31.10.2024

Для чего нужен тахеометр – Зачем нужен тахеометр | Лазерные нивелиры, дальномеры, толщиномеры, влагомеры купить в Минске

Содержание

Что такое тахеометр, тахеометрическая съемка

13 Марта 2018

Активное развитее техники затронуло и геодезическое оборудование. Современные приборы позволяют выполнять те или иные виды работ быстро и с высокой точностью. Одним из незаменимых устройств в геодезии является тахеометр.

Что такое тахеометр

Тахеометр — это прибор, используемый для измерения вертикальных и горизонтальных углов, превышений и длин линий. Несмотря на компактный размер, он является инструментом, объединяющим в себе функции теодолита и светодальномера. Наличие микропроцессора с мощным программным обеспечением позволяет производить необходимые измерения и расчеты быстро и с минимальной погрешностью, а также запоминать и обрабатывать большой объем информации.

Одним из главных плюсов работы тахеометра является то, что измерения возможно провести, при наличии таких препятствий, как: ветки или листва, а также в условиях плохой видимости или, наоборот, яркой солнечной освещенности.

Тахеометр применяется для вычисления превышений, определения координат точек на местности, получения плана с изображением рельефа при топографической съемке, для выполнения обратной засечки и тригонометрического нивелирования и т.д.

Первые тахеометры

Первые приборы появились в 70-х гг. XX в. и напоминали современные тахеометры лишь отдаленно. Для измерений использовались полуэлектронные приборы, представляющие теодолит со светодальномером. После того как светодальномеры стали компактных размеров появилась возможность устанавливать их на теодолит, а позже начали выпускаться приборы в общем корпусе с возможностью введения значений углов.

Первый электронный тахеометр AGA-136 был выпущен в Швеции в 80-х гг. XX в. Это стало прорывом в геодезическом приборостроении. Электронная система отсчета углов заменила оптическую. Это позволило автоматизировать работу геодезистов. Полученные данные о значении углов и информация о длине линии поступали в цифровом виде в процессор и там же проводились все вычисления, а на индикатор выводились готовые величины. После Шведских тахеометров фирмы Geodimetr на рынке стали появляться приборы марок Sokkia, Topcon, Nikon, производимых в Японии, Leica в Швейцарии, и т.д.

Принцип работы

Принцип работы дальномера тахеометра зависит от конструктивных особенностей прибора, но его можно разделить на 2 основных метода измерений:

  • Фазовый метод: расстояния определяются за счет измерения разности фаз излученных и отраженных световых лучей.
  • Импульсный метод: расстояние измеряется по времени прохождения лазерного луча до отражателя и обратно. В новейших электронных тахеометрах расстояния измеряются как импульсным, так и фазовым методом.

На дальность измерений тахеометра влияют технические возможности дальномера прибора, погодные условия и режим работы устройства.

Режимы работы:

  • Отражательный — используется отражатель (призма), дальность измерений может достигать до 5 и более км.
  • Безотражательный — могут измеряться расстояния до любой поверхности в пределах 2,2 км

У современных тахеометров точность угловых измерений достигает 0,5 угловой секунды, расстояний — 0,8 мм.

Современные модели

На современном рынке геодезического оборудования представлены модели тахеометров различного ценового сегмента. Чем выше характеристики тахеометров по точности, мощности процессора и ПО, скорости обработки данных, тем выше их стоимость. Но, необходимо учитывать, что новейшее оборудование ускоряет работу геодезистов, благодаря высокой точности производимых измерений и возможности проводить автоматизированную работу одним оператором. Покупая оборудование проверенных производителей, можно быть уверенным, что оно прослужит долгие годы и окупит себя многократно.

Как выбрать тахеометр?

При любых работах где необходимо точное измерение на местности или идет строительство невозможно обойтись без тахеометра. Современное оборудование позволят решить большинство задач, поставленных перед геодезистами быстро и с высокой точностью. Выбирая тахеометр для стройки или топографических работ обращайтесь в проверенные компании. Инженеры компании «Геодезия и Строительство» ответят на интересующие Вас вопросы, помогут подобрать оборудование, а также, при необходимости, проведут обучение персонала по его использованию.

gis2000.ru

что это такое и для чего он нужен?

Электронный тахеометр и его виды

Электронный тахеометр и его виды

Содержание статьи

При помощи современных геодезических приборов, представленных сегодня широким ассортиментом, можно быстро и с максимальной точностью определить перепады высот на том или ином участке. Одним из таких устройств является электронный тахеометр, входящий в группу инновационного и наиболее передового оборудования.

Благодаря особенностям конструкции электронного тахеометра, возможности пользователя существенно расширяются, что позволяет в короткие сроки решить любую поставленную задачу. Итак, о том, что такое электронный тахеометр и для чего он нужен, будет рассказано в сегодняшнем выпуске строительного журнала https://samastroyka.ru/.

Электронный тахеометр

Электронный тахеометр предоставляет возможность качественной съёмки требуемой местности. При этом возможно получить полную картину исследуемого участка. Измерять можно как горизонтальные, так и вертикальные расстояния. Полученные данные автоматически сохраняются устройством, а также могут передаваться на какой-нибудь удаленный компьютер.

Принцип работы современных электронных тахеометров, предлагаемых множеством производителей, может иметь существенные различия. Одни устройства могут работать по фазовому методу, а другие, напротив, по импульсному методу. Электронные тахеометры делятся на разновидности также и по сфере применения.

Электронный тахеометр: что это такое и для чего он нужен?
Исходя из особенностей поставленной задачи, сегодня можно купить конкретный вариант тахеометра, ну а о том, стоит ли покупать лазерный уровень, можно прочитать в другой статье сайта. В зависимости от функционального назначения различают следующие типы электронных тахеометров:

Технические — их главное преимущество это доступная стоимость. Такие устройства оснащаются отражательным дальномером, поэтому для работы с ними требуется два человека;

Строительные — они оборудуются безотражательными дальномерами;

Инженерные — это многофункциональные тахеометры, способные решать большое количество самых разнообразных задач. Они оснащаются фотокамерами и другими специализированными модулями.

Инженерные электронные тахеометры пользуются сегодня самым большим спросом, поскольку способны передавать информацию посредством всевозможных коммуникационных каналов.

Виды электронных тахеометров

Исходя из характеристик съёмки, электронные тахеометры делятся на такие виды:

  1.  Круговые;
  2.  Авторедукционные;
  3.  Внутрибазные;
  4.  Номограммные;
  5.  Электрооптические — способны обеспечивать автоматизацию съёмки.

Одно из главных преимуществ электронных тахеометров — это существенное уменьшение объёма рутинной бумажной работы. Ведётся только абрис, а все требуемые данные устройство самостоятельно сохраняет.

Виды электронных тахеометров
При этом полностью автоматически осуществляется расчет горизонтальных расстояний, которые в понятном для специалиста виде отображаются на дисплее. Всё это позволяет проводить изыскания гораздо быстрее и с более высокой точностью.

Источник — https://samastroyka.ru/elektronnyj-taxeometr.html

Оценить статью и поделиться ссылкой:

samastroyka.ru

Электронный тахеометр: принцип работы, съемка, цена.

Содержание страницы

Наиболее универсальным и распространенным среди точных геодезических измерительных инструментов является электронный тахеометр, впервые появившийся в близком к современному виде в конце прошлого столетия.

Конструктивно инструмент представляет собой объединение в едином корпусе теодолита, светодальномера и микроЭВМ. Его основным предназначением является:

  • выполнение угломерных плоскостных и дальномерных измерений, а также полярных координат с минимальной погрешностью;
  • составление подробных карт местности с точной фиксацией координат, высот и линейных особенностей рельефа;
  • определение расположения различного типа объектов, съемка электронным тахеометром;
  • автоматизированный режим множества измерений, в том числе измерения расстояний и превышений недоступных объектов;
  • проектирование трассы и поперечников, обратные засечки;
  • сохранение полученных данных по множеству точек;
  • автоматическое вычисление показателей, зависящих от измеряемых параметров;
  • устройство может быть использовано как функциональный дальномер и целеуказатель.

Основные функции и высокая производительность определяют сферы применения тахеометров: геофизические исследования, строительно-инженерные изыскания, земельный кадастр, нефтегазовая отрасль, маркшейдерское дело, строительные и многие другие области работ, связанных с точностью выполнения дальних замеров.

Устройство и принцип работы

Современные и далеко непростые условия работы предъявляют к измерительным устройствам все более высокие требования, как в плане конструктивных решений и технического оснащения, так и функциональности программного обеспечения.

Ключевыми составляющими любого электронного тахеометра являются:

  • подъемное трехопорное устройство – трегер;
  • пиксельный или сенсорный жидкокристаллический дисплей, отражающий данные измерений и предоставляющий возможность управления ими;
  • зрительная труба;
  • автономный дальномер или дальномер, совмещенный с системой фокусирования визирной трубы;
  • встроенный оптический лазерный отвес – центрир;
  • автоматический компенсатор (одноосевой или двухосевой), позволяющий выявить угловое отклонение тахеометра по оси/осям от уровня горизонта: в случае выхода за пределы допустимого диапазона функционирование прибора будет блокировано;
  • клавиатура, выполняющая функции панели управления и служащая для ввода данных станции;
  • современный мощный микропроцессор;
  • встроенная память, обеспечивающая хранение большого объема данных;
  • операционные системы Windows SE и Mobile и сопутствующее программное обеспечение, формирующие пользовательский интерфейс и выполняющие проведение полевых замеров и расчетов на их основе;
  • в современных цифровых тахеометрах предусмотрен широкий набор интерфейсов связи: USB-порты, Wi-Fi, Bluetooth, картридеры различных типов карт памяти;
  • использование в конструкциях современных моделей встроенного GPS-модуля делает возможным определение координат точек стояния с помощью спутниковой навигации;
  • аккумуляторные батареи, обеспечивающие интенсивную работу устройства и низкое энергопотребление в течение продолжительного времени.

Лежащий в основе электронно-оптических приборов принцип разности фаз испускаемого и отраженного представляет собой фазовый метод работы тахеометра. В более редких случаях используется импульсная технология, основанная на расчетах по времени прохождения лазерного луча до отражателя и в обратном направлении.

Имеющие безотражательный режим измерений модели могут производить замеры линейных расстояний практически до любого объекта. В этом режиме следует исключить попадание на пути следования луча посторонних предметов и климатических образований: веток, листьев, сильного тумана, дыма и т.д., могущих повлиять на достоверный промер расстояний.

Разновидности тахеометров

Виды электронных тахеометров весьма разнообразны, и их классификация, определяемая свойствами и функциями, достаточно развернута.

По сферам применения:

  • технические — наиболее простые, предназначенные для решения базовых задач;
  • строительные – обеспечивающие геодезическое сопровождение топографической съемки;
  • инженерные – сложные профессиональные инструменты для многогранных разбивочных работ, обладающие исключительной точностью получаемых данных и расширенным функционалом.

По точности вычислений:

  • точные, гарантирующие максимальную точность вычислений;
  • технические, обладающие большей, по сравнению с точными, погрешностью замеров.

По заложенному методу разбивочных работ:

  • полярный метод;
  • ортогональный;
  • по координатам строительной сетки.

Некоторые новейшие профессиональные модели предусматривают автоматическую коррекцию измерений, делают поправки на кривизну земной поверхности и рефракцию, фиксируют точку зенита.

Основы работы

Для того, чтобы работа с электронным тахеометром была удобна, оптимальна и эффективна, прежде всего следует внимательно прочитать инструкции, прилагаемые производителем к каждому прибору.

  1. Перед началом работы необходимо установить инструмент на трехопорный штатив на устойчивой поверхности, отцентрировав его по плоскостным ватерпасам, круглому пузырьковому или электронному уровню. Цифровые модели достаточно чувствительны к возможным вибрациям, которые могут повлиять на точность измерений.
  2. Убедиться, что трегер установлен правильно, в противном случае проверить юстировочные винты.
  3. На достоверности полученных данных могут отрицательно сказаться резкие перепады температуры, при необходимости следует дать время инструменту и его призменным механизмам адаптироваться к условиям окружающей среды.
  4. Устанавливать или снимать аккумуляторную батарею следует только при выключенном приборе, в противном случае хранящиеся данные будут утеряны.
  5. Работа с электронным тахеометром предполагает определенную квалификацию и опыт в геодезических исследованиях. Персоналу важно понимать правила пользования и техники безопасности, а также методику проведения поверок и юстировок.

Грамотно и квалифицированно используемый тахеометр способен заменить в сложных работах несколько традиционно используемых геодезических инструментов (нивелиров, дальномеров и реек, теодолитов). Его правильная эксплуатация существенно повысит точность производимых измерений при сокращении трудо- и временных затрат на составление точных планов местности, топопривязки различных строительных объектов и прочие виды геодезических работ.

На стоимость цифрового тахеометра влияет ряд факторов: точность и дальность работы, наличие целе- и створоуказателя, удобство и разнообразие формата передаваемых данных, режим энергопотребления, наличие аккумуляторных батарей и т.д. Цена варьируется в диапазоне от 350000 (для технических моделей) до 700000 и выше (для профессиональных инженерных с расширенным функционалом).

На текущий момент наиболее широко распространены электронные тахеометры Sokkia, Nicon, Leica, Trimble и некоторых других зарекомендовавших себя производственных концернов.

Видео: знакомство с электронным тахеометром

echome.ru

Какой тахеометр выбрать для строительства

Изучая геодезический рынок тахеометров, мы понимаем, что предложений огромное количество. Тут сразу возникает вопрос, как выбрать тахеометр для строительства и не ошибиться? Мы осознанно упустим из виду функционал, который важен при измерениях в топографии и на протяженных объектах, а более подробно рассмотрим для чего нужен тахеометр в строительстве. В этой статье речь пойдет о том, какой тахеометр выбрать для стройки. Прежде чем выбрать подходящий строительный тахеометр, следует определиться с задачами, которые предстоит решать с его помощью. Нет плохих или хороших моделей, но есть особые виды работ, которые требуют использования тех или иных функций.

Какой тахеометр лучше купить? Обращаем внимание на следующие критерии:

Тахеометры по классам: инженерный или технический
Разница между техническими и инженерными тахеометрами состоит в программном обеспечении и измерительной точности. Так, «инженерники» имеют расширенные наборы прикладных программ, с навороченным процессором. Точность инженерных тахеометров от 5 до 1 секунды.
Технические тахеометры – незаменимые рабочие лошадки, без лишних выкрутасов. Созданы для того, чтобы мерить и еще раз мерить, записывать в память, выполнять набор стандартных функций и расчетов. Такие тахеометры имеют меньший спектр прикладных программ и точность измерений от 9 до 5 секунд.
Разбивка разбивке рознь. Например, чтобы разбить котлован под будущий фундамент, достаточна точность в диапазоне 6-9 секунд, а для разбивки подферменника на опоре моста требуется точность 3-5 секунд. Отсюда вывод, что для одних видов работ нужен инженерник, а для других подойдет и технический. Выбирайте тахеометр, в зависимости от того, какие виды работ вы собираетесь выполнять в своей массе.

Температурный режим работы
Тахеометры работают в различных температурных режимах. Какой тахеометр лучше купить, по этому критерию, зависит от того при каких климатических условиях вам придется работать.
Зимние варианты (морозостойкие тахеометры) оптимизированы для работы в морозное время. Они могут быть как с системой внутреннего подогрева, так и изготовлены из специфических материалов, которые не подвержены замерзанию. Такие электронные тахеометры используют для строительства как в арктических широтах, так и в умеренном климате зимой при сильных морозах. Диапазон работы таких тахеометров в среднем от – 35 до +50. Не морозостойкие тахеометры, как правило работают при температуре от -20 до +50 градусов, что вполне приемлемо для использования на строительных площадках в средней полосе.

Режим измерения расстояний
На строительной площадке часто приходится выполнять измерения в труднодоступных местах. Поэтому, когда встает вопрос, какой тахеометр выбрать для стройки, обязательно нужно обратить внимание на параметры измерения. У всех моделей тахеометров точность и дальность измерений по отражателю довольна высока, как правило свыше 500 метров, что для стройплощадки будет более, чем достаточно. Но точность и дальность в безотражательном режиме в тахеометрах обычно ниже, чем при работе с отражателем. Желательно рассматривать модели с возможностью измерять расстояние без отражателя от 100 метров и выше. При выборе тахеометра для строительства, следует учесть, что производитель в характеристиках указывает максимальную дальность и точность с учетом идеальных условий (когда измеряемая поверхность хорошо освещена).

Источник питания
Порой, измерительные работы на строительной площадке занимают много времени. Поэтому, выбирая тахеометр для строительства следует обращать внимание на время работы батарей. Некоторые модели оснащены дополнительной аккумуляторной батареей, что является несомненным плюсом. Так называемая «замена на горячую», очень выручает, когда аккумулятор садится в середине рабочего дня, а процесс съемки идет полным ходом. Также есть электронные тахеометры, оснащенные мощными аккумуляторами, способными обеспечить работу в течении продолжительного времени.

Функциональные особенности
Пройдемся по функциям, которые нам пригодятся в выборе тахеометра для стройки:

  • Лазерный указатель створа – этот элемент значительно упрощает работу при разбивке.
  • Центрир. Для работы на стройке лазерный центрир, особенно в условиях плохой освещенности, нагляднее и удобнее нежели оптический. Для полевых же работ наоборот, больше подойдет оптика, так как лазер плохо виден в траве и в солнечную погоду. Подбирайте центрир под конкретные условия работы. Если необходим универсальный вариант – то можно докупить треггер с недостающим центриром. 
  • Клавиатура может быть полной или сокращенной. Желательно выбирать модель тахеометра для строительства с полной клавиатурой, так как она гораздо удобнее в работе.
  • Флешка. Удобно, когда информацию с тахеометра можно скинуть на флешку, чтобы затем обработать на компьютере. Для строительства лучше купить тахеометр, оснащенный портом USB для передачи данных, тогда не будет необходимости подключать прибор напрямую к компьютеру.     

Возможность беспроводного подключения к Bluetooth и Wi-Fi — приятный бонус. Но все эти дополнительные примочки увеличивают цену и без того дорогостоящего прибора. А вот такая опция как расширенная карта памяти не играет на стройплощадке особой роли, так как за один рабочий день навряд ли наберется такое количество конструктива, как при топографических съемках. Стандартная память, до 5 тыс. точек, более чем достаточна.

Бренд
Многие задаются вопросом, тахеометр какой фирмы лучше купить? На рынке геодезии наиболее известными считаются компании: Trimble, Sokkia/Topcon, Leica, Nikon, Spectra Precision, Geomax. Китай тоже не отстает и в последнее время активно занимается производством тахеометров (South, Stonex, Pentax). По сути, программное обеспечение у всех приборов практически одинаково, поэтому бренд имеет значение только с точки зрения качества материала, из которого изготавливается тахеометр, и личного предпочтения.

Перечисленные критерии следует учитывать, когда задаетесь вопросом какой тахеометр лучше купить и как выбрать тахеометр для строительства домов, зданий и сооружений. На геодезическом рынке также встречаются роботизированные тахеометры и тахеометры со встроенным GPS. Эти усовершенствованные приборы удобны в использовании и позволяют повысить производительность, они заслуживают отдельной темы.

При строительстве небоскребов используется оборудование другого класса, так как высотное строительство требует не только высокоточных геодезических работ, но и имеет свои особенности измерений.

Электронный тахеометр – это не только дорогостоящий прибор с набором опций, но и незаменимый помощник на строительной площадке. Поэтому к его выбору надо подойти основательно. По отзывам, за последние годы на строительных площадках зарекомендовали себя такие модели как Leica TS06, Nikon Nivo 5M, Sokkia CX-105. Надеемся, что освещенные в статье аспекты помогут ответить на вопрос — какой тахеометр выбрать для стройки, с учетом особенностей вашей работы.

geostart.ru

Зачем нужен тахеометр?

Для того, что бы получить максимальный результат необходимо приложить максимум усилий. Об этом знают все. Для того, что бы достичь подобного результата в геодезии необходимо использовать новые высокотехнологичные приборы, которые позволяют получить тот результат, который вам необходим.

С одной стороны подобного рода приборы конечно же упрощают жизнь и не заставляют человека думать. Они предоставляют готовый результат после чего инженер или геодезист уже не задумывается над тем, почему вышло именно так. Но в тоже время эти приборы позволяют уменьшить срок получения расчетов и как следствие уменьшают срок строительства, ведь получение результатов в ту же секунду значительно ускоряет весь процесс.

Но тем не менее без специалистов не обойтись, и все анализы должны проводится именно ими. Поэтому давайте попробуем узнать какие приборы нужны геодезистам, что бы обеспечить им эффективную работу.

Сегодня довольно часто можно встретить такой прибор как тахеометр. Возможно само название вы слышите впервые, но видеть его на улицах вам точно приходилось. Этот прибор предназначен для того, что бы измерять расстояния, а так же может служить для измерения углов. Некоторые техеометры обладают более высоким спектром услуг и дают возможность так же распознавать координаты местности и ее структуру.

Тахеометры бывают двух типов. Строительные и технические и разумеется, что в зависимости от этого определяется схема их применения. Для того, что бы использовать этот инструмент в строительстве к нему подключается множество дополнительных приборов, что бы команда имела большее представления о том, с чем им придется столкнутся. Так к нему могут подключить дальномер, специальный штатив, картограф и другие приборы. В повседневной жизни сложно найти применение такому прибору и это не удивительно. Все его функции настроены таким образом, что он может выполнять серьезные проекты, а в простых домашних условиях ему попросту будет тесно. Если вам необходим тахеометр для стройки то лучше всего обратить внимание на оптический или лазерные инструмент. Они более точные и в зависимости от ваших нужд помогут их решить максимально быстро.

Использование специализированных прибор позволяет геодезистам и инженерам ускорить свою работу. Проекты в которых используются профессиональные инструменты выполняют более качественно. Более того это позволяет соблюдать все нормы, что бы в конечном итоге проект был сдан без малейших проблем.

selgazeta.ru

Тахеометрическая съемка — что это такое, сущность метода

Тахеометрическая съемка — один из видов топографической съемки, которая выполняется при помощи геодезических устройств — теодолитов и тахеометров. В буквальном смысле, слово «тахеометрия» с древнегреческого языка обозначает быстрое измерение. В основе тахеометрической съемки лежит замысел того, чтобы при разовом наведении прибора на рейку будет произведен расчет расстояния, а также горизонтальных и вертикальных углов или их превышения, тогда можно будет добиться высокой скорости выполнения задания.

Тахеометрами называются оптические теодолиты, которые автоматически позволяют находить превышения и горизонтальные положения на местности. Тахеометр в отличие от теодолита оборудован дальномером, благодаря которому появляется возможность измерять как углы, так и расстояния.

Понятие о тахеометрической съемке и современные приборы для ее проведения

Сущность метода тахеометрической съемки заключается в установлении точек, представляющих рельеф местности и очертания объектов. В месте каждой снимаемой точки, пользуясь способом полярных координат, находятся направление и угол наклона. Главной целью съемки является подготовка плана исходной местности.

Работа на станции при тахеометрической съемке

Данный абзац описывает порядок работы на станции. Естественно, всякий рассматриваемый объект индивидуален и этот процесс необходимо подогнать под конкретную ситуацию, однако, существует определенная последовательность действий, сопровождающая работы.

Для начала в точке съемки располагают штатив, закрепляют на нем прибор так, чтобы зрительная труба находилась на уровне глаз, центрируют теодолит и приводят его к горизонту, замеряют высоту от точки до устройства (обозначается буквой i). Далее, выполняется ориентирование на исходный пункт путем установки ноля лимба с учетом истинного или магнитного меридиана на какую-либо из смежных точек. В большинстве случаев ориентирование производится при круге лево.

Устройство наводится на измеряемую точку, по лимбу определяется направление, измеряется расстояние с использованием нитяного дальномера, далее по вертикальному кругу измеряется угол наклона.

Данные, полученные в ходе проведенных работ, должны заноситься в журнал, современные виды тахеометров способны сохранять их в память устройства или на внешние накопители.


Производство тахеометрической съемки

Перед началом проводится уплотнение имеющейся геодезической сети съемочными точками до такой плотности, которая будет обеспечивать на всей площади съемки тахеометрические ходы, соблюдая установленные требования, их отображает инструкция.

В основном работы выполняются из точек тахеометрических ходов, точки из которых производится съемка местности называют съемочными станциями, снимаемые точки – пикетами.

Полевые работы при тахеометрической съемке начинаются после вынесения на карту исследуемой местности тахеометрических ходов, станции обозначают с помощью деревянных либо металлических кольев, в зависимости от необходимости их долговечности.

Существуют два типа тахеометрических съемок – первый это съемка земельного участка, иначе называемая площадной и съемка, применяемая при линейном строительстве – маршрутная.

Маршрутная тахеометрическая съемка производится для проектирования линейных объектов: автомобильных дорог, трубопроводов, железнодорожных линий и т.д. На начальном этапе работ необходимо проложить теодолитный ход между станциями съемки. Далее, с каждой точки полярным способом отдельно замерить ситуационные пикеты – которые отображают контур ситуации и орографические – отображающие рельеф.

Места точек определяют на характерных участках рельефа данной территории. Для орографических пикетов определяют горизонтальные углы, углы наклона и расстояния, а для ситуационных расчет углов наклона не требуется. Реечные точки располагают равномерно и в достаточном количестве, чтобы они максимально описывали рельеф исследуемой территории.

В том случае, когда расстояние между точками превышает максимально допустимое (табл. 3), то прокладывается висячий ход от станции съемки, который по размерам не должен быть больше 500 метров и иметь не более 3 точек.

Замеры горизонтальных углов необходимо брать от линии нулевого направления, за нее принимают переднюю либо заднюю сторону хода. Для этого на каждой станции до того как снять пикеты нужно навести лимб прибора на переднюю или заднюю точку хода, совместив нулевую отметку первого верньера алидады с нулем на лимбе горизонтального круга. После этого на лимбе закрепляют алидаду и, ослабив фиксирующий винт лимба, визируют на необходимую точку хода. Затем, ослабив фиксирующий винт алидады горизонтального круга, визируют на пикеты.

В результате горизонтальными углами будут отсчеты, полученные по верньеру горизонтального круга. В конце съемки пикетов на каждой съемочной точке выполняют проверку лимба, визируя на переднюю или заднюю точку хода, где отсчет по первому верньеру не должен отличаться более чем на 2*t, где t-точность верньера.

При площадной съемке выполняют замкнутый ход, его стороны замеряют с помощью дальномера, а углы при круге лево (КЛ) и круге право (КП). Данные измерения записывают в полевом журнале. Стороны хода желательно наносить вблизи водораздельных линий, если сложно наметить их направления, то необходимо сделать съемку рельефа местности и после этого по горизонталям нанести водораздельные линии.

Расстояния между точками замкнутого хода не должны превышать допустимые (табл. 1), в противном случае необходимо добавлять диагональные ходы и проводить досъемку территории.

Понятие о тахеометрической съемке и современные приборы для ее проведения

Допустимые длины от точек тахеометрических ходов до пикетов и между ними указаны в таблице 2.

Понятие о тахеометрической съемке и современные приборы для ее проведенияПлотность пунктов съемки также должна отвечать требованиям (табл. 3). Поэтому перед началом работ проводят рекогносцировку снимаемой территории, полученная информация сопоставляется с абрисами соседних станций.

Понятие о тахеометрической съемке и современные приборы для ее проведения
На каждом пикете необходимо выполнять абрисы (рис. 1) – это схематичные зарисовки с нанесением съемочных точек, условных знаков и направлением лимба. Абрисы показывают основную информацию об исследуемой территории, которую в дальнейшем применяют при составлении плана.

Понятие о тахеометрической съемке и современные приборы для ее проведения

Рисунок 1 – абрис тахеометрической съемки

Если абрис максимально точно описывает ситуацию изучаемой местности, ход камеральных работ пройдет значительно быстрее.

Ошибки и меры предосторожности при тахеометрической съемке

Во время выполнения описываемых работ могут допускаться следующие ошибки: инструментальные погрешности, при перестановке и наведении прибора, ошибки по естественным причинам.

Когда перед началом работ прибор находится в состоянии регулировки, заданные заводом-изготовителем константы устройства должны быть проверены в полевых условиях путем фактического наблюдения. Это обязательное требование для измерений, так как точность при работах является основным критерием. Значения на мерной рейке должны четко прослеживаться, при любом несоответствии нужно внести необходимые коррективы.

Ошибки при манипуляциях с прибором в большинстве случаев зависят от квалификации рабочего, поэтому измерения необходимо проводить под надзором более опытного геодезиста.

Ошибки по естественным причинам могут возникать в следствие погодных условий таких, как ветер, туман, осадки и так далее, а также при рефракции света. Последняя ошибка является самой распространенной, ее причиной оказывается преломление лучей света при их прохождении через слои воздуха разной плотности. Для того, чтобы избежать этого, не рекомендуется проводить работы в середине дня.


Методы ухода за прибором и полезные советы

  1. Не погружайте тахеометр в воду или другие химические вещества.
  2. Не роняйте инструмент.
  3. Перед транспортировкой убедитесь, что тахеометр надежно закреплен в защитном кейсе.
  4. Во время дождя используйте защитную крышку.
  5. Не смотрите на прямой солнечный свет через прибор.
  6. Деревянный штатив лучше защищает прибор от вибраций чем алюминиевый.
  7. Всегда имейте достаточный уровень заряда аккумулятора.
  8. Очищайте прибор после использования (пыль может стать причиной неисправностей).
  9. При перемещении над точками не забывайте перепроверять уровень для обеспечения точности.

Камеральные работы при тахеометрической съемке

Камеральные работы при тахеометрической съемке выполняются в 4 этапа. На первом этапе работ проводится проверка полевых журналов, путем перерасчета полученных данных выполняется обработка результатов тахеометрической съемки. При обнаружении погрешностей их устраняют с помощью необходимых исправлений. Далее вычисляют плановые положения съемочных станций на поверхности и их высотные отметки. Прибавив к их отметкам высоту реечных точек определяют отметку пикетов.

По завершению вышеизложенных работ проводится составление плана тахеометрической съемки местности, с этой целью в нужном масштабе на него наносят пункты съемки и тахеометрические ходы, измеряют расстояния между ними для проверки. Полярным способом располагают на плане точки пикетов, рядом с ними указывают номер и отметку.

Руководствуясь абрисом наносят объекты, присутствующие на местности. Следующим шагом служит построение плана горизонталей по отметкам пикетов, для удобства горизонтали подписываются в разрывах, таким образом, чтобы верх цифр располагался в сторону повышения рельефа. Также они не должны перекрывать элементы, отмеченные на местности (дома, реки и так далее). В результате проведенных работ получают план исследуемой территории.

Понятие о тахеометрической съемке и современные приборы для ее проведения


Современные приборы для тахеометрической съемки

Благодаря электронным тахеометрам достигается автоматизация ведения тахеометрической съемки. Для этого рейку на пикете заменяет светоотражающая вешка, и при наведении на нее прибор можно использовать для измерения горизонтальных, вертикальных углов и расстояния. Он также интегрирован с микропроцессором и внутренней системой хранения данных.

Микропроцессор позволяет моментально получить нужные данные, а именно плановые координаты наблюдаемых точек, высоту объектов, расстояния между любыми двумя точками и другие. Данные, собранные и обработанные на тахеометре, могут быть загружены в компьютер для дальнейшей обработки.

Для примера рассмотрим компактный тахеометр Японской компании Sokkia, его вес всего 5,8 кг, схема с расположением частей представлена на рисунке 2.

Понятие о тахеометрической съемке и современные приборы для ее проведения

Рисунок 2 – Схема электронного тахеометра Sokkia

1 – ручка для перемещения прибора; 2 – крепежный винт ручки; 3 – терминал ввода/вывода данных; 4 – отметка высоты тахеометра; 5 – аккумулятор; 6 – панель управления; 7 – зажим трегера; 8 – основание трегера; 9, 10 – регулировочные винты; 11 – круглый уровень; 12 – дисплей; 13 – линза объектива; 14 – компас; 15, 16, 17 – устройства оптического отвеса; 18 – винт закрепляющий горизонтальный круг; 19 – микрометренный винт горизонтального круга; 20 – разъем для ввода/вывода данных; 21 – разъем внешнего источника питания; 22 – уровень трегера; 23 – винт регулировки уровня трегера; 24 – микрометренный винт вертикального круга; 25 – винт закрепляющий вертикальный круг; 26 – окуляр зрительной трубы; 27 – кольцо фокусировки зрительной трубы; 28 – визир; 29 – отметка центра устройства.

Трегером называется приспособление на котором закрепляется прибор.

Дальность измерений этого прибора колеблется от 2,8 до 4,2 км, а точность от 5 до 10 мм на километр измерения. Точность измерения углов варьируется от 2 до 6 секунд.

Тахеометр оснащен мощным процессором, который с помощью измеренного вертикального, горизонтального угла и наклонного расстояния вычисляет горизонтальное расстояние и координаты X, Y, Z. Если выставлены значения атмосферного давления и температуры, то при обработке данных не нужно проводить соответствующие коррекции. На дисплее устройства можно отображать расстояния, углы, разницу высот и все три координаты наблюдаемых точек.

Данные по каждой точке могут храниться в электронном журнале, емкость которого составляет от 2000 до 4000 пунктов, информацию можно выгрузить на компьютер и использовать журнал повторно.

Точечные данные, загруженные на компьютер, могут быть обработаны в программах GEOMIX, AutoCad, которые позволяют строить контура на любом заданном интервале и поперечные сечения вдоль указанных линий.

Прибор может успешно применяться в строительстве, маркшейдерском деле, землеустройстве, топографии, проведении изысканий и во многом другом.

Ниже приведены основные преимущества электронного тахеометра по сравнению с обычными геодезическими приборами:

  1. Полевые работы проводятся очень быстро.
  2. Высокая точность измерений.
  3. Устраняются ручные ошибки, связанные с чтением и записью данных.
  4. Расчет координат происходит быстро и точно.
  5. Полученные данные могут использоваться компьютером для создания карт, построения контуров и сечений.

Однако, необходимо своевременно проводить проверку устройства на заранее подготовленных пунктах. В этом случае электронный тахеометр совместно с компьютером дает возможность максимально автоматизировать процесс работ.

Из недостатков стоит отметить то, что при камеральных работах отсутствует возможность своевременного обнаружения ошибок, допущенных во время съемки. Устранить их можно лишь путем сравнения плана с местностью на которой производились работы.

geomix.ru

Что такое тахеометрическая съёмка — Геодезия и Строительство

15 Мая 2019

С XIX века и по сегодняшний день, для получения топографических планов местности часто используется тахеометрическая съёмка. Планово-высотное положение точек при этом определяется, как правило, полярным способом, при котором измеряется полярный угол β, угол наклона ν и расстояние D (рис.1). Либо же, осуществляется угловая засечка тахеометром. Для этой цели используются оптические или оптико-электронные тахеометры.

Определение «тахеометр» впервые, в ХIХ веке ввел венгерский геодезист Тихи. В переводе с греческого это означает «быстро измеряющий».

С помощью оптического тахеометра угол β измеряется по горизонтальному кругу, угол наклона ν по вертикальному кругу, а расстояние D по нитяному дальномеру.

ris1.jpg

Рис 1

Во второй половине прошлого века были созданы светодальномеры компактных размеров. Это позволило устанавливать их на теодолит и с их помощью выполнять более точное измерение расстояний по сравнению с нитяным дальномером. Впоследствии, приборостроение эволюционировало так, что можно было интегрировать светодальномер и теодолит в единый корпус прибора.

Однако прорывом в геодезическом приборостроении по праву можно считать выпуск первого электронного тахеометра AGA-136 швейцарского производства. В этом инструменте оптическая система считывания была заменена на электронную. А так как прибор был оснащен светодальномером, то измерения и углов, и расстояний стали выполняться в автоматическом режиме.

Позднее, в электронный тахеометры стали внедряться вычислительные платы и полевые программы для выполнения геодезических работ. Приборы были дополнены встроенной памятью, что позволило исключить необходимость ведения полевого журнала. За счет всего вышеперечисленного, скорость выполнения работ повысилась в разы. Значительно увеличилась точность и надежность полученных результатов измерений.

Вернемся к основополагающим принципам выполнения тахеометрической съемки…

Тахеометрическая съёмка местности обычно осуществляется при круге право с опорных точек (станций), в качестве которых могут быть использованы пункты государственной геодезической сети, сети сгущения, а также пункты съёмочной геодезической сети. Последняя может быть создана различными способами:

  • в виде теодолитно-нивелирных ходов, когда плановое положение опорных пунктов могут определять проложением теодолитных ходов, а их высоты получены из геометрического нивелирования;
  • в виде теодолитно-высотных ходов, когда высоты определяют из тригонометрического нивелирования;
  • в виде тахеометрических ходов, отличающихся от предыдущих тем, что измерения выполняют с помощью электронного тахеометра.

При выполнении съёмки оптическим (не электронным тахеометром) прибор устанавливают на точку В, центрируют и горизонтируют. Прежде чем начать работу на каждой станции, определяется значение МО и измеряется высота инструмента i. Затем наводят зрительную трубу тахеометра по вертикальной сетке нитей на заднюю опорную точку А (либо переднюю опорную точку) и ориентируют прибор так, чтобы при этом отсчёт по горизонтальному кругу был равен 0. После этого лимб закрепляют и начинают набор пикетов. При этом перекрестье сетки нитей наводят на рейку, установленную на точке местности, и измеряют горизонтальный (β) и вертикальный (ν) углы, а нитяным дальномером измеряют расстояние D до неё. Результаты измерений записывают в полевой журнал.

Превышение h вычисляют из тригонометрического нивелирования

h = D tgν + i – l.

Здесь l – высота знака (высота точки наведения на рейке, по которой берётся отсчет при измерении вертикального угла ν). Для простоты вычислений при обработке журнала обычно во время съёмки выбирают i = l. Для этого во время съёмки пикетов среднюю нить сетки зрительной трубы прибора наводят на точку рейки, соответствующую высоте инструмента.

Снимаемые точки (пикеты), в которых устанавливают рейку во время съёмки, выбирают таким образом, чтобы при минимальном их количестве правильно изобразить снимаемую ситуацию и рельеф. Одновременно с выполнением работы рисуют абрис (рис.2). На нём отображают станцию, направление ориентирования горизонтального круга, ситуацию и расположение снимаемых пикетов, их номера и соответствующими условными знаками отмечают ситуацию местности. Здесь же пунктирными линиями изображают схему рельефа, а стрелками указывают направления склонов местности. Высотные пикеты должны быть установлены по всем основным линиям направления рельефа: водоразделам, водостокам, линиям скатов.

ris2.jpg

Рис 2

По завершению съёмки на станции прибор вновь визируют на начальное направление, чтобы проверить, не сместился ли во время работы лимб инструмента. Этот отсчёт может отличаться от исходного не более чем на угловую величину, установленную инструкцией для съемки конкретного масштаба.

Как правило, это несколько угловых секунд. Если допуск превышен, все измерения на данной станции выполняют заново. Аналогичную операцию следует выполнять и в процессе съёмки каждых 10 – 15 точек, чтобы исключить переделку большого объёма работ.

Обработку тахеометрической съёмки производят в следующем порядке:

  1. Вычисляют углы наклона с учётом МО, измеренного на каждой станции;
  2. Вычисляют расстояние для каждого пикета из дальномерных измерений;
  3. Вычисляют превышение h;
  4. Вычисляют отметки пикетов

Hi = Hст + hi,

где Hi — отметка пикета, Hст – отметка станции, hi – вычисленное превышение между станцией и пикетом.

ris3.jpg

Рис 3

При построении плана тахеометрической съёмки (классическими, не компьютеризированными способами) предварительно строят координатную сетку и наносят по координатам точки хода. Нанесение на план снятых точек выполняют с помощью транспортира, совмещая его нуль с направлением, принятым на станции за начальное. После этого отмечают направление для каждой снятой точки и, затем, по поперечному масштабу откладывают расстояние от станции до пикета и накалывают точку. Рядом с наколотой точкой пишут номер пикета и отметку точки.

По результатам съёмки накладывают на план ситуацию местности и проводят горизонтали, интерполируя между соответствующими нанесёнными точками. План тахеометрической съёмки вычерчивают, используя условные знаки. Пример выполнения плана тахеометрической съёмки показан на рис 3.

gis2000.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *