встречную волну для гашения разрушительных цунами и волн-убийц в охраняемых прибрежных зонах.

Предположение проверено и подтверждено на небольшом макете. GIF-анимация “Водяной” — формы волн: “одиночная башня”, “белая стена”, а также чудо-юдо с глазами и другие красивые элементы из воды, полученные при начальном для возникновения эффекта напряжении 145 вольт, показаны в тексте выше.
Любой желающий может повторить опыт и проверить предположение.

При нахождении электрода на поверхности жидкости, легко достигается эффект горения воды.


Анимация “Вода горит”

Огниво для воды.
Более года назад вышла статья “Импульсный электролиз на Google Science Fair”, где в опытах по поджиганию воды использовался батарейный вариант импульсного электролизера. С тех пор утекло много соленой воды и был создан новый вариант устройства под названием водяная спичка (ВС). Батарейный вариант из прошлой статьи будет ВС-1, сегодняшний сетевой — ВС-2.

Ключевыми особенностями устройств являются:
— тонкий электрод — чем тоньше, тем лучше;
— работа на поверхности жидкости или в глубине, при помощи изолированного по длине катода;
— импульсный режим работы;
— короткое время импульса и длительная пауза;
— крутой фронт импульса;
— вода с большой соленостью в качестве рабочей жидкости.

Водород выделяется из воды при импульсном воздействии на поверхностный слой с использованием тонкого катода (отрицательный электрод, если кто не знает, да и сам постоянно забываю) и мгновенно сгорает в присутствии кислорода. Процесс выделения/сгорания очень быстрый, поэтому имеет взрывообразный характер. К счастью жителей планеты, процесс является затухающим — сколько водорода выделяется за время импульса, столько и сгорает. Устройство использует соленую воду, так как пресная требует большие напряжения для создания аналогичных размеров водородного пламени.

Работа прибора основана на электрогидравлическом эффекте (ЭГЭ), открытом великим российским ученым Юткиным. Чтобы никому не было обидно, можно утверждать, что в других странах этот эффект действовал задолго до его открытия в виде обыкновенной молнии. Но даже обычная молния до сих пор изучена не полностью — эльфы, джеты, спрайты, а также космические лучи для запуска процесса подтверждают это.
В устройствах, работающих на эффекте ЭГЭ, требуется высокое напряжение, разрядники, а также другие большие и опасные штучки. Но соленая вода и современные комплектующие позволяют собрать прибор на базе ручки от старого паяльника, используя относительно низкое рабочее напряжение. Хотя не обошлось без микроконтроллера, схема доступна для повторения любым радиолюбителем.

В предыдущем эксперименте с поджиганием воды моя роль сводилась к созданию импульсного электролизера. Результаты опытов оказались интересными, но дочка вместо исследования ЭГЭ готовится к ЕГЭ — это новомодное увлечение все больше и больше поглощает умы и время подрастающей молодежи, а также деньги их родителей. Поэтому, экспериментальных данных в этом рассказе будет мало, желающие почитать подробности могут это сделать в предыдущей статье. Я свой интерес удовлетворил созданием более мощного устройства и коротким фильмом.

Теория ЭГЭ.
Юткин в своих опытах использовал напряжение всего лишь 20…50 кВ и более, а емкость до 1 мкФ. Теория была опубликована в работе “Электрогидравлический эффект и его применение в промышленности”, в формате djVu находится тут.
То, что творится при ударе молнии в воду с ее напряжением в миллионы и миллиарды вольт трудно себе представить, так как энергия, запасенная в конденсаторе, и выделяющаяся при его разряде пропорциональна квадрату напряжения и определяется по формуле: W=СU^2/2.

По сравнению с разрядниками Юткина и тем более молнией, ВС-2 является детской игрушкой, но она позволяет исследовать явление в безопасных режимах в стакане на столе. Вышеприведенную формулу для расчета энергии можно использовать лишь частично, так как ВС-2 управляет количеством энергии, поступающей на катод, и разряд конденсатора производится не полностью.

По теории ЭГЭ считается, что причиной роста давления жидкости является расширение паровоздушной смеси, образовавшейся в результате мгновенного вскипания жидкости в канале стримера из-за его огромной температуры.
Но по результатам предыдущих опытов с ВС-1 можно сделать вывод, что источником роста давления является огромная скорость электролиза, а следовательно — выделение водорода и его последующее горение с большой скоростью (взрыв) в присутствии растворенного в воде кислорода.
То есть, при разряде происходит практически мгновенное разложение молекул воды на атомы водорода — топливо и кислорода — окислитель, и последующий взрыв гремучей смеси в зоне катода (кислород растворен в воде и пополняется из зоны анода).
Скорее всего, наблюдаемое кипение жидкости происходит в результате кавитации, после произошедшего взрыва водорода.
Чем больше плотность тока (определяется напряжением и диаметром катода), и чем короче фронт импульса, тем большее число молекул воды участвует в процессе электролиза и тем больше водорода выделяется при каждом импульсе.
Можно сделать вывод, что в ЭГЭ первичным является высокоскоростной электролиз, который порождает все последующие эффекты.

Гром — звук от молнии, является результатом взрыва водорода при разложении молекул воды, находящихся в атмосфере. Но если в атмосфере вследствие низкой плотности и высокой сжимаемости воздуха слышен лишь взрыв, то в воде образуются волны.
Каждый взрыв индивидуален. Сложный характер движения жидкости иллюстрирует фотография с “чудом-юдом”, где видна траектория движения разгоряченного после взрыва конца электрода.

Исследование импульсного электролиза на границе воздух-жидкость, а также с использованием тонкого закрытого электрода, погруженного в жидкость, позволит изучить явление более подробно. Данные опыты являются началом экспериментов, которые желательно продолжить с использованием современных научных приборов, более совершенной измерительной и записывающей техникой. Желательно провести измерение уровня ЭМИ. В некоторых фрагментах видео (особенно при использовании быстродействующего транзистора) заметно “захлебывание” звукового тракта камеры, чем это вызвано — воздействием ЭМИ на микрофон или его перегрузкой из-за резкого звука, непонятно.

Создание ВС-2.
За основу электрической схемы ВС-2 был взят импульсный электролизер ВС-1 из предыдущей разработки.
Трансформатор, показанный на схеме, любой доступный и он находится вне платы ВС-2. Можно его не использовать, если производится питание от электрической сети. Но при этом существует риск поражения электрическим током.

В качестве задающего генератора использован микроконтроллер PIC12F675, который формирует необходимую длительность импульсов.

Излишки напряжения (предполагалась работа до 800 В) гасятся на балластном резисторе, который выполнен из сборки полуваттных резисторов. Экономичность генератора импульсов и большая скважность работы способствуют низкому уровню мощности, выделяемой на данном резисторе. Последовательное соединение и большое количество резисторов препятствуют их пробою на предельных напряжениях.

Данный вариант блока питания был выбран из-за простоты, надежности, а также в связи с тем, что предполагалась работа не от сети 220 В, где можно получить на накопительных конденсаторах лишь 311 В, а от разделительного повышающего трансформатора, позволяющего значительно поднять напряжение. Из того, что имелось в наличии собрана схема из трех трансформаторов и получено переменное напряжение 544 В, из которого после выпрямления и фильтрации получается 769 В постоянного напряжения. Это уже что-то, по сравнению с 145 В, использованных в ВС-1.

Из предыдущих опытов стало понятно, что одним из факторов, влияющих на производительность установки, является минимальная длительность фронта импульса, поэтому схемотехника устройства направлена на увеличение крутизны:
— короткая длина электродов и проводов, размещение силовых элементов в непосредственной близости от электродов для уменьшения индуктивности силовой части схемы;
— мощный драйвер MOSFET TC4452, управляющий силовым транзистором;
— новейший супер-пупер транзистор в качестве скоростного ключа: CREE Z-FET™ MOSFET на карбиде кремния (SiC) CMF10120D с параметрами Qg = 47 nC, максимальным напряжением 1200 В, сопротивлением RDS(on) = 160 mΩ и импульсным током 49 А.
При отладке на макете (работа на длинных проводах) все работало отлично. После установки на ручку паяльника и сокращении длины проводников до электродов, первый экземпляр ключа не выдержал работы на высоком напряжении 769 вольт и был заменен на его брата-близнеца. При его высокой стоимости это было шоком. Разработка силовой электроники, это затратная область деятельности.
Второй экземпляр также не смог долго продержаться. Скорее всего, происходит выброс напряжения при отключении импульса, и транзистор вылетает по превышению максимального напряжения, пополняя список жертв эксперимента. Результат контрольного измерения — пробой по всем выводам. В следующий раз, при наличии большого количества транзисторов, можно поискать область безопасной работы между 311 и 769 В.

При работе устройства пробой транзистора наблюдается так: длительность импульса уже не ограничена контроллером, и на электроде, при касании поверхности воды происходит выделение значительной энергии. Электрод не выдерживает и немного сгорает, разбрызгивая частички меди — работает предохранителем. Фрагмент виден в середине фильма “Вода горит!” (ниже по курсу).

Помимо сокращения длительности фронта, другой путь увеличения добычи водорода, а следовательно высоты пламени — увеличение напряжения на электродах. Предполагалась получение напряжения импульса до 800 В, поэтому пришлось использовать пару конденсаторов. Два последовательно соединенных конденсатора 47 мкФ х 450 В дают результирующую емкость 23,5 мкФ х 900 В.

Богатырские накопительные конденсаторы, используемые в схеме, как и Илья Муромец лежали очень долго, поэтому была проведена их формовка. Для этого, на протяжении двух суток последовательно соединенные конденсаторы находились под выпрямленным сетевым напряжением 220 В. В первые сутки напряжение на них менялось следующим образом:
С1 — 241, 235, 216, 203, 196, 190, 187, 184, 179, 175, 172, 165, 162, 155, 154 В.
С2 — 065, 072, 104, 120, 127, 134, 139, 141, 145, 148, 154, 160, 159, 153, 153 В.
Суммарное напряжение на конденсаторах зависит от величины сетевого напряжения в соответствии с формулой U=220х1,414=311 В. На вторые сутки разница напряжений не превышала 1 вольта, что является показателем окончания процесса формовки.

Ручка ВС-2 взята от паяльника ЭПСН 220 В, 40 Вт. В ней имеются углубления и упоры, которые позволяют надежно зафиксировать печатную плату с элементами.

При работе устройства происходит значительный разброс капель соленой воды, поэтому компоненты устройства расположены внутри защитной пластиковой бутылки.

Как было доказано в опытах с ВС-1, высота факела пламени зависит от толщины электрода. Электроды ВС-2 изготовлены из медной проволоки диаметром 1,7 мм. Анод должен значительно превышать по размеру катод.

Тонкий медный катод диаметром 0,07 мм (меньше найти не удалось) припаян к концу несущего электрода. При уменьшении диаметра необходимо подобрать параметры импульса (напряжение, длительность, пауза), чтобы электрод практически не разрушался при коротком импульсном воздействии.

Как следует из экспериментов с ВС-1, при взрыве водорода образуется воронка и происходит колебание поверхности жидкости. При последующих импульсах волны набегают на электрод, и поверхностный взрыв превращается в подводный — происходит “захлебывание” электрода, и уменьшение высоты пламени водорода. Удержать электрод точно на поверхности в условиях сильного шторма при помощи одной руки (вторая управляет процессом фотосъемки) становится затруднительно. Чтобы облегчить задачу, в программе ВС-2 длительность импульса уменьшена вдвое — до 100 мксек, а продолжительность паузы между импульсами увеличена втрое — до 300 мсек по сравнению с программой работы ВС-1.

Программа работы ВС-2.
start:
HIGH GPIO.2 ‘ включение ключа
PAUSEUS 100 ‘ длительность импульса 100 мксек
LOW GPIO.2 ‘ отключение ключа
PAUSE 300 ‘ продолжительность паузы 300 мсек
GOTO start

Доработка программы
Если разрешить включение подтягивающих резисторов и установить миниатюрный выключатель между выводами контроллера 7 и 8, то можно сделать две частоты выходных импульсов:
@ DEVICE INTRC_OSC_NOCLKOUT, MCLR_OFF, WDT_ON, CPD_OFF, PWRT_ON, PROTECT_ON, BOD_ON ‘ BANDGAP0_ON
‘ генератор внутренний, 4МГц, GP4 и GP5 фунцционируют как порты ввода-вывода
‘ MCLR внутренне подключен к питанию, GP3 работает как канал порта ввода
‘ сторожевой таймер WDT включен
‘ CPD защита памяти данных EEPROM отключена
‘ PROTECT защита памяти программ включена
‘ ON=enabled — включен=разрешено, OFF=disabled — отключен=запрещено

INCLUDE «modedefs.bas»
DEFINE NO_CLRWDT 1 ‘ не вставлять CLRWDT
DEFINE OSC 4

‘ Настройка контроллера
OPTION_REG = %01111111 ‘ разрешим включение подтягивающие резисторы, предделитель подключаем к WDT,
‘ коэффициент деления для WDT=1:128 (при F=4 МГц время отключения около 2,8 сек)

ANSEL = 0 ‘ цифровой режим работы аналоговых входов
CMCON = %00000111 ‘ отключение компаратора

‘ Текст программы

start: ‘
CLEARWDT
HIGH GPIO.2
PAUSEUS 100 ‘ 100 мксек
LOW GPIO.2
IF GPIO.0 = 0 THEN
PAUSE 100 ‘ 100 мсек
ELSE
PAUSE 300 ‘ 300 мсек
ENDIF
GOTO start
END


Фото и видео
Брызги воды разлетаются от электрода на расстояние более метра, поэтому съемку пришлось проводить на большом удалении.
Необходимо использовать защитное стекло на объектив и желательно прикрыть фотоаппарат, так как соленая вода для электроники, это не очень хорошо.
В идеале желательно использовать высокоскоростную камеру, но за неимением таковой, съемка велась на зеркалку Nikon D7000 с объективом 18-105 мм.
Фотографирование лучше проводить в ручном режиме, так как при маленьком времени импульса автоматика не справляется.
Перед съемкой как можно точнее сфокусировать закрепленный на штативе аппарат на место предполагаемых взрывов с помощью дополнительного высококонтрастного объекта, так как поймать фокусировку по воде трудно. По пробным съемкам выставить время выдержки.
Теперь можно рассчитать вероятность получения удачного снимка:
— время импульса — 100 мксек;
— пауза между импульсами — 0,3 сек;
— скорострельность аппарата в непрерывном высокоскоростном режиме — 6 кадров в секунду;
— выдержка, выставленная для снимка — 1/100 сек.
То есть вероятность крайне низкая.
Скорость выделения водорода огромная, поэтому получить четкое изображение факела пламени с такой выдержкой нереально. Уменьшая выдержку для получения красивого снимка столба пламени, мы делаем еще меньшую вероятность попадания вспышки в кадр. Как вариант, можно попробовать приспособления для автоматической синхронизации, но эти устройства отсутствуют.
Все вспышки, пойманные за время съемки, а также другие фотографии, относящиеся к этому проекту, можно посмотреть в альбоме. При анализе снимков видно, что каждый удар индивидуален, хотя электрод расположен почти одинаково. Поэтому формирование высокой волны на море, при ударе молнии, имеет даже меньшую вероятность, чем получение удачного снимка.

С видео все проще, но рассмотреть место взрыва подробно становится затруднительным.

Видео “Вода горит!” Показаны три фрагмента работы.
1. Скоростной транзистор CMF10120D при работе с напряжением 311 В.
2. CMF10120D в момент, когда он пробит при работе с напряжением 769 В.
3. Устаревший транзистор 2SK1358 при работе с напряжением 311 В.

Гифка “водяной” вначале статьи, была сделана из старых кадров с участием ВС-1. Для модели ВС-2 закрытый электрод не изготавливался, так как будет очень большой разброс капель.

Эффективность процесса.
Одним из самых интересных вопросов — КПД при получении водорода, хотя он сразу и сгорает.
К полезной части, для оценки КПД, относятся электромагнитный импульс излучений в различных диапазонах спектра, колебание поверхности жидкости, выброс капель, звуковая волна — но это трудно оценить в виде цифр. Наиболее простым способом определения выработки является визуальная оценка объема водорода по кадрам видеосъемки или фотографиям области пламени.
Для четкого определения границ необходимо поснимать взрывы заранее известного объема водорода, а затем анализировать вспышки при проведении импульсного электролиза поверхностного слоя. Хотя опытные химики и взрывники наверняка и без предварительных взрывов смогут определить границы водорода, участвующего в процессе.

Так как разряд заряженного конденсатора при импульсе происходит не полностью, то формулу по расчету его энергии использовать некорректно.
Затраты энергии считаются по анализу осциллограммы на небольшом резисторе, включенном в цепь электрода или на токоограничительном резисторе блока питания.

При предварительных испытаниях устройства, когда супер-транзистор недолго работал при высоком напряжении, высота пламени водорода достигала трех сантиметров, но на видео это не успело попасть, и объем остался неизвестен. После выхода из строя двух современных ключей, за неимением лучшего, был установлен транзистор 2SK1358, который не отличается выдающимися параметрами, что заметно даже по характеру звука в фильме “Вода горит”. Поэтому для установки ВС-2 объем водорода не определялся, а дальнейшая работа производилась на “пониженном” напряжении 311 В. В предыдущих опытах с ВС-1 выработка определялась по размеру пламени, потребление — по падению напряжения на резисторе в цепи электрода.

Характер взрыва водорода в смеси с кислородом и чистого можно посмотреть в фильме, найденном на youtube.

Продолжение работ.
Работа по импульсному электролизу перспективна и интересна людям, у некоторых имеется желание повторить и продолжить опыты. Был замечен интерес к ней со стороны людей, уже занимающихся подобными исследованиями, что очень похвально. Результатов пока не видно, но это дело времени.
В Интернете выложено большое число видео с процессом электролиза. Как правило, электролиз проводят при неотключаемом напряжении — постоянном или переменном. При этом остро встает проблема сохранности электрода, который изготавливают из материалов, устойчивых к высокой температуре.
В случае же импульсного воздействия, как правило, производится полный разряд накопившего энергию конденсатора на водную среду, высоковольтный ключ/разрядник производит лишь включение цепи.
Фишкой установок ВС-1 и 2 является то, что можно ограничить длительность импульса до минимально возможной. При этом, благодаря маленькому диаметру электрода, плотность тока в импульсе достигает огромных величин, но короткое время воздействия не позволяет разрушить даже тонкую медную проволоку. При достаточно высокой частоте следования импульсов можно добиться визуального эффекта непрерывного горения водорода на поверхности воды.

По результатам эксперимента можно сделать вывод, что для начальных опытов достаточно выпрямленного сетевого напряжения, желательно — гальванически развязанного от сети при помощи трансформатора. Потребление энергии устройством небольшое, так как ВС-2 работает в импульсном режиме с большой скважностью.
Схему можно упростить, что уменьшит размеры устройства. Накопительный конденсатор достаточно использовать один, емкостью 10…47 мкФ на напряжение 450 В. Составной балластный резистор можно изготовить из трех-четырех последовательно соединенных резисторов.
При доработке устройства можно ввести регулировку длительности импульса, паузы, напряжения на накопительном конденсаторе, предусмотреть режим одиночных импульсов.
Изучайте, исследуйте, это действительно интересно, и выкладывайте свои результаты.

Интересный фильм “Повелители молний” был снят автором Антоном Войцеховским в рублике «ЕХперименты». В фильме, в частности, упоминается испытательный полигон ВНИЦ ВЭИ, расположенный в городе Истра. На базе этого научного заведения можно начать исследования условий возникновения волн-убийц при попадании молнии в морскую воду. Продолжить опыты можно уже на море, создав там мощную установку для получения молниеносного напряжения.

Ссылки.
1. Альбом с фотографиями.
2. ВС-2. Электрическая схема.
3. ВС-2. Печатная плата.
4. ВС-2. Программа работы.
5. ВС-2. Повышающий трансформатор, оказался практически невостребованным.

5. Расчет производительности молний
Количество молний.
Общее количество молний 1,4 миллиарда в год.
350 миллионов — 25 % молний ударяет в земной шар.
Приблизительно 250 миллионов (точнее 248,5 миллионов) — 71 % молний приходится на поверхность Мирового океана.
Количество волн-убийц.
Спутники зафиксировали за три недели по всему земному шару более 10 одиночных гигантских волн, высота которых превышала 25 метров.
За год количество волн составит 173 штуки.

Итого: На 250 миллионов молний приходится 173 больших волны. Грубо можно сказать, что примерно каждая миллионная молния рождает огромную волну.


P.S.
Выступление на конференции «ХТЯиШМ–20» с обобщением результата работ.

Как оказалось «Молнии играют роль в образовании горного ландшафта».
А отсекать глыбы вполне может и ЭГЭ, что демонстрировал Юткин, в результате попадания молнии в воду, содержащуюся в каналах или пустотах горного массива.

Юткин, Лев Александрович — Википедия

Лев Александрович Юткин (23 июля (5) августа 1911, Белозерск, Вологодская губерния — 5 октября 1980, Тбилиси) — советский физик, изобретатель способа трансформации электрической энергии в механическую, названного им электрогидравлическим эффектом (ЭГЭ).

Родился в 1911 году в городе Белозерске Вологодской губернии, в семье врача и акушерки. Отец Александр Михайлович Юткин получил медицинское образование в Санкт-Петербургском университете. Мать Анна Феофановна Юткина (Капорулина) закончила Высшие акушерские курсы при Институте Отта, получив звание повивальной бабки высшего разряда. Отец работал земским врачом в Вологодской и в Архангельской областях, семья переезжала, а школу Лев закончил в Ленинграде, куда семья вернулась в 1928 году. Из-за непролетарского происхождения Лев не мог сразу поступать на учёбу в институт и должен был отработать два года на заводе токарем.

В 1930 году Лев поступил в Ленинградский автодорожный институт, где уже с первого курса занимался изобретательством. Первое авторское свидетельство на изобретение № 719184 по заявке № 131715/29-33 «Способ возведения переправы через водную преграду», полученное Л. А. Юткиным (в соавторстве с А. Д. Перчихиным) имеет приоритет 11.07.1933г.

В 1933 году во время одного из опытов с электрическим разрядом в воде, открыл электрогидравлический эффект. Тарелка, в которой он производил опыт, раскололась с всплеском фонтана воды.

В том же году по обвинению в контрреволюционных преступлениях по 58-й статье УК РСФСР был осужден на пять лет. Отбывал заключение в ДмитЛаге, на строительстве канала «Москва-Волга», и в УхтПечЛаге, на строительстве дорог, где ему очень пригодилось обучение в Автодорожном институте. Был освобождён в 1938 году.

После освобождения Л. А. Юткин около года жил и работал в Череповце, а затем, скрыв судимость, вернулся в Ленинград и поступил в 1940 году в ЛЭТИ.

В начале марта 1942 года он был эвакуирован из Ленинграда вместе с матерью, затем учился в военном инженерном училище, адъютантом начальника которого он и закончил войну, демобилизовавшись из армии в Ленинграде в 1946 году.

После демобилизации в 1946г. Л. А. Юткин работал в Лениградском дворце пионеров, а затем в Доме научно-технической пропаганды и активно продолжал заниматься изобретательством. В сентябре 1945 года Л. А. Юткин женился на Лидии Ивановне Гольцовой, ставшей его верной соратницей и соавтором большинства изобретений.

В апреле 1950 года начинается основной этап научной и изобретательской деятельности Л. А. Юткина и Л. И. Гольцовой. С 15 апреля 1950г., даты приоритета их заявки на изобретение «Способ создания высоких и сверхвысоких давлений», исчисляется и приоритет открытия электрогидравлического эффекта, часто называемого теперь, «эффектом Юткина»

С 1950 года Л. А. Юткиным и Л. И. Гольцовой были поданы сотни заявок на изобретения, получены авторские свидетельства на изобретения более 200 электрогидравлических способов и устройств, применяемых в самых разнообразных отраслях техники и хозяйства.

В 1950-60-х годах ХХ века Л. А. Юткин постоянно выступал с лекциями о своём открытии, в том числе и в Московском политехническом музее, и убедил многих, что с помощью ЭГЭ можно раскалывать, бурить и дробить твёрдые горные породы, штамповать металлы, эффективно обрабатывать многие другие материалы.

В течение четверти века Л. А. Юткин последовательно возглавлял ряд авторских научных лабораторий в Ленинграде, занимавшихся исследованиями открытого им ЭГЭ. Сначала это были заводские лаборатории. А в 1955 году в Ленинградском политехническом институте ему впервые дали авторскую лабораторию со штатом в три человека. Именно там и были созданы все первые электрогидравлические установки.

В 1959 году решением Совета министров СССР была организована специализированная Межотраслевая лаборатория ЭГЭ. Усилиями Л. А. Юткина был построен специальный корпус МЛЭГЭ, сформирован ряд отделов, начались широкие исследования и разработка ЭГ-технологий и ЭГ-оборудования. На смену основанной в 1959 году межотраслевой МЛЭГЭ, в 1968 году пришла сельскохозяйственная (проблемная) ПЛЭГЭ, а с 1975 года — уже центральная научно-исследовательская ЦНИЛЭГЭ.

5 октября 1980 года Л. А. Юткин, находясь в командировке в Тбилиси, где он читал лекцию о своём открытии, скоропостижно умер от третьего инфаркта.

Работу над творческим наследием Л. А. Юткина продолжила Л. И. Гольцова. Её стараниями в 1986 году увидела свет наиболее полная монография трудов Л. А. Юткина «Электрогидравлический эффект и его применение в промышленности».

Посмертно Л. А. Юткин был удостоен звания лауреата Государственной премии УССР за 1981 год[1].

Библиография[править | править код]

Юткин Л.А. Электрогидравлический эффект. — Ленинград.: «Машгиз», 1955.

Юткин Л.А. Электрогидравлическое дробление, часть 1. — Ленинград.: ЛДНТО, 1959.

Юткин Л.А. Электрогидравлическое дробление, часть 2. — Ленинград.: ЛДНТО, 1960.

  1. Л. А. Юткин. Электрогидравлический эффект и его применение в промышленности. — Л.: Машиностроение, Ленингр. отд-ние, 1986. — 253 с.

Эффект Юткина. Что это такое — Виртуальный Кореновск

Что из себя представлет эффект Юткина


В Советском Союзе был совершен ряд открытий, которые совершил великий ученый Л.А. ЮТКИН. Собственно его именем и был назван этот эффект.
В чем же он заключался?

Читаем далее…


Начиналось все в начале 20 века. С появлением автомобилей — достаточно быстро появилась и потребность у «сильных мира сего» -выделяться в общем потоке, это привело к появлению такого автомобиля как лимузин(в частности).

Но при его постройке была выявлена проблема: спрос на такие машины был мал, и строительство полноценного промышленного пресса для штамповки кузовных деталей- было нерентабельно.

И кому то пришла в голову светлая идея- взрыв! И это сработало! Стали делать таким образом- изготавливалась стальная ванна, дно которой представляло собой пуансон(штамповочную форму-которая повторяла размеры и форму будущего кузовной детали), поверх которого клался лист металла и заливалась вода. В толще воды подвешивалась взрывчатка — динамит и подрывалась. Давление взрыва с силой МИЛЛИОНЫ! атмосфер передавалось через воду и буквально вминало металлический лист в дно и лист принимал его форму. Таким образом можно было с легкостью штамповать даже очень длинные кузовные детали.

Но время не стояло на месте. И вот в Советском Союзе был совершен ряд открытий, которые совершил великий ученый Л.А. ЮТКИН. Собственно его именем и был назван этот эффект.

В чем же он заключался?


Эффект Юткина хорошо описан в старом документальном фильме времён СССР. Помимо штамповки, он использовал его для измельчения породы, построил дорогу, под Минском. В сельском хозяйстве с помощью этого эффект выполнял структурное преобразование почвы, которое полностью решало проблему удобрения, исключая всякое химическое воздействие. И вёл много других направлений своего открытия. Если бы научный мир оценил по достоинству это изобретения, то не было б смысла предавать забвению оборудованную лабораторию и все его труды…

При создании внутри объема жидкости специально сформированного импульсного высоковольтного электрического разряда в зоне последнего развиваются сверхвысокие давления, которые можно широко использовать в практических целях,— так, впервые в 1950 г. Л. А. Юткиным был сформулирован предложенный им
новый способ трансформации электрической энергии в механическую, названный автором электрогидравлическим эффектом (ЭГЭ).

Электрогидравлический эффект с первых дней его открытия был и остается постоянным источником рождения множества прогрессивных технологических процессов, которые сейчас уже широко применяются во всем мире. Этим обусловливаются его непреходящее значение и все возрастающий интерес, проявляемый к нему в самых различных отраслях науки, техники и народного хозяйства.

Последние 30 лет жизни Л. А. Юткин активно и плодотворно работал в области электрогидравлики. За этот период им были разработаны теоретические основы явления, определены методы управления процессом, значительно расширяющие возможности и обеспечивающие высокий КПД электрогидравлической обработки материалов, было предложено более 200 способов и устройств практического применения ЭГЭ, получено 140 авторских свидетельств на изобретения, издано 50 публикаций по электрогидравлике.
Под его руководством были разработаны принципиальные конструкции промышленных установок различного назначения, проведены поисковые работы, подготовлены к внедрению и частично внедрены устройства и технологические процессы, позволяющие эффективно использовать электрогидравлический эффект во многих областях народного хозяйства.


Президиум Академии наук УССР в июне 1982 г., определяя значение научной деятельности Л. А. Юткина, отметил, что изобретение им способа получения высоких и сверхвысоких давлений (а. с. 105011, СССР) легло в основу нового промышленного способа трансформации электрической энергии в механическую, нового электрогидравлического способа обработки материалов и практического использования ЭГЭ (а. с. 121053, СССР). Л. А. Юткин являлся ведущим специалистом в разработке теории ЭГЭ. Посмертно Л. А. Юткин был удостоен звания лауреата Государственной премии УССР за 1981 год.

Впервые заинтересовавшись искровыми электрическими разрядами в воде в 1933 году, автор в дальнейшем целиком посвятил себя решению проблемы получения с помощью электрического разряда эффективного гидравлического удара. В конце 1930-х годов автором, был в основном сформулирован и кардинальный для всей электрогидравлики принцип получения так называемых сверхдлинных разрядов.
В 1948 г. появилась возможность основательно заняться изучением проблемы, а это привело к патентованию первого и основополагающего изобретения в области электрогидравлики — «Способа получения высоких и сверхвысоких давлений», т. е. способа получения электрогидравлического эффекта.

Электрогидравлический эффект (ЭГЭ) — новый промышленный способ преобразования электрической энергии в механическую, совершающийся без посредства промежуточных механических звеньев, с высоким КПД. Сущность этого способа состоит в том, что при осуществлении внутри объема жидкости, находящейся в открытом или закрытом сосуде, специально сформированного импульсного электрического (искрового, кистевого и других форм) разряда вокруг зоны его образования возникают сверхвысокие гидравлические давления, способные совершать полезную механическую работу и сопровождающиеся комплексом физических и химических явлений.
В основе электрогидравлического эффекта лежит ранее неизвестное явление резкого увеличения гидравлического и гидродинамического эффектов и амплитуды ударного действия при осуществлении импульсного электрического разряда в ионопроводящей жидкости при условии максимального укорочения длительности импульса, максимально крутом фронте импульса и форме импульса, близкой к апериодической.


Сущность этого эффекта состоит в том, что при прохождении электроразряда высокого напряжения через жидкость в открытом или закрытом сосуде, некоторый объем этой жидкости, находящийся в межэлектродном пространстве, мгновенно вскипает, в результате чего в сосуде образуется газожидкостная смесь.

При расширении образовавшегося газа в сосуде возникают высокие и сверхвысокие избыточные гидравлические давления, способные совершать полезную механическую работу (так, если в закрытом сосуде установлен подвижный поршень, то можно получить его, практически мгновенное, перемещение – рабочий ход). После
прекращения действия избыточного давления происходит конденсация (релаксация) ранее образовавшихся паров жидкости (в этот момент, в закрытом сосуде, подвижный поршень совершит обратный ход).

Электрогидравлический эффект [1, 2, 11, 12 и др.] с первых дней его открытия был и остается постоянным источником создания множества прогрессивных технологических процессов, которые уже сейчас широко применяются во многих промышленных отраслях всего мира – машиностроительной, металлургической, горно-геологоразведочной, нефтяной и др.

Одним из главных преимуществ данного метода является его исключительная экологичность, так как способ воздействия ЭГЭ не привнесет никаких дополнительных источников загрязнения окружающей среды в планируемые технологии.

Среди разнообразия известных областей применения ЭГЭ наиболее актуальными, на взгляд авторов настоящей работы, являются методы использования данного эффекта в стремительно развивающихся автомобильной и строительной индустриях промышленности.

Так, для автомобильной промышленности находящейся под жесточайшим контролем свода норм и правил экологических показателей двигателей внутреннего сгорания (ДВС), разработанных Комитетом по внутреннему транспорту ЕЭК ООН, обязывает всех автопроизводителей выпускать современные автомобили с ограничением
по дымности, снижением токсичных веществ в отработавших газах, уменьшением шумности ДВС и т. д. [5, 13].


С этой целью, большинство автогигантов видят выход в создании более совершенных, экологически чистых и экономически выгодных ДВС, а также использовании двигателей комбинированного типа – гибридных двигателей на основе ДВС. И в том, и в другом случаях автопроизводителям приходится иметь дело с традиционными системами ДВС, без модернизации которых невозможно выполнение требований, утвержденные Комитетом ЕЭК ООН.

Одной из жизненно важных систем ДВС является система топливоподачи, в центре которой находится топливный насос высокого давления (ТНВД). Однако серийно выпускаемые ТНВД имеют ряд недостатков, главным образом, связанных с ограниченными техническими возможностями используемого электромеханического привода (сложность конструкции, технологии изготовления и сборки; высокая стоимость и недолговечность прецизионных плунжерных пар элементов механизированного привода ТНВД и большие мощностные затраты на его работу; ограниченные возможности по давлению впрыска < 100МПа и др.), не позволяющего разрешить большую часть
поставленных задач перед автопроизводителями.

Созданная авторами лабораторная установка – макет (рисунки 1…4) принципиально новой конструкции топливного электрогидравлического насоса высокого давления (ЭГ-насоса), работающего на эффекте Л.А. Юткина без какого-либо электромеханического привода, позволяет заменить современные серийно выпускаемые ТНВД на более простые, менее металлоемкие, компактные и надежные насосные ЭГЭ-установки [10].

При разработке конструкции ЭГ-насоса, предназначенного для создания высокого давления впрыска топлива в камеру сгорания с целью повышения общей эффективности и экологичности работы двигателя, ставилась задача спроектировать такое устройство, которое было бы технически совершеннее аналогов существующих топливосистем.

В качестве прямых аналогов топливосистем были приняты все современные ТНВД (плунжерного и поршневого типов, а также насосы-мультипликаторы), так как результаты проведенного патентного поиска аналогов разработанного ЭГ-насоса показали, что в мировой практике подобных ЭГЭ-устройств не встречается.

Разработанный ЭГ-насос (рисунок 1) конструктивно состоит из рабочей камеры (корпус насоса), всасывающего и напорного гидроклапанов, работающих по принципу ”ниппеля”, датчика контроля давлений, установленного в рабочей камере насоса, двух высоковольтных электрода с контакторами «+» и «–», на которые подается напряжение от блока преобразователя (рисунки 2 и 3).


Если вам понравился наш материал- оставляйте комментарии внизу, а также не забудьте поделиться этой ссылкой со своими друзьями в соцсетях


Познавательно


«Подводный взрыв”, «подводная гроза” – так называют образно мощный высоковольтный электрический разряд в жидкости, впервые полученный инженером Л.А. Юткиным. Сам он свое открытие назвал «электрогидравлическим эффектом”.
Электрическая искра, проскакивающая между погруженными в жидкость электродами в определенных условиях, производит неожиданное действие. Если рядом с искрой окажется твердое тело, оно будет измельчено в порошок, каким бы твердым оно ни было, а расположенный над искровым промежутком столб жидкости подбрасывается высоко вверх. Что же получается при электрическом разряде?


В месте возникновения разряда мгновенно образуются давления в десятки и сотни тыс. атм. (см. схему). Микроскопический канал, по которому проскакивает искра, имеет чрезвычайно большую плотность энергии, мгновенная мощность достигает колоссальных величин. Так, например, от установки мощностью всего в 0,5 квт можно получить мгновенную мощность в 100 тыс. квт и более.
Вода, окружающая искру, с огромной быстротой разлетается в стороны, создавая первый гидравлический удар. Образуется пустота – полость, которая сразу заполняется водой; получается еще один мощный гидравлический удар – кавитационный. Электрическая энергия, таким образом, без всяких промежуточных звеньев переходит в механическую. Открытие Юткина оказалось возможным использовать и в практических целях. В его ленинградской лаборатории один за другим рождались приборы и инструменты, в которых к обычным названиям присоединялось слово «электрогидравлический” – электрогидравлический резак, электрогидравлическое долото, электрогидравлическая форсунка и другие. Долото долбит, резак режет, насос-форсунка подает топливо в цилиндр дизеля и распыляет его, то есть выполняются те же самые работы, что и обычными инструментами и приборами, но слово «электрогидравлический” делает их совершенно непохожими на «предков”. По долоту никто не бьет, в насосе нет поршня, который бы накачивал жидкость, бур, не вращаясь, вгрызается своими режущими кромками в твердую породу.


Рис.1

 

 

Форма и расположение зон давления вокруг искрового разряда (по Л. А. Юткину): А – зона искрового разряда. Б – зона разрушения. В ней почти все материалы разрушаются на мельчайшие частицы, а жидкость приобретает свойства хрупкого твердого тела. В – зона наклепа. Здесь многие материалы разрушаются, а металлы наклепываются (уплотняются с поверхности). Г – в этой зоне возникает мощное выталкивающее действие. Д – зона сжатия. Здесь наблюдается перемещение больших объемов жидкости.

 


Вот как устроен один из новых инструментов – электрогидравлический бур (см. рис.2). В центре пластмассовой втулки помещается стальной стержень – электрод. Вторым электродом служит металлическая трубка – коронка. Когда включают ток, между отогнутым кончиком центрального электрода и ближайшим зубцом коронки возникают электрические разряды. При работе бура коронка остается неподвижной, а центральный электрод вращается с небольшой скоростью, поэтому искра, перебегая с зубца на зубец, обходит всю окружность коронки. В другой, более поздней конструкции вращающийся электрод заменен неподвижным, а вместо отогнутого кончика установлена пластина-тарелочка. Искра, перебегая по радиусам тарелочки, также обходит всю окружность коронки. Электрогидравлические удары, возникающие при каждом разряде, долбят материал, на который поставлен бур, прогрызая круглое отверстие диаметром немного больше, чем диаметр коронки. Измельченная порода вымывается водой, которая по трубке накачивается внутрь бура. Таким буром можно проделать отверстие в самых твердых породах. Бур при этом, как и другие электрогидравлические инструменты, не тупится и не изнашивается. Потребление электроэнергии при всех работах очень невелико. Так, мощная электрогидравлическая дробилка при переработке щебня на песок потребляет лишь около 7 квт-ч энергии на тонну щебня.

Рис.2
С помощью электрогидравлического эффекта можно раскалывать огромные камни, уплотнять бетон при укладке, забивать сваи, истирать в мельчайший порошок металлы. Свои первые опыты Л.А. Юткин начал проводить еще в студенческие годы с помощью небольшой школьной электрофорной машины мощностью 3 вт, которая давала напряжение 30 тыс. в. Если у вас в школе есть подобная машина, не трудно будет при желании соорудить небольшую установку и продемонстрировать электрогидравлический эффект на уроке физики. В небольшой ванне на изолирующих подставках надо укрепить электроды из обрезков проволоки диаметром около 0,5 мм (остриями друг к другу). Расстояние между ними – основной искровой промежуток – подбирается практически (до 50-80 мм). Положительный электрод должен быть изолирован по всей длине, кроме переднего конца его. Провод можно взять звонковый в пластикатовой изоляции. К электродам присоедините провода от полюсов электрофорной машины. Между плюсом и минусом машины включается конденсатор – обычная лейденская банка. В электрической цепи, кроме основного искрового промежутка, должны быть еще два так называемых формирующих искровых промежутка. Для этого каждый из проводов, идущих от электрофорной машины, надо разрезать и подсоединить к никелированным шарикам диаметром 15—20 мм. Расстояние между шариками также подбирается практически. С таким прибором, конечно, не получишь подводного взрыва мощностью 100 тыс. квт, но и фонтан воды. поднятый небольшой искрой над спокойной поверхностью, выглядит тоже эффектно. Несмотря на малую мощность установки, при проведении опытов надо соблюдать осторожность. Не подводите электроды слишком близко к основанию стеклянного сосуда: он может разрушиться. Подробнее об электрогидравлическом эффекте можно прочитать в брошюре инженера Л. А. Юткина «Электрогидравлический эффект» . В одном из следующих номеров журнала мы расскажем, как сделать самим маленькие электрогидравлические машины, которые будут работать, как настоящие.

 

И. Константинов

 

 


Эффект Юткина, гидроудар или давление в сто тысяч атмосфер от короткого электроимпульса — Альтернативный взгляд Salik.biz

Уже более семидесяти лет человечеству известен сверхэффективный способ преобразования электрической энергии в механическую, посредством электрогидравлического эффекта Юткина (ЭГЭ). Но, как всегда, эффект не применяется в быту, о нем и о его авторе нет ничего в «Википедии» и официальная наука очень не любит вспоминать ни о самом эффекте, ни тем более о его авторе Льве Юткине с его более, чем сотней изобретений. Всему виной, как всегда, сверхэффективность и КПД в несколько тысяч процентов, которого, как мы знаем из официальной науки и учебников физики, быть не может!

Выдающийся советский физик и изобретатель Лев Александрович Юткин родился 5-го августа 1911 года в городе Белозерск, Вологодской области. Поступил в университет только в 1930-м году, после двух лет принудительной отработки на заводе токарем «из-за классовой ненадежности». На четвертом курсе университета, в 1933-м году, Лев Юткин получил первые серьезные результаты по электрогидравлическому эффекту. Вскоре после своего открытия, в том же 33-м году, был посажен по 58-й статье (измена родине). Обвинение в попытке с помощью своего ЭГЭ взорвать мост! Сформировалось мнение о том, что Юткин изобрел свой ЭГЭ только лишь в 1950-м году, так как именно в этом году эффект был запатентован, но это не так! Абсолютное большинство исследований на тему электрогидравлического эффекта были им проведены и завершены еще в 30-е годы и по его же словам, полную теорию о электрогидродинамическом эффекте он сформировал еще в 1938-м году.

— Salik.biz

Сам же электрогидравлический эффект Юткина или коротко ЭГЭ представляет из себя мощнейший гидроудар с локальным давлением выше ста тысяч атмосфер, возникающий при прохождении искрового разряда высокого напряжения, через водный промежуток. Именно поэтому в «народе» данный эфект называют просто гидроудар, хотя справедливости ради необходимо заметить, что научный смысл гидроудара далек от данного явления и не имеет ничего общего с ЭГЭ Юткина.

Для получения ЭГЭ переменный ток из сети подается на повышающий трансформатор, где напряжение увеличивается до нескольких киловольт. Далее электрический ток выпрямляется диодами и подается на конденсатор, где напряжение накапливается до нужного значения. После этого между размещенными в воде электродами возникает высоковольтный пробой, что и порождает возникновение электрогидравлического удара, проявляющегося в виде громкого хлопка с локальным повышением давления в несколько десятков тысяч атмосфер.


Одной из серьезнейших практических ценностей и преимуществ данного эффекта является его стопроцентная повторяемость и простота реализации даже в домашних условиях, без применения дорогостоящего лабораторного оборудования и материалов.

Сам автор неоднократно модернизировал и совершенствовал свои разработки, например, та же принципиальная схема в конечном итоге была реализована с применением двух разрядников, что, по словам ее создателя, сильно увеличило крутизну фронтов импульсов и сделало схему намного эффективнее и проще в настройке.

Рекламное видео:

Помимо появления локального давления в несколько десятков тысяч атмосфер, которое автор с успехом применял, например, для дробления на мелкие кусочки каменных валунов или для прессования металлов, данный эффект также сопровождается еще несколькими полезными и удивительными свойствами. Если попытаться выделить все удивительные свойства ЭГЭ, то получается примерно следующее:

— Локальное повышение давления до нескольких десятков тысяч атмосфер. В силу несжимаемости воды и, как следствие, распространение данного давления по всему водному объему, данное свойство можно использовать для дробления и измельчения каменной породы, металлической прессовки и штамповки, а также для преобразования в иные виды механической энергии, например в крутящий момент посредством применения кривошипно-шатунных механизмов особой конструкции.

— Локальное повышение температуры. По словам автора и независимых исследователей данного эффекта при наличии ЭГЭ температура жидкости возрастает несоизмеримо быстрее затраченной на ЭГЭ электроэнергии, что позволяет строить на данном эффекте высокоэффективные нагревательные приборы. Данное свойство нагрева проявляется совместно с вышеуказанным свойством локального повышения давления, что делает целесообразным использование одновременно двух этих свойств.

— Выделение из воды газа Брауна. Так как данное свойство было обнаружено не самим автором, а его более поздними последователями, данное свойство не так хорошо изучено, особенно в количественной его части, но само его присутствие, как уже говорилось ранее, не отменяет прежде описанные свойства и делает возможным применение всех трех основных свойств электрогидравлического эффекта Юткина одновременно!

Для более подробного знакомства с автором данного изобретения, предлагаем посмотреть увлекательный научно-популярный фильм:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *