10.09.2024

Регулятор давления на отопление: Принцип работы регулятора давления воды в системе отопления и водоснабжения

Содержание

Регулятор давления отопления|Устройство регулятора давления

       Здравствуйте, друзья! Эта статья написана мной в соавторстве с Александром Фокиным, начальником отдела маркетинга ОАО «Теплоконтроль», г.Сафоново, Смоленская область. Александр отлично знаком с устройством и работой регуляторов давления в системе отопления.

      В одной из самых распространенных схем для тепловых пунктов здании – зависимой, с элеваторным смешением, регуляторы давления прямого действия РД «после себя» служат для создания необходимого напора перед элеватором. Рассмотрим немного, что представляет собой регулятор давления прямого действия. Прежде всего, нужно сказать, что регуляторы давления прямого действия не требуют дополнительных источников энергии, и в этом их несомненное достоинство и преимущество.

      Принцип работы регулятора давления состоит в уравновешивании давления пружины настройки и давления теплоносителя, предаваемого через мембрану (мягкую диафрагму). Мембрана воспринимает импульсы давления с обеих сторон и сопоставляет их разницу с заданной, устанавливаемой посредством соответствующего сжатия пружины гайкой настройки.

      Каждому числу оборотов соответствует автоматически поддерживаемый перепад давлений. Отличительная особенность мембраны в регуляторе давления после себя – это то, что по обе стороны мембраны воздействуют не два импульса давления теплоносителя, как у регулятора перепада давлений (расхода), а один, а со второй стороны мембраны присутствует атмосферное давление.

       Импульс давления РД «после себя» отбирается на выходе из клапана по направлению движения теплоносителя, поддерживая заданное давление постоянным в точке отбора этого импульса.

При увеличении давления на входе в РД, он прикрывается, защищая систему от избыточного давления. Установку РД на требуемое давление осуществляют гайкой настройки.

       Рассмотрим конкретный случай. На входе в ИТП давление 8 кгс/см2, температурный график 150/70 °С, и мы предварительно сделали расчет элеватора и просчитали минимально необходимый располагаемый напор перед элеватором, эта цифра получилась у нас равной 2 кгс/см2. Располагаемый напор — это разница давлений между подачей и обраткой перед элеватором.

      Для температурного графика 150/70 °C минимально необходимый располагаемый напор, как правило, в результате расчета получается 1,8-2,4 кгс/см2, а для температурного графика 130/70 °С минимально необходимый располагаемый напор обычно составляет 1,4-1,7 кгс/см2. У нас напомню, получилась цифра 2 кгс/см2, и график — 150/70 °С. Давление в обратке — 4 кгс/см2.

      Следовательно, чтобы добиться необходимого просчитанного нами располагаемого напора, давление перед элеватором должно быть 6 кгс/см2. А на вводе в тепловой пункт, давление у нас, напомню, 8 кгс/см2. Значит, РД у нас должен сработать так, чтобы сбросить давление с 8 до 6 кгс/см2, и держать его постоянным «после себя» равным 6 кгс/см2.

      Подходим к основной теме статьи – как выбрать регулятор давления для данного конкретного случая. Сразу поясню, регулятор давления выбирают по пропускной способности. Пропускная способность обозначается как Kv, реже встречается обозначение KN. Пропускная способность Kv считается по формуле: Kv = G/√∆P. Пропускную способность можно понимать как способность РД пропускать необходимое количество теплоносителя при наличии нужного постоянного перепада давлений.

      В технической литературе встречается также понятие Kvs – это пропускная способность клапана в максимально открытом положении. На практике зачастую наблюдал и наблюдаю, РД подбирают и затем приобретают по диаметру трубопровода. Это не совсем верно.

       Производим далее наш расчет. Цифру расхода G, м3/час получить несложно. Она рассчитывается из формулы G = Q/((t1-t2)*0,001). Необходимая цифра Q у нас есть обязательно, в договоре теплоснабжения. Примем Q = 0,98 Гкал/час. Температурный график 150/70 С, следовательно t = 150, t2 = 70 °С. В результате расчета у нас получится цифра 12,25 м3/час. Теперь необходимо определить перепад давлений ∆P. Что в общем случае обозначает эта цифра? Это разница между давлением на входе в тепловой пункт (в нашем случае 8 кгс/см2) и необходимым давлением после регулятора (в нашем случае 6 кгс/см2).

Производим расчет.
Kv = 12,25/√(8-6) = 8,67 м3/час.
В технико — методических пособиях рекомендуют эту цифру умножать еще на 1,2. После умножения на 1,2 получаем 10,404 м3/час.

      Итак, пропускная способность клапана у нас есть. Что необходимо делать дальше? Дальше нужно определиться РД какой фирмы вы будете приобретать, и посмотреть технические данные. Скажем, вы решили приобрести РД-НО от компании ОАО Теплоконтроль. Заходим на сайт компании http://www.tcontrol.ru/ , находим необходимый регулятор РД-НО, смотрим его технические характеристики.

        Видим, что для диаметра dу 32 мм пропускная способность 10 м3/час, а для диаметра dу 40мм пропускная способность 16 м3/час. В нашем случае Kv = 10,404, и следовательно, так как рекомендуется выбирать ближайший больший диаметр, то выбираем — dу 40 мм. На этом расчет и выбор регулятора давления считаем законченным.

        Далее я попросил Александра Фокина рассказать о технических характеристиках регуляторов давления РД НО ОАО «Теплоконтроль» в системе отопления.

         Касаемо, РД-НО нашего производства. Действительно раньше была проблема с мембранами: качество российской резины оставляло желать лучшего. Но уже года 2 с половиной мы делаем мембраны из материала компании EFBE (Франция) — мирового лидера в области производства резинотканных мембранных полотен. Как только заменили материал мембран, так сразу фактически прекратились жалобы на их разрыв.

      При этом хотелось бы отметить один из нюансов конструкции мембранного узла у РД-НО. В отличие от представленных на рынке российских и импортных аналогов мембрана у РД-НО не формованная, а плоская, что позволяет при ее разрыве заменить на любой сходный по эластичности кусок резины (от автомобильной камеры, транспортерной ленты и т.д.).

      У регуляторов давления других производителей, как правило, необходимо заказывать именно «родную» мембрану. Хотя честно стоит сказать, что разрыв мембраны особенно при работе на воде температурой до 130˚С — это болезнь, как правило, отечественных регуляторов. Зарубежные производители изначально используют высоконадежные материалы при изготовлении мембраны.

Сальники.

       Изначально в конструкции РД-НО было сальниковое уплотнение, представлявшее собой подпружиненные фторопластовые манжеты (3-4 штуки). Несмотря на всю простоту и надежность конструкции, периодически их приходилось поджимать гайкой сальника, чтобы предотвратить утечку среды.

      Вообще, исходя из опыта, любое сальниковое уплотнение имеет склонность к потере герметичности: фторкаучук (EPDM), фторопласт, политетрафторэтилен (PTFE), терморасширенный графит — ил-за попаданий механических частиц в область сальника, из «корявой сборки», недостаточной чистоты обработки штока, термического расширения деталей и т.д. Течет все: и Данфосс (чтобы они не говорили), и Самсон с LDM (хотя здесь это исключение), про отечественную регулирующую арматуру я вообще молчу. Вопрос только в том, когда потечет: в течение первых месяцев эксплуатации или в дальнейшем.

       Поэтому мы приняли стратегическое решение отказаться от традиционного сальникового уплотнения и заменить его сильфоном. Т.е. использовать так называемое «сильфонное уплотнение», дающее абсолютную герметичность сальникового узла. Т.е. герметичность сальникового узла теперь не зависит ни от перепадов температур, ни от попадания механических частиц в область штока и т.д. — она зависит исключительно от ресурса и циклопрочности применяемых сильфонов. Дополнительно, на случай выхода из строя сильфона, предусмотрено дублирующее уплотняющее кольцо из фторопласта.

      Впервые мы применили это решение на регуляторах давления РДПД, а с конца 2013 года начали выпускать и модернизированный РД-НО. При этом нам удалось вместить сильфоны в существующие корпуса. Обычно самым большим (да и по сути единственным минусом) сильфонных клапанов является увеличенные габаритные размеры.

      Хотя, мы считаем, что примененные сильфоны не полностью подходят для решения этих задач: думаем, что их ресурса не хватит на все положенные 10 лет работы регулятора (которые обозначены в ГОСТе). Поэтому сейчас мы пробуем заменить используемые трубчатые сильфоны на новые мембранные (их ещё мало кто использует), которые имеют в несколько раз больший ресурс, меньшие габариты при большей «эластичности» и т.д. Но пока за год выпуска сильфонных РД-НО и за 4 года выпуска РДПД ни одной жалобы на разрыв сильфона и утечку среды не было.

       Ещё хотел бы отметить, разгруженную клеточную конструкцию клапана РД-НО. Благодаря этой конструкции, он имеет почти идеальную линейную характеристику. А так же невозможность перекоса клапана в результате попадания всякого хлама, плавающего в трубах.


Регулятор давления воды

Система отопления закрытого типа имеет такое понятие как рабочее давление, которое требует специальные устройства для его контроля, регулирования и поддержания. Насколько отопление будет функциональным, зависит от бесперебойной циркуляции воды по трубам. Рабочая среда в зависимости от удаленности и режимов работы источника теплоснабжения имеет свойство повышать давление в системе до максимального уровня и поэтому специалисты рекомендуют обязательно устанавливать регулятор давления воды. Это поможет увеличить срок работы системы и избежать аварий.
Разновидности регуляторов

Устройство имеет два вида:

  1. Регулятор давления воды по статике. (Статический регулятор давления.)
    Этот вид прибора применяется в помещениях и объектах, где система водозабора неравномерная и непостоянная. Регулятор этого типа помогает поддерживать напор «после себя».
  2. Регулятор давления воды по динамике. (Динамический регулятор давления.)
    Этот тип устройства применяется в системах, где напор потока воды непрерывный.
      Принцип работы

      Горячая вода, циркулируя в отопительной системе из-за высокой температуры, увеличивается в объеме, за счет этого повышается давление, что требует выравнивания данного параметра до требуемого значения. Таким образом, закрываясь, редукционный клапан снижает расход и давление в системе.

      Регулятор давления воды помогает стабилизировать работу системы от 0 до 9 атмосфер. Чтобы восполнить объем воды при ее остывании, вода подкачивается обратно в отопительные трубы.

      Прибор помогает:

      • поддерживать рабочее давление в устройстве теплоснабжения;
      • снизить до минимума риск аварии;
      • обеспечивать полноценную циркуляцию горячей воды;
      • увеличить срок эксплуатации отопительной системы;
      • снизить поломки элементов теплоснабжения.
      Область применения

      Регулятор давления воды можно применять не только в системе отопления, но и его монтируют на бойлерах, котлах, и других гидравлических и отопительных устройствах, которые эксплуатируются при ограниченном давлении теплоносителя. Также редуктор устанавливают на входном трубопроводе водоснабжения.

      Клапан чаще всего изготавливают из латуни, который позволяет выдерживать высокие температуры.Но также он может быть выполнен из чугуна, литой или нержавеющей стали.

      Устройство работает по следующему принципу:

      • клапан с пружиной, выравнивает усилия;
      • надстроечная пружина противодействует усилиям диафрагмы;
      • при открытии выходное давление становится ниже;
      • давление выравнивается до изначально установленного значения.
      Преимущества

      Прибор имеет широкий диапазон применения, его используют в промышленности, быту и даже коммерческих целях. К основным достоинствам устройства относят:

      • защита водоснабжения от гидроудара при резком увеличении давления;
      • защита оборудования от поломок;
      • снижение расхода воды;
      • снижение шума за счет нормализации давления;
      • постоянное давление на выходе при любых скачках на входе.

      Регулятор давления воды – это прибор, который помогает обезопасить систему теплоснабжения от поломок и аварий, делая износ элементов отопления минимальным.


      Регуляторы температуры и давления отопления

      На чтение 8 мин Просмотров 186 Опубликовано Обновлено

      Во время работы отопительной системы необходимо изменять параметры давления и температуры теплоносителя. Это может быть связано с несколькими факторами — перегрев горячей воды, неравномерное гидравлическое распределение. Для решения этих проблем следует установить регуляторы температуры и давления системы отопления.

      Приборы контроля температуры отопления

      Электронный термостат

      Чаще всего необходимо изменять параметры температуры в отопительной системе. Это можно делать как комплексно для всей сети, так и для каждого прибора в отдельности. Поэтому на ответственных участках магистрали нужен механический регулятор температуры для отопления или его электронный аналог.

      Какие задачи должны выполнять эти приборы? Прежде всего – контроль и своевременное изменение температурного режима в системе. В зависимости от конструкции и области применения регуляторы температуры для батарей отопления и всего теплоснабжения в целом могут быть нескольких типов:

      • Контроллеры работы всей отопительной системы. К ним относится погодный регулятор отопления, который подключается непосредственно к котлу или распределительному узлу системы;
      • Терморегуляторы зонального воздействия. Эту функцию выполняет регулятор батареи отопления, который ограничивает приток теплоносителя в зависимости от текущих показаний температуры.

      Каждый из этих классов приборов отливается конструктивно и имеет свою индивидуальную схему установки. Поэтому для правильной комплектации теплоснабжения необходимо разобраться в специфике всех типов терморегуляторов.

      Специалисты рекомендуют приобретать радиаторы отопления с регулятором температуры. Это позволит не только сэкономить, но исключит вероятность покупки неправильной модели.

      Механические терморегуляторы отопления

      Конструкция механического терморегулятора

      Механический регулятор батареи отопления является самым простым и надежным прибором для полуавтоматического и автоматического контроля нагрева поверхности радиатора. Он состоит из двух связанных между собой узлов – запорной арматурой и управляющей термоголовкой.

      В корпусе управляющей части есть термочувствительный элемент, который изменяет свои размеры под действием температуры. Он соединен с игольчатым клапаном, ограничивающим приток теплоносителя. Для контроля изменения положения клапана регулятор отопления в квартиру имеет спиральную пружину, которая соединена с регулировочной ручкой. Ее поворот увеличивает или уменьшает степень прижатия пружины к теплочувствительному элементу, тем самым устанавливая температуру срабатывания прибора.

      Преимущества применения механического регулятора температуры для отопления заключаются в следующем:

      • Возможность регулировки нагрева отдельного радиатора без влияния на параметры всей системы;
      • Простая установка и обслуживание. Эту работу может выполнить даже не специалист. Важно лишь ознакомиться с инструкцией по монтажу в радиаторы отопления регуляторов температуры;
      • Конструкция рассчитана для радиаторов всех типов – стальных, алюминиевых, биметаллических и чугунных. Однако установка регулятора в чугунную батарею отопления не всегда целесообразна. Этот материал обладает высокой теплоемкостью.

      Основная сложность монтажа радиаторов отопления с регулятором температуры заключается в правильном расположении управляющего элемента. Нельзя, чтобы горячий воздух от труб или батареи воздействовал на термочувствительный элемент. Это приведет к его неправильному функционированию.

      Технология монтажа механического регулятора температуры для теплоснабжения может изменяться в зависимости от конструкции батареи и способа ее подключения к отоплению.

      Электронные программаторы отопления

      Программатор отопления

      Значительно большим функционалом обладают погодные регуляторы отопления. Они состоят из электронного блока управления, который может подключаться к другим элементам теплоснабжения – котлу, терморегуляторам, циркуляционным насосам.

      Принцип работы электронных регуляторов отопления в квартиру отличается от механических. Они обрабатывают показания встроенного или внешних термометров для передачи команд управляющим элементам. Так, при изменении температуры в отдельном помещении подается команда на сервопривод регулятора радиатора отопления, который в свою очередь изменяет положение игольчатого клапана.

      Специфика функционирования погодный регулятор теплоснабжения выражается в таких нюансах:

      • Обеспечение постоянной подачи электричества для работы прибора;
      • Подключение к другим элементам отопления может быть осуществлено, если устройство регулятора отопления в квартиру имеет соответствующие разъемы;
      • Изменение параметров работы контроллера зависит от заводских настроек. Некоторые модели для радиаторов теплоснабжения с регулятором температуры имеют неизменяемые настройки. Комплексные программаторы отличаются гибким программным обеспечением.

      Для организации дистанционного управления регулятором отопления в доме можно установить модуль GPS. С его помощью данные о состоянии системы будут передаваться пользователю в виде SMS. Таким же образом осуществляется обратное управление теплоснабжением. Ручной регулятор температуры отопления не имеет такой функции априори.

      Настройка регуляторов температуры для радиаторов отопления осуществляется на основе расчетных параметров системы. В противном случае возможно некорректное функционирование устройства.

      Терморегуляторы в отопительных коллекторах

      Терморегуляторы в коллекторе отопления

      Кроме установки ручных регуляторов температуры отопления в батареи они применяются для комплектации коллекторного теплоснабжения. Их монтаж выполняется как в центральные распределительные гребенки, так и в узел управления системой водяного теплого пола.

      В отличие от регуляторов для отопительных радиаторов, в коллекторной группе они выполняют функцию по контролю объема потока теплоносителя в отдельные контуры теплоснабжения. Поэтому требования к конструкции и ее функционалу несколько выше, чем у устройств, рассчитанных для комплектации батарей.

      Есть несколько видов терморегуляторов для коллекторных групп:

      • Ручные регуляторы температуры теплоснабжения. Конструктивно ничем не отличаются от аналогичных устройств для батарей. Разница в размере подключаемого патрубка и температурном диапазоне работы. В эксплуатации неудобны, так как настраивать параметры для отдельного контура приходится вручную;
      • Терморегуляторы с сервоприводом. Зачастую они подключаются к внешнему модулю управления. Изменение положения заслонки происходит только при поступлении команды от программатора. Возможны варианты с установкой выносного датчика температуры. Это чаще всего делается для организации смесительных узлов.

      Установка и эксплуатация подобных терморегуляторов позволит добиться точной настройки отдельных контуров в отоплении. Таким образом можно сэкономить на затратах по использованию энергоносителя и оптимизировать работу всей системы в целом.

      Есть два типа терморегуляторов для коллекторного отопления – со съемными сервоприводами и стационарными. Выбор зависит от требуемого функционала системы.

      Регуляторы давления в отоплении

      Группа безопасности отопления

      В закрытой системе теплоснабжения помимо температуры есть еще один не менее важный показатель – давление. В результате нагрева теплоносителя происходит его расширение. С одной стороны это явление способствует лучшей циркуляции горячей воды. Но если не установить регулятор давления для отопления – может произойти аварийная ситуация.

      Нормальное значение этого параметра колеблется от 2 до 5 атм. в зависимости от типа отопительной системы. В централизованных магистралях возможно кратковременное превышение давления до 10 атм. Для его стабилизации и предназначен регулятор давления системы отопления.

      Принцип работы гидрострелки

      В настоящее время есть несколько типов этих приборов, которые отличаются не только внешне, но и функциональными возможностями:

      • Спускной клапан. Удаляет избыток теплоносителя для компенсации давления;
      • Воздухоотводчик. Предназначен для своевременной ликвидации воздушных пробок. Они формируются из-за перегрева горячей воды и могут привести к возникновению аварийных ситуаций;
      • Гидрострелка. Этот регулятор давления воды в системе отопления применяется не только для коллекторных систем, но и в двухтрубных схемах. Он стабилизует давление между подающей и обратной трубой теплоснабжения.

      Кроме гидрострелки все остальные приборы для регулирования давления воды в системе отопления имеют изменяемые параметры срабатывания. Т.е. пользователь может сам выставить предельные значения давления, при появлении которых активируется регулирующий элемент.

      Расширительный бак для стабилизации давления отопления

      Принцип работы расширительного бака

      Ключевое влияние на стабильность работы закрытой системы отопления с принудительной циркуляцией оказывает расширительный бак. Он предназначен для автоматической компенсации возникшего избыточного давления на трубы и радиаторы.

      Конструктивно это устройство для регулирования давления в отоплении представляет собой емкость, разделенную на две части эластичной мембранной. Одна из полостей с помощью патрубка подключается к отоплению, а во вторую нагнетается воздух. При этом значение давление во второй должно быть меньше максимально допустимого на 5-10%.

      Принцип работы мембранного регулятора давления системы отопления можно описать следующим алгоритмом:

      1. Давление в системе нормальное – мембрана не изменяет своего положения.
      2. Произошло критическое расширение теплоносителя. Одновременно с этим мембрана смещается в сторону воздушной камеры, тем самым увеличивая общий объем теплоснабжения. Происходит компенсация избыточного давления.
      3. Резкое падение объема теплоносителя. Регулятор давления воды в отоплении уменьшает объем путем смещения мембраны в сторону водяной камеры. Это происходит под воздействием давления воздушной камеры.

      Таким способом происходит автоматическое регулирование давления в отопительной системе. При выборе модели расширительного бака необходимо учитывать возможность замены эластичной мембраны. Есть модели, где это может сделать сам пользователь. Но для баков с небольшим объемом такой возможности нет. После двух-трех сезонов эксплуатации приходится демонтировать старый модуль отопления и устанавливать новый.

      Как правильно рассчитать параметры устройств для регулирования давления и температуры отопления? Для этого рекомендуется воспользоваться специализированными программными комплексами. Предварительно вносятся характеристики дома (степень утепления), графическая схема расположения труб, радиаторов и других компонентов теплоснабжения. На основе полученных данных программа даст оптимальные параметры всех элементов.

      В видеоматериале можно ознакомиться со спецификой подключения комнатного регулятора температуры в отоплении:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *